Comparative analysis of steroidogenic effects of thienopyrimidine derivatives and partial agonists for luteinizing hormone receptor

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background: Luteinizing hormone and human chorionic gonadotropin are widely used in medicine for the treatment of reproductive disorders. However, these hormones are associated with numerous adverse effects. Therefore, low-molecular-weight allosteric luteinizing hormone receptor agonists are currently being developed, with the most active compounds being thieno[2,3-d]pyrimidine derivatives.

Aim: To investigate the stimulatory effects of the synthetic compound TP03 on the activity of membrane adenylate cyclase in vitro and on testicular and ovarian steroidogenesis in vivo as compared to those of Org43553, considered the gold standard among low-molecular-weight luteinizing hormone receptor agonists.

Methods: The effects of TP03 and Org43553 (10–8–10–3 M) on the basal and human chorionic gonadotropin-stimulated (10–9 M) adenylate cyclase activity in membrane fractions isolated from rat testes and ovaries were evaluated in vitro using [α-32P]-adenosine triphosphate. Furthermore, the in vivo experiments investigated the effects of TP03 and Org43553 (two intraperitoneal doses, 10 and 20 mg/kg) on blood testosterone levels of male rats and blood progesterone levels of immature female rats previously stimulated with Follimag®, and the effects of co-administration of TP03 or Org43553 (10 mg/kg, intraperitoneal) with human chorionic gonadotropin (10 IU/rat, subcutaneous) on testosterone levels of male rats. Testosterone and progesterone levels were determined by enzyme immunoassay.

Results: TP03 proved comparable to Org43553 in its ability to stimulate adenylate cyclase in testicular and ovarian membranes of rats. When administered to male rats, TP03 demonstrated a dose-dependent stimulation of testosterone synthesis. Similarly, TP03 increased progesterone levels in immature female rats, showing comparable efficacy to Org43553. The co-administration of low doses of TP03 and human chorionic gonadotropin to male rats has been observed to produce an additive effect on testosterone levels, with this effect being more significant than that observed with a combination of Org43553 and human chorionic gonadotropin.

Conclusion: TP03, developed by the authors, has been shown to have a comparable ability to stimulate testicular and ovarian steroidogenesis as Org43553. Furthermore, it has been demonstrated to have an additive effect in combination with human chorionic gonadotropin, suggesting its potential for enhancing the effectiveness of gonadotropin therapy.

Full Text

Restricted Access

About the authors

Kira V. Derkach

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: derkatch_k@list.ru
ORCID iD: 0000-0001-6555-9540
SPIN-code: 6925-1558

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Viktor N. Sorokoumov

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences; Saint Petersburg State University

Email: sorokoumov@gmail.com
ORCID iD: 0000-0002-4917-2175
SPIN-code: 1042-8142

Cand. Sci. (Chemistry)

Russian Federation, Saint Petersburg; Saint Petersburg

Alexander O. Shpakov

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Author for correspondence.
Email: alex_shpakov@list.ru
ORCID iD: 0000-0002-4293-3162
SPIN-code: 6335-8311

Dr. Sci. (Biology)

Russian Federation, Saint Petersburg

References

  1. Casarini L, Lispi M, Longobardi S, et al. LH and hCG action on the same receptor results in quantitatively and qualitatively different intracellular signaling. PLoS One. 2012;7(10):e46682. doi: 10.1371/journal.pone.0046682
  2. Fournier T. Human chorionic gonadotropin: different glycoforms and biological activity depending on its source of production. Annals of Endocrinology (Paris). 2016;77(2):75–81. doi: 10.1016/j.ando.2016.04.012
  3. Riccetti L, Yvinec R, Klett D, et al. Human luteinizing hormone and chorionic gonadotropin display biased agonism at the LH and LH/CG receptors. Scientific Reports. 2017;7(1):940. doi: 10.1038/s41598-017-01078-8 EDN: NMRZZB
  4. Arey BJ. Allosteric modulators of glycoprotein hormone receptors: discovery and therapeutic potential. Endocrine. 2008;34(1–3):1–10. doi: 10.1007/s12020-008-9098-2
  5. Lazzaretti C, Simoni M, Casarini L, Paradiso E. Allosteric modulation of gonadotropin receptors. Front Endocrinol (Lausanne). 2023;14:1179079. doi: 10.3389/fendo.2023.1179079 EDN: UTUJVV
  6. Shpakov AO. Allosteric regulation of G-protein-coupled receptors: from diversity of molecular mechanisms to multiple allosteric sites and their ligands. Int J Mol Sci. 2023;24(7):6187. doi: 10.3390/ijms24076187 EDN: ADTDVM
  7. Puett D, Li Y, DeMars G, et al. A functional transmembrane complex: the luteinizing hormone receptor with bound ligand and G protein. Mol Cell Endocrinol. 2007;260–262:126–136. doi: 10.1016/j.mce.2006.05.009
  8. Duan J, Xu P, Cheng X, et al. Structures of full-length glycoprotein hormone receptor signalling complexes. Nature. 2021;598(7882):688–692. doi: 10.1038/s41586-021-03924-2 EDN: ZIDAPP
  9. He X, Duan J, Ji Y, et al. Hinge region mediates signal transmission of luteinizing hormone and chorionic gonadotropin receptor. Comput Struct Biotechnol J. 2022;20:6503–6511. doi: 10.1016/j.csbj.2022.11.039 EDN: WPOYED
  10. Menon KM, Menon B. Structure, function and regulation of gonadotropin receptors — a perspective. Mol Cell Endocrinol. 2012;356(1–2):88–97. doi: 10.1016/j.mce.2012.01.021
  11. Riccetti L, De Pascali F, Gilioli L, et al. Human LH and hCG stimulate differently the early signalling pathways but result in equal testosterone synthesis in mouse Leydig cells in vitro. Reprod Biol Endocrinol. 2017;15(1):2. doi: 10.1186/s12958-016-0224-3 EDN: HXPYWY
  12. Casarini L, Santi D, Simoni M, Potì F. ‘Spare’ luteinizing hormone receptors: facts and fiction. Trends Endocrinol Metab. 2018;29(4): 208–217. doi: 10.1016/j.tem.2018.01.007
  13. Johnson GP, Jonas KC. Mechanistic insight into how gonadotropin hormone receptor complexes direct signaling. Biol Reprod. 2020;102(4):773–783. doi: 10.1093/biolre/ioz228 EDN: VFABBW
  14. Mejia R, Waite C, Ascoli M. Activation of Gq/11 in the mouse corpus luteum is required for parturition. Mol Endocrinol. 2015;29(2):238–246. doi: 10.1210/me.2014-1324
  15. Mukherjee S, Gurevich VV, Preninger A, et al. Aspartic acid 564 in the third cytoplasmic loop of the luteinizing hormone/choriogonadotropin receptor is crucial for phosphorylation-independent interaction with arrestin2. J Biol Chem. 2002;277(20):17916–17927. doi: 10.1074/jbc.M110479200
  16. Casarini L, Simoni M. Recent advances in understanding gonadotropin signaling. Fac Rev. 2021;10:41. doi: 10.12703/r/10–41 EDN: ULFZXF
  17. Querat B. Unconventional actions of glycoprotein hormone subunits: a comprehensive review. Front Endocrinol (Lausanne). 2021;12:731966. doi: 10.3389/fendo.2021.731966 EDN: ICPRNZ
  18. Koistinen H, Koel M, Peters M, et al. Hyperglycosylated hCG activates LH/hCG-receptor with lower activity than hCG. Mol Cell Endocrinol. 2019;479:103–109. doi: 10.1016/j.mce.2018.09.006
  19. Nwabuobi C, Arlier S, Schatz F, et al. hCG: biological functions and clinical applications. Int J Mol Sci. 2017;18(10):2037. doi: 10.3390/ijms18102037
  20. Lunenfeld B, Bilger W, Longobardi S, et al. The development of gonadotropins for clinical use in the treatment of infertility. Front Endocrinol (Lausanne). 2019;10:429. doi: 10.3389/fendo.2019.00429
  21. Singh R, Kaur S, Yadav S, Bhatia S. Gonadotropins as pharmacological agents in assisted reproductive technology and polycystic ovary syndrome. Trends Endocrinol Metab. 2023;34(4):194–215. doi: 10.1016/j.tem.2023.02.002 EDN: FEAJIF
  22. Veldhuis JD, Liu PY, Takahashi PY, Keenan DM. Dynamic testosterone responses to near-physiological LH pulses are determined by the time pattern of prior intravenous LH infusion. Am J Physiol Endocrinol Metab. 2012;303(6):E720–E728. doi: 10.1152/ajpendo.00200.2012
  23. Banker M, Garcia-Velasco JA. Revisiting ovarian hyperstimulation syndrome: towards OHSS free clinic. J Hum Reprod Sci. 2015;8(1):13–17. doi: 10.4103/0974-1208.153120
  24. Namavar Jahromi B, Parsanezhad ME, Shomali Z, et al. Ovarian hyperstimulation syndrome: a narrative review of its pathophysiology, risk factors, prevention, classification, and management. Iran J Med Sci. 2018;43(3):248–260.
  25. van Koppen CJ, Zaman GJ, Timmers CM, et al. A signaling-selective, nanomolar potent allosteric low molecular weight agonist for the human luteinizing hormone receptor. Naunyn Schmiedebergs Arch Pharmacol. 2008;378(5):503–514. doi: 10.1007/s00210-008-0318-3 EDN: CMFYBW
  26. van de Lagemaat R, Timmers CM, Kelder J, et al. Induction of ovulation by a potent, orally active, low molecular weight agonist (Org 43553) of the luteinizing hormone receptor. Hum Reprod. 2009;24(3):640–648. doi: 10.1093/humrep/den412
  27. van de Lagemaat R, Raafs BC, van Koppen C, et al. Prevention of the onset of ovarian hyperstimulation syndrome (OHSS) in the rat after ovulation induction with a low molecular weight agonist of the LH receptor compared with hCG and rec-LH. Endocrinology. 2011;152(11):4350–4357. doi: 10.1210/en.2011-1077
  28. Gerrits M, Mannaerts B, Kramer H, et al. First evidence of ovulation induced by oral LH agonists in healthy female volunteers of reproductive age. J Clin Endocrinol Metab. 2013;98(4):1558–1566. doi: 10.1210/jc.2012-3404
  29. Nataraja SG, Yu HN, Palmer SS. Discovery and development of small molecule allosteric modulators of glycoprotein hormone receptors. Front Endocrinol (Lausanne). 2015;6:142. doi: 10.3389/fendo.2015.00142
  30. Bakhtyukov AA, Derkach KV, Gureev MA, et al. Comparative study of the steroidogenic effects of human chorionic gonadotropin and thieno[2,3-d]pyrimidine-based allosteric agonist of luteinizing hormone receptor in young adult, aging and diabetic male rats. Int J Mol Sci. 2020;21(20):7493. doi: 10.3390/ijms21207493 EDN: AATZUJ
  31. Bakhtyukov AA, Derkach KV, Sorokoumov VN, et al. The effects of separate and combined treatment of male rats with type 2 diabetes with metformin and orthosteric and allosteric agonists of luteinizing hormone receptor on steroidogenesis and spermatogenesis. Int J Mol Sci. 2021;23(1):198. doi: 10.3390/ijms23010198 EDN: PWFGGY
  32. Derkach KV, Lebedev IA, Morina IY, et al. Comparison of steroidogenic and ovulation-inducing effects of orthosteric and allosteric agonists of luteinizing hormone/chorionic gonadotropin receptor in immature female rats. Int J Mol Sci. 2023;24(23):16618. doi: 10.3390/ijms242316618 EDN: ZLMODM
  33. Salomon Y, Londos C, Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x
  34. Salomon Y, Amir Y, Azulai R, Amsterdam A. Modulation of adenylate cyclase activity by sulfated glycosaminoglycans. I. Inhibition by heparin of gonadotrophin-stimulated ovarian adenylate cyclase. Biochim Biophys Acta. 1978;544(2):262–272. doi: 10.1016/0304-4165(78)90095-8
  35. Mann ON, Kong CS, Lucas ES, et al. Expression and function of the luteinizing hormone choriogonadotropin receptor in human endometrial stromal cells. Sci Rep. 2022;12(1):8624. doi: 10.1038/s41598-022-12495-9 EDN: YAZHVM
  36. Baburski AZ, Andric SA, Kostic TS. Luteinizing hormone signaling is involved in synchronization of Leydig cell’s clock and is crucial for rhythm robustness of testosterone production. Biol Reprod. 2019;100(5):1406–1415. doi: 10.1093/biolre/ioz020
  37. Feng X, Zhang M, Guan R, Segaloff DL. Heterodimerization between the lutropin and follitropin receptors is associated with an attenuation of hormone-dependent signaling. Endocrinology. 2013;154(10):3925–3930. doi: 10.1210/en.2013-1407
  38. Heitman LH, Oosterom J, Bonger KM, et al. [3H]Org 43553, the first low-molecular-weight agonistic and allosteric radioligand for the human luteinizing hormone receptor. Mol Pharmacol. 2008;73(2):518–524. doi: 10.1124/mol.107.039875
  39. Manglik A, Kobilka BK, Steyaert J. Nanobodies to study G protein-coupled receptor structure and function. Annu Rev Pharmacol Toxicol. 2017;57:19–37. doi: 10.1146/annurev-pharmtox-010716-104710 EDN: YXCXNJ
  40. Derkach KV, Legkodukh AS, Dar’in DV, Shpakov AO. The stimulating effect of thienopyrimidines structurally similar to Org 43553 on adenylate cyclase activity in the testes and on testosterone production in male rats. Cell and Tissue Biology. 2017;11(1):73–80. doi: 10.1134/S1990519X17010035 EDN: YVFTPF
  41. Newton CL, Whay AM, McArdle CA, et al. Rescue of expression and signaling of human luteinizing hormone G protein-coupled receptor mutants with an allosterically binding small-molecule agonist. Proc Natl Acad Sci USA. 2011;108(17):7172–7176. doi: 10.1073/pnas.1015723108
  42. Newton CL, Anderson RC. Pharmacoperones for misfolded gonadotropin receptors. Handb Exp Pharmacol. 2018;245:111–134. doi: 10.1007/164_2017_64
  43. Newton CL, Anderson RC, Kreuchwig A, et al. Rescue of function of mutant luteinising hormone receptors with deficiencies in cell surface expression, hormone binding, and hormone signaling. Neuroendocrinology. 2021;111(5):451–464. doi: 10.1159/000508000 EDN: IQEFWS
  44. Kim SO, Trau HA, Duffy DM. Vascular endothelial growth factors C and D may promote angiogenesis in the primate ovulatory follicle. Biol Reprod. 2017;96(2):389–400. doi: 10.1095/biolreprod.116.144733
  45. Lund M, Pearson AC, Sage MAG, Duffy DM. Luteinizing hormone receptor promotes angiogenesis in ovarian endothelial cells of Macaca fascicularis and Homo sapiens. Biol Reprod. 2023;108(2):258–268. doi: 10.1093/biolre/ioac189 EDN: RPPHTF
  46. Scotti L, Abramovich D, Pascuali N, et al. Local VEGF inhibition prevents ovarian alterations associated with ovarian hyperstimulation syndrome J Steroid Biochem Mol Biol. 2014;144(Pt B):392–401. doi: 10.1016/j.jsbmb.2014.08.013
  47. Bishop CV, Lee DM, Slayden OD, Li X. Intravenous neutralization of vascular endothelial growth factor reduces vascular function/permeability of the ovary and prevents development of OHSS-like symptoms in rhesus monkeys. J Ovarian Res. 2017;10(1):41. doi: 10.1186/s13048-017-0340-5

Copyright (c) 2025 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.