Influence of pharmacotherapy on function of biotransformation of xenobiotics liver in patients with neuropsychiatric disorders

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: The mechanisms of drug interactions of psychotropic drugs are associated with the processes of drug biotransformation by enzymes of microsomal oxidation of cytochrome P-450 in the liver. Various drugs can increase or decrease the activity of enzymes of the cytochrome P450-dependent system.

AIM: To evaluate the effect of pharmacotherapy with psychotropic drugs: alprazolam, bromazepam, lithium carbonate on the metabolic rate of the model substrate antipyrine in saliva in patients with neuropsychiatric disorders; the effect of the enzyme-inducing activity of the original anticonvulsant 1-[(3-chlorophenyl)(phenyl)methyl]urea on the pharmacokinetic parameters of antipyrine in healthy volunteers.

MATERIALS AND METHODS: 34 male patients were divided into three groups according to the nosological forms of diseases according to ICD-10: Group 1 — heading F43.23 and F43.25; 2 — F06.61; 3 — F41.2. Patients in the group 1 were prescribed alprazolam, in the 2 — bromazepam, in the 3 — lithium carbonate, for a course of 21 days. The comparison group consisted of 10 healthy volunteers. The original anticonvulsant was prescribed to the volunteers. Determination of the pharmacokinetics of antipyrine parameters as a test witness of the processes of elimination from the body was carried out in saliva before and after the end of therapy at a dose of 10 mg/kg once.

RESULTS: Alprazolam administration by patients of group 1 at a dose of 0.5–1.5 mg/day for 21 days did not significantly affect the pharmacokinetic parameters of antipyrine: T1/2, Clt, AUC. Alprazolam did not change the elimination of antipyrine from the saliva of patients. In patients of the group2, who received bromazepam at a dose of 6–12 mg / day,
a background decrease in T1/2, an increase in Clt, a decrease in AUC due to concomitant therapy were noted. Comparison of the pharmacokinetic parameters of antipyrine under the influence of bromazepam with background values not reveal significant differences. Therapy with lithium carbonate at a dose of 500–1000 mg/day in patients of the group 3 did not change the parameters of antipyrine elimination. The obtained data indicate that the drugs do not affect the activity of liver microsomal oxidation in patients. The study of the effect of 1-[(3-chlorophenyl)(phenyl)methyl]urea on the pharmacokinetic parameters of antipyrine in volunteers revealed a diametrically opposite result: a significant decrease in T1/2 by 2 times, an increase in Clt and a decrease in AUC, which indicates accelerated elimination of antipyrine from the saliva of the subjects and indicates the induction of liver microsomal oxidation.

CONCLUSIONS: Pharmacotherapy using the studied psychotropic drugs in patients is not associated with the induction or inhibition of liver enzymes, which indicates the absence of drug pharmacokinetic interference. The original anticonvulsant 1-[(3-chlorophenyl)(phenyl)methyl]urea stimulated the induction of liver microsomal oxidation in volunteers.

Full Text

Restricted Access

About the authors

Tamara V. Shushpanova

Tomsk National Research Medical Center of the Russian Academy of Sciences; Federal Scientific and Clinical Center for Medical Rehabilitation and Balneology of the Federal Medical and Biological Agency of Russia

Email: shush59@mail.ru
ORCID iD: 0000-0002-9455-0358
SPIN-code: 9158-9235
Scopus Author ID: 6506299310
ResearcherId: J-2817-2017

MD, Cand. Sci. (Medicine)

Russian Federation, Tomsk; Tomsk

Irina E. Kupriyanova

Tomsk National Research Medical Center of the Russian Academy of Sciences

Email: irinakupr@rambler.ru
ORCID iD: 0000-0003-2495-7811
SPIN-code: 1617-6349

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Tomsk

Nikolay Aleksandrovich Bokhan

Tomsk National Research Medical Center of the Russian Academy of Sciences; Siberian State Medical University

Email: mental@tnimc.ru
ORCID iD: 0000-0002-1052-855X
SPIN-code: 2419-1263
Scopus Author ID: 6506895310.

MD, Dr. Sci. (Medicine), Professor, Academician of Russian Academy of Sciences

Russian Federation, Tomsk; Tomsk

Tatiana V. Kazennykh

Tomsk National Research Medical Center of the Russian Academy of Sciences; Siberian State Medical University

Author for correspondence.
Email: tvk151@yandex.ru
ORCID iD: 0000-0002-6253-4644
SPIN-code: 6956-3031

MD, Dr. Sci. (Medicine)

Russian Federation, Tomsk; Tomsk

Tatiana P. Novozheeva

Tomsk National Research Medical Center of the Russian Academy of Sciences;т Siberian State Medical University

Email: ntp53@mail.ru
ORCID iD: 0000-0003-4218-6723

Dr. Sci. (Biology)

Russian Federation, Tomsk; Tomsk

Evgeny D. Schastnyy

Tomsk National Research Medical Center of the Russian Academy of Sciences

Email: evgeny.schastnyy@gmail.com
ORCID iD: 0000-0003-2148-297X
SPIN-code: 6482-2439

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Tomsk

Valentina B. Nikitina

Tomsk National Research Medical Center of the Russian Academy of Sciences

Email: vbnikitina@yandex.ru
ORCID iD: 0000-0002-1644-770X
SPIN-code: 3687-7727

Dr. Sci. (Medicine)

Russian Federation, Tomsk

Mikhail M. Aksenov

Tomsk National Research Medical Center of the Russian Academy of Sciences

Email: max1957@mail.ru
ORCID iD: 0000-0002-8949-6596
SPIN-code: 7599-1801

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Tomsk

Olga E. Perchatkina

Tomsk National Research Medical Center of the Russian Academy of Sciences

Email: poa@antline.ru
ORCID iD: 0000-0001-5538-1304
SPIN-code: 6299-0859

MD, Cand. Sci. (Medicine)

Russian Federation, Tomsk

Elena V. Gutkevich

Tomsk National Research Medical Center of the Russian Academy of Sciences

Email: gutkevich.elena@rambler.ru
ORCID iD: 0000-0001-7416-7784
SPIN-code: 6427-9007

Dr. Sci. (Medicine)

Russian Federation, Tomsk

Olga V. Shushpanova

Mental Health Research Center

Email: sertraline@list.ru
ORCID iD: 0000-0003-3484-3447
SPIN-code: 8979-9700

 канд. мед. наук

Russian Federation, Moscow

Irina N. Smirnova

Federal Scientific and Clinical Center for Medical Rehabilitation and Balneology of the Federal Medical and Biological Agency of Russia

Email: irin-smirnova@yandex.ru
ORCID iD: 0000-0002-9010-2419
SPIN-code: 1873-9302

Dr. Sci. (Medicine)

Russian Federation, Tomsk

Alexei А. Zaitsev

Federal Scientific and Clinical Center for Medical Rehabilitation and Balneology of the Federal Medical and Biological Agency of Russia

Email: alzay2010@yandex.ru
ORCID iD: 0000-0003-2601-1739

MD, Cand. Sci. (Medicine)

Russian Federation, Tomsk

Natalia P. Garganeeva

Tomsk National Research Medical Center of the Russian Academy of Sciences; Siberian State Medical University

Email: garganeeva@gmail.com
SPIN-code: 5449-1169

MD, Dr. Sci. (Medicine)

Russian Federation, Tomsk; Tomsk

Mikhail V. Belousov

Siberian State Medical University

Email: mvb63@mail.ru
ORCID iD: 0000-0002-2153-7945
SPIN-code: 8185-8117

Dr. Sci. (Pharmacy)

Russian Federation, Tomsk

Artem M. Guryev

Siberian State Medical University

Email: titan-m@mail.ru
ORCID iD: 0000-0002-1120-4979
SPIN-code: 3731-4439

Dr. Sci. (Pharmacy)

Russian Federation, Tomsk

Olga A. Vasileva

Siberian State Medical University

Email: vasiljeva-24@yandex.ru
ORCID iD: 0000-0002-2882-4533
SPIN-code: 9665-5714

MD, Cand. Sci. (Medicine)

Russian Federation, Tomsk

Vladimir V. Udut

Tomsk National Research Medical Center of the Russian Academy of Sciences

Email: udutv@mail.ru
ORCID iD: 0000-0002-3829-7132
SPIN-code: 8645-9815

MD, Dr. Sci. (Medicine), Professor, Сorresponding member of the Russian Academy of Sciences

Russian Federation, Tomsk

References

  1. Kukes VG, Ivanets NN, Sychev DA, Psareva NA. Cytochrome P-450 pharmacogenetics and antidepressants treatment safety. Journal biomed. 2014;(1):67–80. EDN: RYCVGT
  2. Fattakhova AN. Methods of molecular pharmacology. Kazan: KSU Publ.; 2002. P. 21–22. (In Russ.)
  3. Khoronko VV, Maklyakov YuS, Sergeeva SA, Safronenko AV. Distribution pharmacokinetics of the actoprotectors bromantan and chlodantan in rats. Journal biomed. 2005;(1):76–80. EDN: MIXZGH (In Russ.)
  4. Coleman MD. Human drug metabolism. New-York: John Wiley and Sons; 2020. 688 p.
  5. Li Y, Meng Q, Yang M, et al. Current trends in drug metabolism and pharmacokinetics. Acta Pharm Sin B. 2019;9(6):1113–1144. doi: 10.1016/j.apsb.2019.10.001
  6. Manikandan P, Nagini S. Cytochrome P450 structure, function and clinical significance: A review. Curr Drug Targets. 2018;19(1): 38–54. doi: 10.2174/13894 50118666170125144557
  7. Novozheyeva TP, Smagina MI, Cherevko NA, Fateyeva SN. Benzobarbital and fluorbenzobarbital — hepatic monooxygenase system phenobarbital-like inducers. Bulletin of siberian medicine. 2011;10(5):78–81. EDN: OJHKLD
  8. Sadyrkhanova UZh, Baizhanova KT, Sadyrkhanova GZh, Nesmeyanova EP. Ctivity of monooksigenaznoy and nitrergicheskoy of systems in mikrosomakh of liver at operating on organism of inductors and inhibitors of medicinal metabolism. Bulletin of the Kazakh National Medical University. 2016;(1):74–77. EDN: YKOKZL
  9. Shushpanova TV, Bokhan NA, Stankevich KS, et al. An innovatory GABA receptor modulator and liver oxidase system microsomal cytochrome P450 activator in patients with alcoholism. Pharm Chem J. 2021;54(11):1093–1100. doi: 10.1007/s11094-021-02327-x
  10. Shushpanova TV, Bokhan NA, Kuksenok VYu, et al. A novel urea derivative anticonvulsant: in vivo biological evaluation, radioreceptor analysis of GABAA receptors and molecular docking studies of enantiomers. Mendeleev Communications. 2023;33(4):546–549. doi: 10.1016/j.mencom.2023.06.034
  11. Gribakina OG, Kolyvanov GB, Litvin AA, et al. Pharmacokinetic interaction of drugs, the metabolisable cytochrome P450 isoenzyme CYP2C9. Pharmacokinetics and pharmacodynamics. 2016;(1):21–32. EDN: WGCBTT
  12. Smirnov VV, Abdrashitov RH, Egorenkov EA, et al. Influence of CYP2D6 on drug metabolism and methods for determining its activity. The bulletin of the Scientific Centre for expert evaluation of medicinal products. Regulatory research and medicine evaluation. 2015;(3):32–35. EDN: UJJUVF
  13. Zanger UM, Turpeinen M, Klein K, Schwab M. Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation. Anal Bioanal Chem. 2008;392(6):1093–1108. doi: 10.1007/s00216-008-2291-6
  14. Zanger UM, Schwab M. Cytochrome P450enzymes in drug metabolism: regulation of geneexpression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103–141. doi: 10.1016/j.pharmthera.2012.12.007
  15. Thümmler S, Dor E, David R, et al. Pharmacoresistant severe mental health disorders in children and adolescents: Functional abnormalities of cytochrome P450 2D6. Front Psychiatry. 2018;9:2. doi: 10.3389/fpsyt.2018.00002
  16. Kapur BM, Lala PK, Shaw JLV. Pharmacogenetics of chronic pain management. Clin Biochem. 2014;47(13–14):1169–1187. doi: 10.1016/j.clinbiochem.2014.05.065
  17. Hicks JK, Swen JJ, Thorn CF, et al. Clinical pharmacogenetics implementation consortium guideline for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants. Clin Pharmacol Ther. 2013;93(5):402–408. doi: 10.1038/clpt.2013.2
  18. Ivashchenko DV, Tereshchenko OV, Temirbulatov II, et al. Pharmacogenetics of the safety of phenazepam in alcohol withdrawal syndrome: haplotype and combinatorial analyses of polymorphic variants in the pharmacokinetic factor genes. Neurology, Neuropsychiatry, Psychosomatics. 2020;12(2):17–22. EDN: TROJUD doi: 10.14412/2074-2711-2020-2-17-22
  19. Malin DI, Ryvkin PV. Clinically relevant drug interactions in the treatment of second-generation antipsychotics. 2021;(2):36–45. EDN: VYYLWD doi: 10.21265/PSYPH.2021.57.2.005
  20. Bogni A, Monshouwer М, Moscone A, et al. Substrate specific metabolism by polymorphic cytochrome P450 2D6 alleles. Toxicol in Vitro. 2005;19(5):621–629. doi: 10.1016/j.tiv.2005.04.001
  21. Lebedev AA, Lukashkova VV, Pshenichnaya AG, et al. Emotiogenic effects of antorex, a novel OX1R antagonist, on emotional manifestations of anxiety and compulsiveness in rats. Reviews on Clinical Pharmacology and Drug Therapy. 2023;21(2):151–158. EDN: SGKVIX doi: 10.17816/RCF492319
  22. Vasilieva SN, Simutkin GG, Schastnyy ED, et al. Affective disorders in comorbidity with alcohol addiction: clinical and dynamic features, social adaptation level of patients. Bulletin of Siberian Medicine. 2020;19(1):29–35. EDN: TBALAC doi: 10.20538/1682-0363-2020-1-29-35
  23. Miroshnikov MV, Sultanova KT, Makarova MN, Makarov VG. A comparative review of the activity of enzymes of the cytochrome P450 system in humans and laboratory animals. Prognostic value of preclinical models in vivo. Translational Medicine. 2022;9(5):44–77. EDN: IZGDRT doi: 10.18705/2311-4495-2022-9-5-44-77
  24. Sychev DA, Otdelenov VA, Denisenko NP, Smirnov VV. The study of the activity of isoenzymes of cytochrome P450 for the prediction of drug-drug interactions of medicines in terms of polypharmacy. Pharmacogenetics and Pharmacogenomics. 2016;(2):4–11.
  25. Fattakhova AN, Abdulianov AV, Hakimova AF, Mingaleeva ER. Cytochrome-dependent metabolism of psychotropic drug substrates in human cerebral cortex microsomes. Scientific notes of Kazan State University. Series Natural Sciences. 2005;147(3):111–115. EDN: HQTWEV (In Russ.)
  26. Bertilsson L, Dahl M-L, Dalen P, Al-Shurbaji A. Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. Br J Clin Pharmacol. 2002;53(2):111–122. doi: 10.1046/j.0306-5251.2001.01548.x
  27. Chinta S, Pai H, Upadhya S, et al. Constitutive expression and localization of the major drug metabolizing enzyme, cytochrome P4502D in human brain. Brain Res Mol Brain Res. 2002;103:49–61. doi: 10.1016/S0169-328X(02)00177-8
  28. Pai H, Upadhya S. Differential metabolism of alprazolam by liver and brain cytochrome (P4503A) to pharmacologically active metabolite. Pharmacogenomics J. 2002;2(4):243–258. doi: 10.1038/sj.tpj.6500115
  29. Pachecka J, Wegiełek J, Kobylińska K, Bicz W. Structure and effects of benzodiazepines on hepatic microsomal monooxygenases in rats exposed to environmental temperature. Folia Med Cracov. 1990;31(3):217–224.
  30. Rybakowski JK, Suwalska А, Hajek Т. Clinical perspectives of lithium’s neuroprotective effect. Pharmacopsychiatry. 2018;51(5): 194–199. doi: 10.1055/s-0043-124436
  31. Gromova OA, Torshin IIu, Gogoleva IV, et al. Pharmacokinetic and pharmacodynamic synergism between neuropeptides and lithium in the neurotrophic and neuroprotective action of cerebrolysin. S.S. Korsakov Journal of Neurology and Psychiatry. 2015;115(3):6572. EDN: TVUJOV doi: 10.17116/jnevro20151153165-72
  32. Emamghoreishi M, Keshavarz M, Nekooeian AA. Acute and chronic effects of lithium on BDNF and GDNF mRNA and protein levels in rat primary neuronal, astroglial and neuroastroglia cultures. Iran J Basic Med Sci. 2015;18(3):240–246.
  33. Chuang DM, Priller J. Potential use of lithium in neurodegenerative disorders. In: Bauer M, Grof P, Muller-Oerlinghausen B, editors. Lithium in neuropsychiatry: The comprehensive guide. Abingdon, Oxon: Informa UK Ltd; 2006. Р. 381–398.
  34. Hillert MH, Imran I, Zimmermann M, et al. Dynamics of hippocampal acetylcholine release during lithium-pilocarpine-induced status epilepticus in rats. J Neurochem. 2014;131(1):42–52. doi: 10.1111/jnc.12787
  35. van Enkhuizen J, Milienne-Petiot M, Geyer MA, Young JW. Modeling bipolar disorder in mice by increasing acetylcholine or dopamine: chronic lithium treats most, but not all features. Psychopharmacology (Berl). 2015;232(18):3455–3467. doi: 10.1007/s00213-015-4000-4
  36. Basselin M, Chang L, Bell JM, Rapoport SI. Chronic lithium chloride administration attenuates brain NMDA receptor-initiated signaling via arachidonic acid in unanesthetized rats. Neuropsychopharmacology. 2006;31:1659–1674. doi: 10.1038/sj.npp.1300920
  37. Basselin M, Chang L, Seemann R, et al. Chronic lithium administration to rats selectively modifies 5-HT2A/2C receptor-mediated brain signaling via arachidonic acid. Neuropsychopharmacology. 2005;30:461–472. doi: 10.1038/sj.npp.1300611
  38. Ma JK-C, Barros E, Bock R, et al. Molecular farming for new drugs and vaccines. Current perspectives on the production of pharmaceuticals in transgenic plants. EMBO Rep. 2005;6(7):593–599. doi: 10.1038/sj.embor.7400470
  39. Geddes JR, Miklowitz DJ. Treatment of bipolar disorder. Lancet. 2013;381(9878):1672–1682. doi: 10.1016/S0140-6736(13)60857-0
  40. Cipriani A, Hawton K, Stockton S, Geddes JR. Lithium in the prevention of suicide in mood disorders: updated systematic review and meta-analysis. BMJ. 2013;346:f3646. doi: 10.1136/bmj.f3646
  41. Musetti L, Del Grande C, Marazziti D, Dell’Osso L. Treatment of bipolar depression. CNS Spectrums. 2013;18(4):177–187. doi: 10.1017/S1092852912001009
  42. Shushpanova TV, Novozheeva TP, Mandel AI, Knyazeva EM. Molecular targets of action of innovative anticonvulsant galodif in therapy of alcohol dependence. Siberian Herald of Psychiatry and Addiction Psychiatry. 2018;(2):120–126. EDN: XQBSRN doi: 10.26617/1810-3111-2018-2(99)-120-126
  43. Gorstein ES, Semenyuk AV, Majore AYa. Antipyrine test and its use in the clinic. Uspekhi hepatologii. 1988;(14):128–147. (In Russ.)
  44. Piotrowski V. Method of statistical moments and off-model characteristics of drug distribution and elimination. Pharmaceutical Chemistry Journal. 1984;18(7):845–849. (In Russ.)
  45. Fukazawa H, Iwase H, Ichishita H, et al. Effects of chronic administration of bromazepam on its blood level profile and on the hepatic microsomal drug-metabolizing enzymes in the rat. Drug Metab Dispos. 1975;3(4):235–244.
  46. Bahar MA, Hak E, Bos JHJ, et al. The burden and management of cytochrome P450 2D6 (CYP2D6)-mediated drug-drug interaction (DDI): co-medication of metoprolol and paroxetine or fluoxetine in the elderly. Pharmacoepidemiol Drug Saf. 2017;26(7):752–765. doi: 10.1002/pds.4200
  47. Finnigan JD, Young C, Cook DJ, et al. Cytochromes P450 (P450s): A review of the class system with a focus on prokaryotic P450s. Adv Protein Chem Struct Biol. 2020;122:289–320. doi: 10.1016/bs.apcsb.2020.06.005
  48. Werck-Reichhart D, Feyereisen R. Cytochromes P450: a success story. Genome Biol. 2000;1(6): reviews3003. doi: 10.1186/gb-2000-1-6-reviews3003
  49. Gilani B, Cassagnol M. Biochemistry, Cytochrome P450. [Updated 2023 Apr 24]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan–. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557698/
  50. Pelkonen O, Turpeinen M, Hakkola J, et al. Inhibition and induction of human cytochrome P450 enzymes: current status. Arch Toxicol. 2008;82(10):667–715. doi: 10.1007/s00204-008-0332-8
  51. Danielson PB. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab. 2002;3(6):561–597. doi: 10.2174/1389200023337054
  52. Koopmans AB, Braakman MH, Vinkers DJ, et al. Meta-analysis of probability estimates of worldwide variation of CYP2D6 and CYP2C19. Transl Psychiatry. 2021;11(1):141. doi: 10.1038/s41398-020-01129-1
  53. Lewis DFV. 57 varieties: the human cytochromes P450. Pharmacogenomics. 2004;5(3):305–318. doi: 10.1517/phgs.5.3.305.29827
  54. Tompkins LM, Wallace AD. Mechanisms of cytochrome P450 induction. J Biochem Mol Toxicol. 2007;21(4):176–181. doi: 10.1002/jbt.20180
  55. Hiroi T, Chow T, Imaoka S, et al. Catalytic specificity of CYP2D isoforms in rat and human. Drug Metab Dispos. 2002;30(9):970–976. doi: 10.1124/dmd.30.9.970
  56. Petrakov AI, Sheikin VV, Krivoshchekov SV, et al. Development of the tablet dosage form composition for the inductor of hepatocytes monooxygenase system based on 6,8-dimethyl-¬2-piperidinomethyl-2,3-dihydrothiazolo[2,3-f]xanthine. Drug development and registration. 2023;12(4):189–196. EDN: KRQFJE doi: 10.33380/2305-2066-2023-12-4-1517
  57. Ingelman-Sundberg M, Rodriguez-Antona C. Pharmacogenetics of drug metabolizing enzymes: implications for a safer and more effective drug therapy. Philos Trans R Soc Lond B Biol Sci. 2005;360(1460):1563–1570. doi: 10.1098./rstb.2005.1685
  58. Zaccara G, Perucca E. Interactions between antiepileptic drugs, and between antiepileptic drugs and other drugs. Epileptic Disord. 2014;6(4):409–431. doi: 10.1684/epd.2014.0714.3
  59. Johannessen Landmark C, Patsalos PN. Drug interactions involving the new second- and third-generation antiepileptic drugs. Expert Rev Neurother. 2010;10(1):119–140. doi: 10.1586/ern.09.136

Copyright (c) 2024 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.