Rhythmic relationships between cardiac pump and ECG parameters as criteria for effectiveness of adaptive responses of cardiovascular system in acute hypoxia

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Analysis of cardiovascular system variability in the frequency domain allows for the assessment of both neural and non-neural mechanisms of cardiac regulation. This analysis is challenging due to the multiple input and output mechanisms of cardiovascular and respiratory control.

AIM: The work aimed to investigate changes in spectral, phase, and coherence relationships, as well as the transfer function |gain(f)|, between oscillations of left ventricular end-diastolic pressure, specific peripheral vascular resistance, left ventricular stroke volume, and R–R intervals of the electrocardiogram during acute hypoxia at the dominant spectral component corresponding to the respiratory frequency.

METHODS: Effective (n = 17) and ineffective (n = 20) types of adaptation were determined based on the direction of changes in the heart pumping parameters during the transition from normoxia to hypoxia. Effective and ineffective types of adaptation were demonstrated in the same subject during different hypoxic tests, just as the same subjects could demonstrate either only effective or only ineffective adaptation.

RESULTS: Changes in gain(f) and cross-spectral power density in pairs of oscillatory processes were used to assess alterations in cardiac regulation (Frank–Starling mechanism, arterial–cardiac baroreflex, and others). For effective adaptation during hypoxia, a statistically significant (p < 0.05) increase in gain for end-diastolic pressure–stroke volume relationship was observed, whereas spectral power of this parameter did not change, reflecting inability to increase CO through heterometric myogenic autoregulation during hypoxia at rest. Under these conditions, increase in CO occurs mainly due to chronotropic effect. In pairs of oscillatory processes—end-diastolic pressure–specific peripheral resistance or specific peripheral resistance–RR intervals—cross-spectral power density significantly decreased (p < 0.05) during effective adaptation. Reduction in amplitudes of these oscillatory pairs reflects adequate functioning of arterial–cardiac baroreflex in decreasing specific peripheral resistance during effective adaptation.

CONCLUSION: Quantitative changes in analyzed indices of cardiac pump function under acute hypoxia are determined by alterations in their rhythmic interactions, both among themselves and with oscillations of RR intervals at dominant respiratory frequency, as well as by displacement of AQRS (the maximum depolarization vector) in frontal plane. Identified patterns represent effectiveness of adaptation to severe hypoxia.

Full Text

Restricted Access

About the authors

Aleksander S. Radchenko

Saint Petersburg Humanitarian University of Trade Unions

Author for correspondence.
Email: radtcha@mail.ru
ORCID iD: 0009-0005-6138-9456
SPIN-code: 2019-3226

Dr. Sci. (Biology)

Russian Federation, Saint Petersburg

Aleksander N. Kalinichenko

Saint Petersburg Electrotechnical University LETI

Email: ank-bs@yandex.ru
ORCID iD: 0000-0001-8946-2831
SPIN-code: 6810-4648

Dr. Sci. (Engineering)

Russian Federation, Saint Petersburg

Nikolai S. Borisenko

Military Institute of Physical Training

Email: x-box7@mail.ru
SPIN-code: 4963-6838
Russian Federation, Saint Petersburg

Yurii N. Korolev

Kirov Military Medical Academy; Lesgaft National State University of Physical Education, Sport and Health

Email: gol.kor@mail.ru
SPIN-code: 9525-8680

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg; Saint Petersburg

Nina V. Kudryavtseva

Lesgaft National State University of Physical Education, Sport and Health

Email: krestovnikov.kaf@gmail.com
Russian Federation, Saint Petersburg

References

  1. Valdman AV, Almazov VA, Cirlin VA. Baroreceptor’s reflexes: Baroreflex regulation of blood circulation. Leningrad: Nauka; 1988. 143 p. (In Russ.)
  2. Elizarova NA, Rubanova MP, Atkov OY, et al. Clinical significance of the diastolic coefficient of the tetrapolar thoracic rheogram in patients with ischemic heart disease. Byulleten’ Vsesoyuznogo Kardiologicheskogo Nauchnogo Tsentra AMN SSSR. 1987;10(2):41–47. EDN: XAQCWV
  3. Konstantinov BA, Sandrikov VA, Yakovlev VF. Performance evaluation and cycle-by-cycle analysis of cardiac work in clinical practice. Leningrad: Nauka; 1986. 140 p. EDN: XGOCBN (In Russ.)
  4. Konstantinov BA, Sandrikov VA, Yakovlev VF, Simonov VA. Dynamics of the pumping function of the heart. Moscow: Nauka; 1989. 150 p. EDN: XHADHT (In Russ.)
  5. Pushkar YuT, Bolshov VM, Elizarova NA, et al. Determination of cardiac output by tetrapolar chest rheography and its metrological capabilities. Cardiology. 1977;(7):85–89. EDN: HBRCKQ (In Russ.)
  6. Radchenko AS, Borisenko NS, Kalinichenko AN, et al. The heart preload and afterload interaction and RR under hard normobaric hypoxia exposure in healthy young persons. Reviews on Clinical and Drug Therapy. 2013;11(3):40–49. doi: 10.17816/RCF11340-49 EDN: RUSHSJ
  7. Titomir LI, Ruttkay-Nedecky I, Bacharova L. Comprehensive analysis of the electrocardiogram in orthogonal leads: Electrocardiographic Introscopy of the heart. Moscow: Nauka; 2001. 238 p. (In Russ.)
  8. Bourdillon N, Yazdani S, Subudhi AW, et al., AltitudeOmics: Baroreflex sensitivity during acclimatization to 5,260 m. Front Physiol. 2018;9:767. doi: 10.3389/fphys.2018.00767
  9. Bourdillon N, Yazdani S, Vesin J-M, et al. AltitudeOmics: Spontaneous baroreflex sensitivity during acclimatization to 5,260 m: A comparison methods. Front Physiol. 2019;10:767. doi: 10.3389/fphys.2019.01505
  10. Clemson PT, Hoag JB, Cooke WH, et al. Beyond the Baroreflex: A new measure of autonomic regulation based on the time-frequency assessment of variability, phase coherence and couplings. Front Netw Physiol. 2022;2:891604. doi: 10.3389/fnetp.2022.891604
  11. Hieda M, Howden E, Shibata S, et al. Preload-corrected dynamic Starling mechanism in patients with heart failure with preserved ejection fraction. J Appl Physiol. 2018;124(1):76–82. doi: 10.1152/japplphysiol.00718.2017
  12. Hieda M, Howden EJ, Sarma S, et al. The impact of 2 years of high-intensity exercise training on a model of integrated cardiovascular regulation. J Physiol. 2019;597(2):419–429. doi: 10.1113/JP276676
  13. Ichinose M, Koga S, Fujii N, et al. Modulation of the spontaneous beat-to-beat fluctuations in peripheral vascular resistance during activation of muscle metaboreflex. Am J Physiol Heart Circ Physiol. 2007;293(1):H416–H424. doi: 10.1152/ajpheart.01196.2006
  14. Kubicek WG, Patterson RP, Wetsoe DA. Impedance cardiography as a noninvasive method of monitoring cardiac function and other parameters of the cardiovascular system. Ann NY Acad Sci. 1970;170(2):724–732. doi: 10.1111/j.1749-6632.1970.tb17735.x
  15. Lanfranchi PA, Somers VK. Arterial baroreflex function and cardiovascular variability: interactions and implications. Am J Physiol Regul Integr Comp Physiol. 2002;283(4):R815–R826. doi: 10.1152/ajpregu.00051.2002
  16. Manferdelli G, Narang BJ, Bourdillon N, et al. Baroreflex sensitivity is blunted in hypoxia independently of changes in inspired carbon dioxide pressure in prematurely born male adults. Physiol Rep. 2024;12(1):e15857. doi: 10.14814/phy2.15857
  17. Moreno-Dominguez A, Colinas O, Smani T, et al. Acute oxygen sensing by vascular smooth muscular cells. Front Physiol Sec Vascular Physiol. 2023;14:1142354. doi: 10.3389/fphys.2023.1142354
  18. Ogoh S, Fisher JP, Young CN, et al. Transfer function characteristics of the neural and peripheral arterial baroreflex arcs at rest and during postexercise muscle ischemia in humans. Am J Physiol Heart Circ Physiol. 2009;296(5):H1416–H1424. doi: 10.1152/ajpheart.01223.2008
  19. Ruttkay-Nedecký I, Vanžurovà E, Čulen M. Hemodynamic correlations of rightward oriented QRS vectors in patients with ostium secunadum type atrial septal defect. In: Electrocardiology’88. Amsterdam: Elsevier; 1989. P. 203.
  20. Sarnoff SJ, Mitchell JH. The regulation of the performance of the heart. Am J Med. 1961;30(5):747–771. doi: 10.1016/0002-9343(61)90211-X
  21. Saul JP, Berger RD, Albrecht P, et al. Transfer function analysis of the circulation: unique insights into cardiovascular regulation. Am J Physiol. 1991;261(4):H1231–1245. doi: 10.1152/ajpheart.1991.261.4.H1231
  22. Shibata S, Zhang R, Hastings JL, et al. Cascade model of ventricular-arterial coupling and arterial-cardiac baroreflex function for cardiovascular variability in humans. Am J Physiol Heart Circ Physiol. 2006;291(5):H2142–H2151. doi: 10.1152/ajpheart.00157.2006
  23. Shibata S, Hastings JL, Prasad A, et al. ‘Dynamic’ Starling mechanism: effects of ageing and physical fitness on ventricular-arterial coupling. J Physiol. 2008;586(7):1951–1962. doi: 10.1113/jphysiol.2007.143651
  24. Van de Vooren H, Gademan MGJ, Swenne CA. et al. Baroreflex sensitivity, blood pressure buffering, and resonance: what are the links? Computer simulation of healthy subjects and heart failure patients. J Appl Physiol. 2007;102(4):1348–1356. doi: 10.1152/japplphysiol.00158.2006
  25. Wesseling KH, Karemaker JM, Castiglioni P, et al. Validity and variability of xBRS: instantaneous cardiac baroreflex sensitivity. Physiol Rep. 2017;5(22):e13509. doi: 10.14814/phy2.13509
  26. Zhang R, Iwasaki K, Zuckerman JH, et al. Mechanism of blood pressure and R-R variability: insights from ganglion blockade in humans. J Physiol. 2002;543(1):337–348. doi: 10.1113/jphysicalol.2001.013398
  27. Zhang R, Claassen JAHR, Shibata S, et al. Arterial-cardiac baroreflex function: insights from repeated squat-stand maneuvers. Am J Physiol Regul Integr Comp Physiol. 2009;297(1):R116–R123. doi: 10.1152/ajpregu.90977.2008

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.