The effect of various types of allosteric regulators on basal and hormone-stimulated thyrotropin receptor activity in vitro and in vivo

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background: Long-term antithyroid therapy used to treat autoimmune hyperthyroidism can potentially induce thyroid hormone deficiency. Therefore, the development of thyrotropin receptor regulators which can inhibit thyrotropin activation through orthosteric agonists (thyrotropin, antithyroid autoantibodies) and stimulate its basal activity is crucial. Allosteric thyrotropin regulators with the activity of agonists and negative allosteric modulators has been demonstrated to have this effect.

Aim: To compare the effects of TPY4, a thieno[2,3-d]pyrimidine derivative, and 612-627-Lys(Palm)Ala, a peptide derivative of the third cytoplasmic loop of thyropropin receptor, on the basal and thyropropin-stimulated activity of adenylate cyclase in thyroid membranes and on the basal and thyrotropin-releasing hormone-stimulated levels of thyroid hormones in male rats.

Methods: The activity of adenylate cyclase in plasma membranes of thyroid cells purified from rat thyroids was measured by radioisotope assay using [α-32P]-adenosine triphosphate, radiolabeled sodium adenosine triphosphate, as a substrate. The effect of pharmaceutical agents on basal and thyrotropin-releasing hormone-stimulated levels of thyroid hormone was evaluated by injecting 612–627-Lys(Palm)Ala peptide (at 750 μg/kg) and TPY4 (at 15 mg/kg) to rats. Blood levels of free thyroxine, total triiodothyronine, and thyrotropin were determined by enzyme immunoassay.

Results: Micromolar levels (10–9 M) of TPY4 and 612–627-Lys(Palm)Ala increased the basal activity of adenylate cyclase and decreased thyrotropin stimulation in plasma membranes of thyroid cells. TPY4 demonstrated superior inhibitory activity on thyropropin, whereas the peptide induced a more significant stimulatory response in adenylate cyclase. When administered to rats, both compounds increased the synthesis of free thyroxine and total triiodothyronine, albeit to varying levels. However, they also inhibited the synthesis by thyrotropin-releasing hormone-induced thyroid axis activation (at 100 μg/rat). These compounds did not demonstrate a substantial effect on blood levels of thyrotropin-releasing hormone-stimulated thyropropin, suggesting that they are targeted to thyrotropin-releasing hormone in thyrocytes.

Conclusion: Structurally different allosteric ligands of thyrotropin receptor, i.e., thieno[2,3-d]pyrimidine derivative TPY4 and peptide 612–627-Lys(Palm)Ala, were found to have a similar spectrum of pharmacological activity, functioning as thyrotropin receptor agonists and negative allosteric modulators. Their inhibitory effect on thyrotropin receptor hyperactivation while maintaining euthyroidism offers a promising avenue for the development of novel pharmaceutical agents for the treatment of autoimmune hyperthyroidism.

Full Text

Restricted Access

About the authors

Kira V. Derkach

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: derkatch_k@list.ru
ORCID iD: 0000-0001-6555-9540
SPIN-code: 6925-1558

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Elena A. Shpakova

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: eshpakova@mail.ru
ORCID iD: 0000-0002-5645-455X
Russian Federation, Saint Petersburg

Egor A. Didenko

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences; Saint Petersburg State University

Email: didenkoegor58@mail.ru
ORCID iD: 0009-0000-5217-0624
SPIN-code: 5115-8389
Russian Federation, Saint Petersburg; Saint Petersburg

Viktor N. Sorokoumov

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences; Saint Petersburg State University

Email: sorokoumov@gmail.com
ORCID iD: 0000-0002-4917-2175
SPIN-code: 1042-8142

Cand. Sci. (Chemistry)

Russian Federation, Saint Petersburg; Saint Petersburg

Alexander O. Shpakov

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Author for correspondence.
Email: alex_shpakov@list.ru
ORCID iD: 0000-0002-4293-3162
SPIN-code: 6335-8311

Dr. Sci. (Biology)

Russian Federation, Saint Petersburg

References

  1. Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev. 2014;94(2):355–382. doi: 10.1152/physrev.00030.2013
  2. Ortiga-Carvalho TM, Chiamolera MI, Pazos-Moura CC, Wondisford FE. Hypothalamus-pituitary-thyroid axis. Compr Physiol. 2016;6(3):1387–1428. doi: 10.1002/cphy.c150027
  3. Krause G, Eckstein A, Schülein R. Modulating TSH receptor signaling for therapeutic benefit. Eur Thyroid J. 2020;9(Suppl 1):66–77. doi: 10.1159/000511871 EDN: DVNUMZ
  4. Kleinau G, Biebermann H. Constitutive activities in the thyrotropin receptor: regulation and significance. Adv Pharmacol. 2014;70:81–119. doi: 10.1016/B978-0-12-417197-8.00003-1
  5. Rowe CW, Paul JW, Gedye C, et al. Targeting the TSH receptor in thyroid cancer. Endocr Relat Cancer. 2017;24(6):R191–R202. doi: 10.1530/ERC-17-0010
  6. Cheng X, Zhang H, Guan S, et al. Receptor modulators associated with the hypothalamus-pituitary-thyroid axis. Front Pharmacol. 2023;14:1291856. doi: 10.3389/fphar.2023.1291856 EDN: VLNTZM
  7. Latif R, Realubit RB, Karan C, et al. TSH receptor signaling abrogation by a novel small molecule. Front Endocrinol (Lausanne). 2016;7:130. doi: 10.3389/fendo.2016.00130
  8. Marcinkowski P, Hoyer I, Specker E, et al. A new highly thyrotropin receptor-selective small-molecule antagonist with potential for the treatment of graves’ orbitopathy. Thyroid. 2019;29(1):111–123. doi: 10.1089/thy.2018.0349
  9. Nagayama Y, Nishihara E. Thyrotropin receptor antagonists and inverse agonists, and their potential application to thyroid diseases. Endocr J. 2022;69(11):1285–1293. doi: 10.1507/endocrj.EJ22-0391 EDN: XJDNIC
  10. Shpakov AO, Shpakova EA, Tarasenko II, Derkach KV. Peptide 612–627 of thyrotropin receptor and its modified analogs as regulators of adenylyl cyclase in rat thyroid gland. Cell and Tissue Biology. 2014;8(6):488–498. doi: 10.1134/S1990519X1406008X EDN: UFRREV
  11. Derkach KV, Shpakova EA, Titov AM, Shpakov AO. Intranasal and intramuscular administration of lysine-palmitoylated peptide 612–627 of thyroid-stimulating hormone receptor increases the level of thyroid hormones in rats. Int J Pept Res Ther. 2015;21(3):249–260. doi: 10.1007/s10989-014-9452-6 EDN: UFCNFT
  12. Gershengorn MC, Neumann S. Update in TSH receptor agonists and antagonists. J Clin Endocrinol Metab. 2012;97(12):4287–4292. doi: 10.1210/jc.2012-3080
  13. Latif R, Morshed SA, Ma R, et al. A GQ biased small molecule active at the TSH receptor. Front Endocrinol (Lausanne). 2020;11:372. doi: 10.3389/fendo.2020.00372 EDN: YCHDNA
  14. Kahaly GJ, Steiner L, van der Lee MMC, et al. Thyrotropin receptor antagonism by a novel small molecule: preclinical in vitro observations. Thyroid. 2023;33(6):732–742. doi: 10.1089/thy.2022.0694 EDN: IWZAQY
  15. Derkach KV, Bakhtyukov AA, Sorokoumov VN, Shpakov AO. New thieno[2,3-d]pyrimidine-based functional antagonist for the receptor of thyroid stimulating hormone. Dokl Biochem Biophys. 2020;491(1):77–80. doi: 10.1134/S1607672920020064 EDN: BHNFMG
  16. Derkach KV, Bakhtyukov AA, Sorokoumov VN, et al. Low molecular weight thyrotropin receptor inverse agonist is active upon both intraperitoneal and oral administration. J Evol Biochem Physiol. 2024;60(1):295–305. doi: 10.1134/S0022093024010216 EDN: UTLUFP
  17. Jakubík J, Randáková A, Chetverikov N, et al. The operational model of allosteric modulation of pharmacological agonism. Sci Rep. 2020;10(1):1–20. doi: 10.1038/s41598-020-71228-y EDN: WKUQMB
  18. Grundmann M, Bender E, Schamberger J, Eitner F. Pharmacology of free fatty acid receptors and their allosteric modulators. Int J Mol Sci. 2021;22(4):1763. doi: 10.3390/ijms22041763 EDN: WFHCTG
  19. Heyma P, Harrison LC. Precipitation of the thyrotropin receptor and identification of thyroid autoantigens using Graves’ disease immunoglobulins. J Clin Invest. 1984;74(3):1090–1097. doi: 10.1172/JCI111476
  20. Salomon Y, Amir Y, Azulai R, Amsterdam A. Modulation of adenylate cyclase activity by sulfated glycosaminoglycans. I. Inhibition by heparin of gonadotrophin-stimulated ovarian adenylate cyclase. Biochim Biophys Acta. 1978;544(2):262–272. doi: 10.1016/0304-4165(78)90095-8
  21. Olson KM, Traynor JR, Alt A. Allosteric modulator leads hiding in plain site: developing peptide and peptidomimetics as GPCR allosteric modulators. Front Chem. 2021;9:671483. doi: 10.3389/fchem.2021.671483 EDN: IOEEKH
  22. Hedderich JB, Persechino M, Becker K, et al. The pocketome of G-protein-coupled receptors reveals previously untargeted allosteric sites. Nat Commun. 2022;13(1):2567. doi: 10.1038/s41467-022-29609-6 EDN: MQOZDP
  23. Persechino M, Hedderich JB, Kolb P, Hilger D. Allosteric modulation of GPCRs: From structural insights to in silico drug discovery. Pharmacol Ther. 2022;237:108242. doi: 10.1016/j.pharmthera.2022.108242 EDN: SWVFAU
  24. Neumann S, Nir EA, Eliseeva E, et al. A selective TSH receptor antagonist inhibits stimulation of thyroid function in female mice. Endocrinology. 2014;155(1):310–314. doi: 10.1210/en.2013-1835
  25. Neumann S, Eliseeva E, Boutin A, et al. Discovery of a positive allosteric modulator of the thyrotropin receptor: potentiation of thyrotropin-mediated preosteoblast differentiation in vitro. J Pharmacol Exp Ther. 2018;364(1):38–45. doi: 10.1124/jpet.117.244095
  26. Moore S, Jaeschke H, Kleinau G, et al. Evaluation of small-molecule modulators of the luteinizing hormone/choriogonadotropin and thyroid stimulating hormone receptors: structure-activity relationships and selective binding patterns. J Med Chem. 2006;49(13): 3888–3896. doi: 10.1021/jm060247s
  27. Joseph-Bravo P, Jaimes-Hoy L, Uribe RM, Charli JL. 60 years of neuroendocrinology: TRH, the first hypophysiotropic releasing hormone isolated: control of the pituitary-thyroid axis. J Endocrinol. 2015;226(2):T85–T100. doi: 10.1530/JOE-15-0124
  28. Kobilka BK, Kobilka TS, Daniel K, et al. Chimeric alpha 2-, beta2-adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity. Science. 1988;240(4857): 1310–1316. doi: 10.1126/science.2836950 EDN: IDYQUX
  29. Flock T, Hauser AS, Lund N, et al. Selectivity determinants of GPCR-G-protein binding. Nature. 2017;545(7654):317–322. doi: 10.1038/nature22070
  30. Duan J, Shen DD, Zhao T, et al. Molecular basis for allosteric agonism and G protein subtype selectivity of galanin receptors. Nat Commun. 2022;13(1):1364. doi: 10.1038/s41467-022-29072-3 EDN: WKSUEL
  31. Sadler F, Ma N, Ritt M, et al. Autoregulation of GPCR signalling through the third intracellular loop. Nature. 2023;615(7953):734–741. doi: 10.1038/s41586-023-05789-z EDN: BDHHKH
  32. Claus M, Neumann S, Kleinau G, et al. Structural determinants for G-protein activation and specificity in the third intracellular loop of the thyroid-stimulating hormone receptor. J Mol Med (Berl). 2006;84(11):943–954. doi: 10.1007/s00109-006-0087-8
  33. Kleinau G, Worth CL, Kreuchwig A, et al. Structural-functional features of the thyrotropin receptor: A class a G-protein-coupled receptor at work. Front Endocrinol (Lausanne). 2017;8:86. doi: 10.3389/fendo.2017.00086
  34. Li J, Remington JM, Liao C, et al. GPCR intracellular loop regulation of beta-arrestin-mediated endosomal signaling dynamics. J Mol Neurosci. 2022;72(6):1358–1373. doi: 10.1007/s12031-022-02016-8 EDN: ZQPXHT
  35. Ozgur C, Doruker P, Akten ED. Investigation of allosteric coupling in human β2-adrenergic receptor in the presence of intracellular loop 3. BMC Struct Biol. 2016;16(1):9. doi: 10.1186/s12900-016-0061-9 EDN: WCHOTN
  36. Maggio R, Fasciani I, Petragnano F, et al. Unraveling the functional significance of unstructured regions in G protein-coupled receptors. Biomolecules. 2023;13(10):1431. doi: 10.3390/biom13101431 EDN: YNCRTH
  37. Gandhi DM, Majewski MW, Rosas RJr, et al. Characterization of Protease-Activated Receptor (PAR) ligands: Parmodulins are reversible allosteric inhibitors of PAR1-driven calcium mobilization in endothelial cells. Bioorg Med Chem. 2018;26(9):2514–2529. doi: 10.1016/j.bmc.2018.04.016
  38. Künze G, Isermann B. Targeting biased signaling by PAR1: function and molecular mechanism of parmodulins. Blood. 2023;141(22): 2675–2684. doi: 10.1182/blood.2023019775 EDN: PIDHWX
  39. Zhang P, Leger AJ, Baleja JD, et al. Allosteric activation of a G protein-coupled receptor with cell-penetrating receptor mimetics. J Biol Chem. 2015;290(25):15785–15798. doi: 10.1074/jbc.M115.636316
  40. O’Callaghan K, Kuliopulos A, Covic L. Turning receptors on and off with intracellular pepducins: new insights into G-protein-coupled receptor drug development. J Biol Chem. 2012;287(16):12787–12796. doi: 10.1074/jbc.R112.355461 EDN: PIZSUD
  41. Michael E, Covic L, Kuliopulos A. Lipopeptide pepducins as therapeutic agents. Methods Mol Biol. 2022;2383:307–333. doi: 10.1007/978-1-0716-1752-6_21 EDN: AWVTYM
  42. Xu H, Tilley DG. Pepducin-mediated G protein-coupled receptor signaling in the cardiovascular system. J Cardiovasc Pharmacol. 2022;80(3):378–385. doi: 10.1097/FJC.0000000000001236 EDN: MVUDXE
  43. van Koppen CJ, Zaman GJ, Timmers CM, et al. A signaling-selective, nanomolar potent allosteric low molecular weight agonist for the human luteinizing hormone receptor. Naunyn Schmiedebergs Arch Pharmacol. 2008;378(5):503–514. doi: 10.1007/s00210-008-0318-3 EDN: CMFYBW
  44. van de Lagemaat R, Timmers CM, Kelder J, et al. Induction of ovulation by a potent, orally active, low molecular weight agonist (Org 43553) of the luteinizing hormone receptor. Hum Reprod. 2009;24(3):640–648. doi: 10.1093/humrep/den412

Copyright (c) 2025 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.