Гипертермия как потенциальный фактор усиления действия антибиотиков

Обложка


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Регулирование температуры пораженных инфекцией участков тела пациентов может быть важным для преодоления устойчивости бактерий к антибиотикам. Однако в медицинском стандарте не указано целевое значение температуры для лечения инфекционных заболеваний антибиотиками. В то же время ранее было показано, что повышение температуры с 37 до 42°C улучшает реологические свойства коллоидных жидкостей, расплавляет липиды и/или снижает вязкость липидных и белково-липидных комплексов клеточных мембран человека и микроорганизмов, в соответствии с законом Аррениуса увеличивает скорость химических, биохимических реакций и интенсивность всего клеточного метаболизма. Дело в том, что такие температурно-зависимые изменения в структуре и функционировании клеток облегчают и ускоряют участие антибиотиков в их метаболизме и усиливают бактериостатический эффект антимикробных препаратов. Было обнаружено, что гипертермия ускоряет биологические часы микроорганизмов, сокращает их продолжительность жизни и ускоряет изменение популяции. В то же время гипертермия восстанавливала бактериостатический эффект антибиотиков, который отсутствовал, и/или усиливала бактериостатический эффект, который существовал в условиях нормальной температуры тела. Результаты первых экспериментов in vitro и первых клинических наблюдений за острыми местными гнойно-воспалительными процессами и хроническими ранами продемонстрировали безопасность местной гипертермии и ее способность усиливать антимикробный эффект антисептиков и местных антибиотиков. Результаты показали, что гипертермия может повышать бактериостатическую активность антибиотиков за счет улучшения реологических свойств биологических жидкостей, снижения плотности микробных мембран и ускорения бактериального метаболизма при включении антибиотиков. Эти данные указывают на потенциал терапевтической гипертермии для поддержания эффективности антибиотиков и других противомикробных средств при лечении инфекций за счет снижения резистентности микроорганизмов.

Полный текст

Доступ закрыт

Об авторах

Александр Ливиевич Ураков

Ижевская государственная медицинская академия

Автор, ответственный за переписку.
Email: alurakov@bk.ru
ORCID iD: 0000-0002-9829-9463
SPIN-код: 1613-9660

д-р мед. наук, профессор

Россия, 426034, Ижевск, ул. Коммунаров, д. 281

Петр Дмитриевич Шабанов

Институт экспериментальной медицины

Email: pdshabanov@mail.ru
ORCID iD: 0000-0003-1464-1127
SPIN-код: 8974-7477

д-р мед. наук, профессор

Россия, 197022, Санкт-Петербург, ул. Академика Павлова, д. 12

Список литературы

  1. Sund-Levander M, Grodzinsky E. Time for a change to assess and evaluate body temperature in clinical practice. Int J Nurs Pract. 2009;15(4):241–249. doi: 10.1111/j.1440-172X.2009.01756.x
  2. Sesma-Sánchez L, Ruiz-Castellano M, Romero-Roldán A, et al. Continuous temperature telemonitoring of patients with COVID-19 and other infectious diseases treated in hospital-at-home: viture system validation. Sensors (Basel). 2024;24(15):5027. doi: 10.3390/s24155027 EDN: ZQBCBZ
  3. Zhang Z, Cao Z, Deng F, et al. Infrared thermal imaging of patients with acute upper respiratory tract infection: mixed methods analysis. Interact J Med Res. 2021;10(3):e22524. doi: 10.2196/22524 EDN: CNHBQB
  4. Urakov A, Urakova N, Samorodov AV, et al. Thermal imaging of local skin temperature as part of quality and safety assessment of injectable drugs. Heliyon. 2024;10(1):e23417. doi: 10.1016/j.heliyon.2023.e23417 EDN: DZQJJW
  5. Stanley SA, Divall P, Thompson JP, et al. Uses of infrared thermography in acute illness: a systematic review. Front Med (Lausanne). 2024;11:1412854. doi: 10.3389/fmed.2024.1412854 EDN: DWEPHL
  6. Watson CCL, Shaikh D, DiGiacomo JC, et al. Unraveling quad fever: Severe hyperthermia after traumatic cervical spinal cord injury. Chin J Traumatol. 2023;26(1):27–32. doi: 10.1016/j.cjtee.2022.01.006 EDN: CUFARP
  7. Markota A, Kalamar Ž, Fluher J, et al. Therapeutic hyperthermia for the treatment of infection—a narrative review. Front Physiol. 2023;14:1215686. doi: 10.3389/fphys.2023.1215686 EDN: JITCWX
  8. González-Ibarra FP, Varon J, López-Meza EG. Therapeutic hypothermia: critical review of the molecular mechanisms of action. Front Neurol. 2011;2:4. doi: 10.3389/fneur.2011.00004
  9. Munoz C, Acon-Chen C, Keith ZM, et al. Hypothermia as potential therapeutic approach to attenuating soman-induced seizure, neuropathology, and mortality with an adenosine A1 receptor agonist and body cooling. Neuropharmacology. 2024;253:109966. doi: 10.1016/j.neuropharm.2024.109966 EDN: EHMJSS
  10. Maloney E, Duffy D. Deciphering the relationship between temperature and immunity. Discovery Immunology. 2024;3(1):kyae001. doi: 10.1093/discim/kyae001 EDN: NAWCMJ
  11. Russell B, Moss C, Rigg A, et al. COVID-19 and treatment with NSAIDs and corticosteroids: should we be limiting their use in the clinical setting? Ecancermedicalscience. 2020;14:1023. doi: 10.3332/ecancer.2020.1023 EDN: CQVGDC
  12. Chamkouri N, Absalan F, Koolivand Z, et al. Nonsteroidal anti-inflammatory drugs in viral infections disease, specially COVID-19. Adv Biomed Res. 2023;12:20. doi: 10.4103/abr.abr_148_21 EDN: YVRFGS
  13. Bassetti M, Andreoni M, Santus P, et al. NSAIDs for early management of acute respiratory infections. Curr Opin Infect Dis. 2024;37(4): 304–311. doi: 10.1097/QCO.0000000000001024 EDN: QJLUAO
  14. Azh N, Barzkar F, Motamed-Gorji N, et al. Nonsteroidal anti-inflammatory drugs in acute viral respiratory tract infections: An updated systematic review. Pharmacol Res Perspect. 2022;10(2):e00925. doi: 10.1002/prp2.925 EDN: KZONYJ
  15. Tharakan S, Nomoto K, Miyashita S, et al. Body temperature correlates with mortality in COVID-19 patients. Crit Care. 2020;24(1):298. doi: 10.1186/s13054-020-03045-8 EDN: DPTAOL
  16. Drewry A, Mohr NM. Temperature management in the ICU. Crit Care Med. 2022;50(7):1138–1147. doi: 10.1097/CCM.0000000000005556 EDN: MSOERG
  17. Faulds M, Meekings T. Temperature management in critically ill patients. Continuing Education in Anaesthesia Critical Care & Pain. 2013;13(3):75–79. doi: 10.1093/bjaceaccp/mks063
  18. Jastrzębski P, Snarska J, Adamiak Z, et al. The effect of hypothermia on the human body. Polish Annals of Medicine. 2022;29(2):262–266. doi: 10.29089/paom/147316 EDN: RWNSUK
  19. Zwaag J, Naaktgeboren R, van Herwaarden AE, et al. The effects of cold exposure training and a breathing exercise on the inflammatory response in humans: a pilot study. Psychosom Med. 2022; 84(4):457–467. doi: 10.1097/PSY.0000000000001065 EDN: WAIMPA
  20. Yang S, Wang Z, Liu Z, et al. Association between time of discharge from ICU and hospital mortality: a systematic review and meta-analysis. Crit Care. 2016;20(1):390. doi: 10.1186/s13054-016-1569-x EDN: GDFEAA
  21. Drewry AM, Mohr NM, Ablordeppey EA, et al. Therapeutic hyperthermia is associated with improved survival in afebrile critically ill patients with sepsis: a pilot randomized trial. Crit Care Med. 2022;50(6): 924–934. doi: 10.1097/CCM.0000000000005470 EDN: VMRTDD
  22. Belur AD, Sedhai YR, Truesdell AG, et al. Targeted temperature management in cardiac arrest: an updated narrative review. Cardiology and Therapy. 2023;12(1):65–84. doi: 10.1007/s40119-022-00292-4 EDN: CLFRAW
  23. Kim JH, Kim JG, Kang GH, et al. Target temperature management effect on the clinical outcome of patients with out-of-hospital cardiac arrest treated with extracorporeal cardiopulmonary resuscitation: a nationwide observational study. J Pers Med. 2024;14(2):185. doi: 10.3390/jpm14020185 EDN: JIOGDC
  24. Shrestha DB, Sedhai YR, Budhathoki P, et al. Hypothermia versus normothermia after out-of-hospital cardiac arrest: A systematic review and meta-analysis of randomized controlled trials. Ann Med Surg (Lond). 2022;74:103327. doi: 10.1016/j.amsu.2022.103327 EDN: HUZDTV
  25. Young PJ, Saxena M. Fever management in intensive care patients with infections. Crit Care. 2014;18(2):206. doi: 10.1186/cc13773 EDN: VRCXAR
  26. Niven DJ, Stelfox HT, Laupland KB. Antipyretic therapy in febrile critically ill adults: A systematic review and meta-analysis. J Crit Care. 2013;28(3):303–310. doi: 10.1016/j.jcrc.2012.09.009
  27. Holgersson J, Ceric A, Sethi N, et al. Fever therapy in febrile adults: systematic review with meta-analyses and trial sequential analyses. BMJ. 2022;378:e069620. doi: 10.1136/bmj-2021-069620 EDN: WBOFAJ
  28. Barathan M. From fever to action: diagnosis, treatment, and prevention of acute undifferentiated febrile illnesses. Pathog Dis. 2024;82:ftae006. doi: 10.1093/femspd/ftae006 EDN: PWLYVA
  29. Young PJ, Bellomo R. Fever in sepsis: is it cool to be hot? Crit Care. 2014;18(1):109. doi: 10.1186/cc13726 EDN: SODYVN
  30. Doyle JF, Schortgen F. Should we treat pyrexia? And how do we do it? Crit Care. 2016;20(1):303. doi: 10.1186/s13054-016-1467-2 EDN: TCTJCF
  31. Guzelj D, Grubelnik A, Greif N, et al. The effect of body temperature changes on the course of treatment in patients with pneumonia and sepsis: results of an observational study. Interact J Med Res. 2024;13:e52590. doi: 10.2196/52590 EDN: KIWLBX
  32. Ye J, Chen X. Current promising strategies against antibiotic-resistant bacterial infections. Antibiotics (Basel). 2022;12(1):67. doi: 10.3390/antibiotics12010067 EDN: OEBVXD
  33. Mollaei M, Hassan ZM, Khorshidi F, et al. Chemotherapeutic drugs: Cell death- and resistance-related signaling pathways. Are they really as smart as the tumor cells? Transl Oncol. 2021;14(5):101056. doi: 10.1016/j.tranon.2021.101056 EDN: RYPTRJ
  34. Chinemerem Nwobodo D, Ugwu MC, Oliseloke Anie C, et al. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J Clin Lab Anal. 2022;36(9):e24655. doi: 10.1002/jcla.24655 EDN: BAOGDY
  35. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–655. doi: 10.1016/S0140-6736(21)02724-0 EDN: WRVYGN
  36. Urakov A, Urakova N, Fisher E, et al. Antiseptic pyolytics and warming wet compresses improve the prospect of healing chronic wounds. Explor Med. 2023;4:747–754. doi: 10.37349/emed.2023.00175 EDN: UQTFFW
  37. Bannister BA, Begg NT, Gillespie SH, eds. Structure and classification of pathogens. In: Infectious Disease. 2nd ed. Oxford, UK: Blackwell Science; 1996. P. 23–35.
  38. Schmutzhard E, Lackner P, Beer R, et al. Temperature management in central nervous infection. Crit Care. 2012;16(Suppl 2):A18. doi: 10.1186/cc11276
  39. Newey C, Skaar JR, O’Hara M, et al. Systematic literature review of the association of fever and elevated temperature with outcomes in critically ill adult patients. Ther Hypothermia Temp Manag. 2024;14(1):10–23. doi: 10.1089/ther.2023.0004 EDN: KATCVU
  40. You JS, Kim JY, Yenari MA. Therapeutic hypothermia for stroke: Unique challenges at the bedside. Front Neurol. 2022;13:951586. doi: 10.3389/fneur.2022.951586 EDN: APCJEZ
  41. Urakov A, Urakova N, Reshetnikov A, et al. Catalase: A potential pharmacologic target for hydrogen peroxide in the treatment of COVID-19. Curr Top Med Chem. 2024;24(25):2191–2210. doi: 10.2174/0115680266322046240819053909 EDN: GZPFOR
  42. Laidler KJ. The development of the Arrhenius equation. J Chem Educ. 1984;61(6):494–498. doi: 10.1021/ed061p494
  43. Ammer K. Does thermology belong to complementary medicine? Thermology international. 2017;27(1):5–8.
  44. Urakov A. Thermology is the basis of medicine since ancient times. Thermology International. 2017;27(2):78–79. EDN: YNOMEH
  45. Bunonyo KW, Ebiwareme L, Awomi PZ. Temperature effect on drug diffusion in the stomach and bloodstream compartments. World Journal of Biology Pharmacy and Health Sciences. 2023;13(2): 178–188. doi: 10.30574/wjbphs.2023.13.2.0093 EDN: ERRKHI
  46. Urakov A, Urakova N, Reshetnikov A. Oxygen alkaline dental’s cleaners from tooth plaque, food debris, stains of blood, and pus: A narrative review of the history of inventions. J Int Soc Prev Community Dent. 2019;9(5):427–433. doi: 10.4103/jispcd.JISPCD_296_19 EDN: ZQAQRI
  47. Kittrell EM, Satinoff E. Diurnal rhythms of body temperature, drinking and activity over reproductive cycles. Physiol Behav. 1988;42(5):477–484. doi: 10.1016/0031-9384(88)90180-1
  48. Refinetti R. Circadian rhythmicity of body temperature and metabolism. Temperature (Austin). 2020;7(4):321–362. doi: 10.1080/23328940.2020.1743605 EDN: JZCBWV
  49. Pang QY, Yang YJ, Feng YM, et al. Relationship between intraoperative hypothermia and hyperthermia with postoperative pulmonary infection and surgical site infection in major non-cardiac surgery. Front Med (Lausanne). 2024;11:1408342. doi: 10.3389/fmed.2024.1408342 EDN: INXPLB
  50. Urakov A, Urakova N. Targeted temperature management in obstetrics for prevention perinatal encephalopathy. Turk J Med Sci. 2024;54(4):876–877. doi: 10.55730/1300-0144.5859 EDN: TYUCKG
  51. Kluger MJ, Kozak W, Conn CA, et al. Role of fever in disease. Ann N Y Acad Sci. 1998;856:224–233. doi: 10.1111/j.1749-6632.1998.tb08329.x
  52. Urakov AL, Urakova NA. Time, temperature and life. Adv Biores. 2021;12(2):246–252. doi: 10.15515/abr.0976-4585.12.2.246252 EDN: NUEAAO
  53. Peleg M, Normand MD, Corradini MG. The Arrhenius equation revisited. Crit Rev Food Sci Nutr. 2012;52(9):830–851. doi: 10.1080/10408398.2012.667460
  54. Locker A. On metabolic differences between the tissues of cold-blooded and warm-blooded animals. (With a contribution to the problem: poikilothermia as radiation protection). Pflugers Arch Gesamte Physiol Menschen Tiere. 1962;275:238–255. (In German)
  55. Kapnia AΚ, Dallas CN, Gerodimos V, et al. Impact of warm-up on muscle temperature and athletic performance. Res Q Exerc Sport. 2023;94(2):460–465. doi: 10.1080/02701367.2021.2007212 EDN: OUHUZQ
  56. Pérez de la Lastra JM, Anand U, González-Acosta S, et al. Antimicrobial resistance in the COVID-19 landscape: is there an opportunity for anti-infective antibodies and antimicrobial peptides? Front Immunol. 2022;13:921483. doi: 10.3389/fimmu.2022.921483
  57. Walter EJ, Hanna-Jumma S, Carraretto M, et al. The pathophysiological basis and consequences of fever. Crit Care. 2016;20(1):200. doi: 10.1186/s13054-016-1375-5 EDN: THBBQY
  58. Chiappini E, Orlandi M, Chiarugi A, et al. Fever management in children and insights into fever of unknown origin: a survey among Italian pediatricians. Front Pediatr. 2024;12:1452226. doi: 10.3389/fped.2024.1452226 EDN: SVISAJ
  59. El-Radhi AS. Fever in common infectious diseases. In: Clinical Manual of Fever in Children. Cham: Springer; 2019. P. 85–140. doi: 10.1007/978-3-319-92336-9_5
  60. Wong T, Stang AS, Ganshorn H, et al. Combined and alternating paracetamol and ibuprofen therapy for febrile children. Evid Based Child Health. 2014;9(3):675–729. doi: 10.1002/ebch.1978
  61. Urakov AL. How temperature pharmacology was formed: history in personalities. J Drug Delivery Ther. 2020;10(S4):226–231. doi: 10.22270/jddt.v10i4-s.4208 EDN: ESAOFR
  62. Urakov AL. The change of physical-chemical factors of the local interaction with the human body as the basis for the creation of materials with new properties. Epitőanyag—Journal of Silicate Based and Composite Materials. 2015;67(1):2–6. doi: 10.14382/epitoanyag-jsbcm.2015.1.263 EDN: XSSRIZ
  63. Urakov AL. Development of new materials and structures based on managed physical-chemical factors of local interaction. In: IOP Conference Series: Materials Science and Engineering. 2016;123:012008. doi: 10.1088/1757-899X/123/1/012008 EDN: WPTYDB
  64. Urakov A, Gurevich K, Alies M, et al. The tissue temperature during injection of drug solution into it as an integral indicator of rheology. In: Journal of Physics: Conference Series. 4th International conference on rheology and modeling of materials, IC-RMM 2019. Miskolc-Lillafured; 07–11 Nov. 2019.2019;1527:012003. doi: 10.1088/1742-6596/1527/1/012003 EDN: IAUVXH
  65. Urakov AL. The history of the formation of thermopharmacology in Russia. Advances in Modern Natural Science. 2014;(12):29–38. EDN: SZTNXV
  66. Urakov AL. Thermal pharmacology: history and definition. Reviews on Clinical Pharmacology and Drug Therapy. 2021;19(1): 87–96. doi: 10.17816/RCF19187-96 EDN: YIGBEQ
  67. Urakov AL, Urakova NA, Stolyarenko AP. The desired temperature value in the selected area of the body is the main condition for the effectiveness of drugs. Journal of Bio Innovation. 2020;9(4): 499–504. doi: 10.46344/JBINO.2020.v09i04.09 EDN: TCQKKN
  68. Urakov AL. Creation of necessary mixtures of baking soda, hydrogen peroxide and warm water as a strategy for modernization bleaching cleaners of ceramic. Epitőanyag—Journal of Silicate Based and Composite Materials. 2020;72(1):30–35. doi: 10.14382/epitoanyag-jsbcm.2020.6 EDN: CJEXTF
  69. Urakov A, Urakova N, Nikolenko V, et al. Current and emerging methods for treatment of hemoglobin related cutaneous discoloration: A literature review. Heliyon. 2021;7(1):e05954. doi: 10.1016/j.heliyon.2021.e05954 EDN: BYPPVS
  70. Fisher EL, Urakov AL, Samorodov AV, et al. Alkaline hydrogen peroxide solutions: expectorant, pyolytic, mucolytic, haemolytic, oxygen-releasing, and decolorizing effects. Reviews on Clinical Pharmacology and Drug Therapy. 2023;21(2):135–150. doi: 10.17816/RCF492316 EDN: UDPAZJ
  71. Urakova NA. Temperature, osmotic and acidic activity of infusion solutions as an integral part of their mechanism of action. Reviews on Clinical Pharmacology and Drug Therapy. 2021;19(2):175–182. doi: 10.17816/RCF192175-182 EDN: NFCTMP
  72. Urakov AL, Urakova NA, Yagudin II, et al. COVID-19: Artificial sputum, respiratory obstruction method and screening of pyolitic and antihypoxic drugs. Bioimpacts. 2022;12(4):393–394. doi: 10.34172/bi.2022.23877 EDN: XSNLEY
  73. Urakov AL, Urakova NA, Reshetnikov AP, et al. Pyolytics as a product of the physical-chemical repurposing of antiseptics and an alternative to larval therapy for chronic wounds. Reviews on Clinical Pharmacology and Drug Therapy. 2023;21(4):287–297. doi: 10.17816/RCF606648 EDN: XWUGVK
  74. Urakov A, Urakova N, Shabanov P, et al. Suffocation in asthma and COVID-19: Supplementation of inhaled corticosteroids with alkaline hydrogen peroxide as an alternative to ECMO. Preprints. 2023;2023070627. doi: 10.20944/preprints202307.0627.v1 EDN: LKYCIH
  75. Urakova N, Urakov A, Shabanov P. Pharmacological activities of warm alkaline hydrogen peroxide solution and therapeutic potential in medicine: physical-chemical reprofiling as a promising lead for drug discovery. Anti-Infective Agents. 2025;23(4):158–162. doi: 10.2174/0122113525351536241122063840 EDN: ETDHHL
  76. Osipov AN, Urakova NA, Urakov AL, et al. Warm alkaline hydrogen peroxide solution as an oxygen-releasing antihypoxic drug: potential benefits and applications. Medical Gas Research. 2025;15(1):134–135. doi: 10.4103/mgr.MEDGASRES-D-24-00058 EDN: HDYAWO
  77. Daeschlein G. Antimicrobial and antiseptic strategies in wound management. Int Wound J. 2013;10(Suppl 1):9–14. doi: 10.1111/iwj.12175
  78. Kurpeshev O. Hyperthermia in the treatment of patients with non-oncological diseases (literature review). Russian Journal of Physiotherapy, Balneology and Rehabilitation. 2020;19(6):400–412. doi: 10.17816/1681-3456-2020-19-6-9 EDN: UPOJLM
  79. Badgwell Doherty C, Doherty SD, Rosen T. Thermotherapy in dermatologic infections. J Am Acad Dermatol. 2010;62(6):909–927. doi: 10.1016/j.jaad.2009.09.055 EDN: XXQAIO
  80. Feng Y, Wu M, Zhang H, et al. Mild-temperature photothermal assisted Cusi nanowires for promoting infected wound healing. Front Bioeng Biotechnol. 2023;11:1158007. doi: 10.3389/fbioe.2023.1158007
  81. Urakov A, Urakova N. Rheology and physical-chemical characteristics of the solutions of the medicines. Journal of Physics: Conference Series. 2015;602(1):012043. doi: 10.1088/1742-6596/602/1/012043 EDN: UFSOVB
  82. Urakov A, Urakova N, Sorokina Yu, et al. Targeted modification of physical-chemical properties of drugs as a universal way to transform “old” drugs into “new” drugs. In: Drug Repurposing — Advances, Scopes and Opportunities in Drug Discovery. Chapter 3. Ed. Dr. Mithun Rudrapal. IntechOpen; 2023. doi: 10.5772/intechopen.110480 EDN: AJURSX
  83. Urakov A, Urakova N, Kasatkin A, et al. Temperature and blood rheology in fingertips as signs of adaptation to acute hypoxia. Journal of Physics: Conference Series. 2017;790(1):012034. doi: 10.1088/1742-6596/790/1/012034 EDN: XVJGEV
  84. Urakov A, Gurevich K, Alies M, et al. The tissue temperature during injection of drug solution into it as an integral indicator of rheology. In: Journal of Physics: Conference Series, Volume 1527, 4th International Conference on Rheology and Modeling of Materials (IC-RMM4) 7–11 October 2019, Miskolc-Lillafured, Hungary; 2020;1527:012003. doi: 10.1088/1742-6596/1527/1/012003 EDN: IAUVXH
  85. Lam O, Wheeler J, Tang CM. Thermal control of virulence factors in bacteria: a hot topic. Virulence. 2014;5(8):852–862. doi: 10.4161/21505594.2014.970949
  86. Engelkirk PG, Burton GR, eds. Epidemiology and public health. In: Burton’s Microbiology for the Health Sciences. 8th ed. Baltimore: Lippincott Williams and Wilkins; 2006. Ch. 11.
  87. Müller JU, Schwabe M, Swiatek LS, et al. Temperatures above 37 °C increase virulence of a convergent Klebsiella pneumoniae sequence type 307 strain. Front Cell Infect Microbiol. 2024;14:1411286. doi: 10.3389/fcimb.2024.1411286 EDN: UYQGJL
  88. Le MN, Kayama S, Wyres KL, et al. Genomic epidemiology and temperature dependency of hypermucoviscous Klebsiella pneumoniae in Japan. Microb Genom. 2022;8(5):000827. doi: 10.1099/mgen.0.000827 EDN: IEHYIS
  89. Catalan-Moreno A, Cela M, Menendez-Gil P, et al. RNA thermoswitches modulate Staphylococcus aureus adaptation to ambient temperatures. Nucleic Acids Res. 2021;49(6):3409–3426. doi: 10.1093/nar/gkab117 EDN: POVGHS
  90. Borghi S, Antunes A, Haag AF, et al. Multilayer regulation of Neisseria meningitidis NHBA at physiologically relevant temperatures. Microorganisms. 2022;10(4):834. doi: 10.3390/microorganisms10040834 EDN: DUSNNJ
  91. Iwasaki M, Yamashiro T, Beneragama N, et al. Effect of temperature on survival of pathogenic bacteria in biogas plants. Anim Sci J. 2011;82(5):707–712. doi: 10.1111/j.1740-0929.2011.00887.x
  92. Chae KJ, Jang A, Yim SK, et al. The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Bioresour Technol. 2008;99(1):1–6. doi: 10.1016/j.biortech.2006.11.063
  93. Shaw GT, Weng CY, Chen CY, et al. A systematic approach re-analyzing the effects of temperature disturbance on the microbial community of mesophilic anaerobic digestion. Sci Rep. 2019;9(1):6560. doi: 10.1038/s41598-019-42987-0
  94. Duplantis BN, Bosio CM, Nano FE. Temperature-sensitive bacterial pathogens generated by the substitution of essential genes from cold-loving bacteria: potential use as live vaccines. J Mol Med (Berl). 2011;89(5):437–444. doi: 10.1007/s00109-010-0721-3 EDN: XLWYZS
  95. Pankowski JA. Use of essential gene, encoding prophobilinogen deaminase from extreme psychrophilic Colwellia sp. C1, to generate temperature-sensitive strain of Francisella novicida. Lett Appl Microbiol. 2016;63(2):124–130. doi: 10.1111/lam.12598 EDN: WRLLUX
  96. Pankowski JA, Puckett SM, Nano FE. Temperature sensitivity conferred by liga alleles from psychrophilic bacteria upon substitution in mesophilic bacteria and a yeast species. Appl Environ Microbiol. 2016;82(6):1924–1932. doi: 10.1128/AEM.03890-15 EDN: WUSEZP
  97. Pinto CT, Nano FE. Stable, temperature-sensitive recombinant strain of Mycobacterium smegmatis generated through the substitution of a psychrophilic ligA gene. FEMS Microbiol Lett. 2015;362(18):fnv152. doi: 10.1093/femsle/fnv152
  98. White MD, Bosio CM, Duplantis BN, et al. Human body temperature and new approaches to constructing temperature-sensitive bacterial vaccines. Cell Mol Life Sci. 2011;68(18):3019–3031. doi: 10.1007/s00018-011-0734-2 EDN: PZEMAS
  99. Moon S, Ham S, Jeong J, et al. Temperature matters: bacterial response to temperature change. J Microbiol. 2023;61(3):343–357. doi: 10.1007/s12275-023-00031-x EDN: VLHIPQ
  100. Nortjé GL, Nel L, Jordaan E, et al. The influence of incubation temperature on bacterial counts in a meat production system. J Food Prot. 1990;53(5):418–422. doi: 10.4315/0362-028X-53.5.418
  101. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 2016;6(2):71–79. doi: 10.1016/j.jpha.2015.11.005 EDN: WTFHWJ
  102. Hossain TJ. Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations. Eur J Microbiol Immunol (Bp). 2024;14(2):97–115. doi: 10.1556/1886.2024.00035 EDN: QPCMWE
  103. Mohamad NA, Al-Emerieen AF, Irekeola AA, et al. Antibacterial Effects of Various Types of Bee Products in Malaysia: A Systematic Review. Malays J Med Sci. 2024;31(3):32–51. doi: 10.21315/mjms2024.31.3.3 EDN: TTEUMH
  104. Urakov AL, Shabanov PD. Idealization in pharmacology and pharmacy: Symbol of the chemical formula of one molecule of a substance and a real pharmaceutical product. Reviews on Clinical Pharmacology and Drug Therapy. 2023;21(4):319–327. doi: 10.17816/RCF593274 EDN: COIATJ
  105. Urakov AL, Shabanov PD. Physical-chemical repurposing of drugs. History of its formation in Russia. Reviews on Clinical Pharmacology and Drug Therapy. 2023;21(3):231–242. doi: 10.17816/RCF567782 EDN: IJCHYZ
  106. Tirali RE, Turan Y, Akal N, et al. In vitro antimicrobial activity of several concentrations of NaOCl and Octenisept in elimination of endodontic pathogens. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(5):e117–e120. doi: 10.1016/j.tripleo.2009.07.012
  107. Câmara AC, de Albuquerque MM, Aguiar CM, et al. In vitro antimicrobial activity of 0.5%, 1%, and 2.5% sodium hypochlorite in root canals instrumented with the ProTaper Universal system. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(2): e55–e61. doi: 10.1016/j.tripleo.2009.03.037
  108. Abdulrab S, Mostafa N, Al-Maweri SA, et al. Antibacterial and anti-inflammatory efficacy of N-acetyl cysteine in endodontic treatment: a scoping review. BMC Oral Health. 2022;22(1):398. doi: 10.1186/s12903-022-02433-6
  109. Deikina NV. Influence of temperature regime and concentration of some chemotherapeutic agents on their antimicrobial effect in vitro and in purulent-inflammatory processes of uterine appendages. [dissertation abstract]. Saransk; 2005. 24 p. (In Russ.)
  110. Doman M, Thy M, Dessajan J, et al. Temperature control in sepsis. Front Med (Lausanne). 2023;10:1292468. doi: 10.3389/fmed.2023.1292468 EDN: FFGXLI
  111. Costa LHA, Trajano IP, Passaglia P, et al. Thermoregulation and survival during sepsis: insights from the cecal ligation and puncture experimental model. Intensive Care Med Exp. 2024;12(1):100. doi: 10.1186/s40635-024-00687-8 EDN: YZRTOW
  112. Bauer R. Largely ignored-but pathogenetically significant: ambient temperature in rodent sepsis models. Intensive Care Med Exp. 2024;12(1):104. doi: 10.1186/s40635-024-00693-w EDN: WSRGPN
  113. James CM, Olejniczak SH, Repasky EA. How murine models of human disease and immunity are influenced by housing temperature and mild thermal stress. Temperature (Austin). 2022;10(2):166–178. doi: 10.1080/23328940.2022.2093561 EDN: WTPSEH
  114. Repasky EA, Hylander BL, Mohammadpour H. Temperature matters: the potential impact of thermoregulatory mechanisms in brain-body physiology. Genes Dev. 2024;38(17–20):817–819. doi: 10.1101/gad.352294.124 EDN: THSBGE
  115. McKie GL, Medak KD, Knuth CM, et al. Housing temperature affects the acute and chronic metabolic adaptations to exercise in mice. J Physiol. 2019;597(17):4581–4600. doi: 10.1113/JP278221
  116. Corbett J, Young JS, Tipton MJ, et al. Molecular biomarkers for assessing the heat-adapted phenotype: a narrative scoping review. J Physiol Sci. 2023;73(1):26. doi: 10.1186/s12576-023-00882-4 EDN: ZSLATD
  117. Esh CJ, Chrismas BCR, Mauger AR, et al. The influence of environmental and core temperature on cyclooxygenase and PGE2 in healthy humans. Sci Rep. 2021;11(1):6531. doi: 10.1038/s41598-021-84563-5 EDN: PVSFXJ
  118. Riddell S, Goldie S, Hill A, et al. The effect of temperature on persistence of SARS-CoV-2 on common surfaces. Virol J. 2020;17(1):145. doi: 10.1186/s12985-020-01418-7 EDN: JAMDCK
  119. Biryukov J, Boydston JA, Dunning RA, et al. Increasing temperature and relative humidity accelerates inactivation of SARS-CoV-2 on surfaces. mSphere. 2020;5(4):e00441–20. doi: 10.1128/mSphere.00441-20 EDN: NPOEQK
  120. Ujiie M, Tsuzuki S, Ohmagari N. Effect of temperature on the infectivity of COVID-19. Int J Infect Dis. 2020;95:301–303. doi: 10.1016/j.ijid.2020.04.068 EDN: CKCRRC
  121. Shi Z, Zhang J, Tian L, et al. A Comprehensive overview of the antibiotics approved in the last two decades: retrospects and prospects. Molecules. 2023;28(4):1762. doi: 10.3390/molecules28041762 EDN: TYXIEQ
  122. Patangia DV, Anthony Ryan C, Dempsey E, et al. Impact of antibiotics on the human microbiome and consequences for host health. Microbiologyopen. 2022;11(1):e1260. doi: 10.1002/mbo3.1260 EDN: PLDEIC
  123. Munita JM, Arias CA. Mechanisms of antibiotic resistance. Microbiol Spectr. 2016;4(2):VMBF-0016-2015. doi: 10.1128/microbiolspec.VMBF-0016-2015
  124. Li T, Wang Z, Guo J, et al. Bacterial resistance to antibacterial agents: Mechanisms, control strategies, and implications for global health. Sci Total Environ. 2023;860:160461. doi: 10.1016/j.scitotenv.2022.160461 EDN: VJCCUM
  125. Konkel ME, Tilly K. Temperature-regulated expression of bacterial virulence genes. Microbes Infect. 2000;2(2):157–166. doi: 10.1016/s1286-4579(00)00272-0
  126. Kapoor G, Saigal S, Elongavan A. Action and resistance mechanisms of antibiotics: A guide for clinicians. J Anaesthesiol Clin Pharmacol. 2017;33(3):300–305. doi: 10.4103/joacp.JOACP_349_15
  127. Abushaheen MA, Muzaheed, Fatani AJ, et al. Antimicrobial resistance, mechanisms and its clinical significance. Dis Mon. 2020;66(6):100971. doi: 10.1016/j.disamonth.2020.100971 EDN: WWYBOI
  128. Chinemerem Nwobodo D, Ugwu MC, Oliseloke Anie C, et al. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J Clin Lab Anal. 2022;36(9):e24655. doi: 10.1002/jcla.24655 EDN: BAOGDY
  129. Salam MA, Al-Amin MY, Salam MT, et al. Antimicrobial resistance: a growing serious threat for global public health. Healthcare (Basel). 2023;11(13):1946. doi: 10.3390/healthcare11131946 EDN: DLVIKR
  130. Bassetti S, Tschudin-Sutter S, Egli A, et al. Optimizing antibiotic therapies to reduce the risk of bacterial resistance. Eur J Intern Med. 2022;99:7–12. doi: 10.1016/j.ejim.2022.01.029 EDN: MGAPXV
  131. Avershina E, Shapovalova V, Shipulin G. Fighting antibiotic resistance in hospital-acquired infections: current state and emerging technologies in disease prevention, diagnostics and therapy. Front Microbiol. 2021;12:707330. doi: 10.3389/fmicb.2021.707330 EDN: HFOKJP
  132. Esme M, Topeli A, Yavuz BB, et al. Infections in the elderly critically-Ill patients. Front Med (Lausanne). 2019;6:118. doi: 10.3389/fmed.2019.00118
  133. van Duin D. Diagnostic challenges and opportunities in older adults with infectious diseases. Clin Infect Dis. 2012;54(7):973–978. doi: 10.1093/cid/cir927
  134. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. PT. 2015;40(4):277–283.
  135. Medina E, Pieper DH. Tackling threats and future problems of multidrug-resistant bacteria. Curr Top Microbiol Immunol. 2016;398:3–33. doi: 10.1007/82_2016_492 EDN: YWDODD
  136. Vitiello A, Sabbatucci M, Boccellino M, et al. Therapeutic and unconventional strategies to contrast antimicrobial resistance: a literature review. Discov Med. 2023;35(178):750–756. doi: 10.24976/Discov.Med.202335178.70 EDN: OEGMZP
  137. Ibelli T, Templeton S, Levi-Polyachenko N. Progress on utilizing hyperthermia for mitigating bacterial infections. Int J Hyperthermia. 2018;34(2):144–156. doi: 10.1080/02656736.2017.1369173 EDN: YGBKOL
  138. Gazel D, Yılmaz M. Are infectious diseases and microbiology new fields for thermal therapy research? Int J Hyperthermia. 2018;34(7):918–924. doi: 10.1080/02656736.2018.1440015
  139. Urakov A, Urakova N, Reshetnikov A, et al. About what is happening in the stomach after swallowing human river pebbles, gravel, chalk, clay and tablets drugs. Epitőanyag—Journal of Silicate Based and Composite Materials. 2016;68(4):110–113. doi: 10.14382/epitoanyag-jsbcm.2016.19 EDN: XSLIPT
  140. Patent RU No. 2807851C1/21.11.2023. Urakov AL, Urakova NA, Shabanov PD, et al. Warm alkaline solution of hydrogen peroxide for intrapulmonary injection. Available from: https://patenton.ru/patent/RU2807851C1 (In Russ.)
  141. Patent RU No. 2831821C1/16.12.2024. Urakov AL, Urakova NA, Fisher EL. Oxygenated warm alkaline solution of hydrogen peroxide for intrapulmonary injection. Available from: https://patents.google.com/patent/RU2831821C1/ru (In Russ.)
  142. Doron S, Gorbach SL. Bacterial infections: overview. International Encyclopedia of Public Health. 2008:273–282. doi: 10.1016/B978-012373960-5.00596-7
  143. Gazel D, Akdoğan H, Büyüktaş Manay A, et al. The potential of therapeutic hyperthermia to eradicate Staphylococcus aureus bacteria; an in vitro study. J Therm Biol. 2024;120:103812. doi: 10.1016/j.jtherbio.2024.103812 EDN: YOPXRG
  144. Abdulrehman T, Qadri S, Haik Y, et al. Advances in the targeted theragnostics of osteomyelitis caused by Staphylococcus aureus. Arch Microbiol. 2024;206(7):288. doi: 10.1007/s00203-024-04015-2 EDN: NXXHLZ
  145. Alumutairi L, Yu B, Filka M, et al. Mild magnetic nanoparticle hyperthermia enhances the susceptibility of Staphylococcus aureus biofilm to antibiotics. Int J Hyperthermia. 2020;37(1):66–75. doi: 10.1080/02656736.2019.1707886 EDN: PUKPYZ
  146. Almutairi LA, Yu B, Dyne E, et al. Mild magnetic hyperthermia is synergistic with an antibiotic treatment against dual species biofilms consisting of S. aureus and P. aeruginosa by enhancing metabolic activity. Int J Hyperthermia. 2023;40(1):2226845. doi: 10.1080/02656736.2023.2226845 EDN: FMWPGN
  147. Raouf I, Khalid S, Khan A, et al. A review on numerical modeling for magnetic nanoparticle hyperthermia: Progress and challenges. J Therm Biol. 2020;91:102644. doi: 10.1016/j.jtherbio.2020.102644 EDN: PCYKBL
  148. Picchi DF, Biglione C, Horcajada P. Nanocomposites based on magnetic nanoparticles and metal-organic frameworks for therapy, diagnosis, and theragnostics. ACS Nanosci Au. 2023;4(2):85–114. doi: 10.1021/acsnanoscienceau.3c00041 EDN: VBIDNI
  149. Osterrieth JWM, Fairen-Jimenez D. Metal-organic framework composites for theragnostics and drug delivery applications. Biotechnol J. 2021;16(2):e2000005. doi: 10.1002/biot.202000005
  150. Kundu S, Swaroop AK, Selvaraj J. Metal-organic framework in pharmaceutical drug delivery. Curr Top Med Chem. 2023;23(13):1155–1170. doi: 10.2174/1568026623666230202122519 EDN: SGVJWA
  151. Lin Y, Min K, Ma W, et al. Probing the stability of metal-organic frameworks by structure-responsive mass spectrometry imaging. Chem Sci. 2024;15(10):3698–3706. doi: 10.1039/d4sc00021h EDN: HBFGAS
  152. Linnane E, Haddad S, Melle F, et al. The uptake of metal-organic frameworks: a journey into the cell. Chem Soc Rev. 2022;51(14):6065–6086. doi: 10.1039/d0cs01414a EDN: ZIKRAC
  153. Kok HP, Cressman ENK, Ceelen W, et al. Heating technology for malignant tumors: a review. Int J Hyperthermia. 2020;37(1):711–741. doi: 10.1080/02656736.2020.1779357 EDN: DSUTEX
  154. Carrapiço-Seabra C, Curto S, Franckena M, et al. Avoiding pitfalls in thermal dose effect relationship studies: a review and guide forward. Cancers (Basel). 2022;14(19):4795. doi: 10.3390/cancers14194795 EDN: LFGQSC
  155. Azadpour B, Aharipour N, Paryab A, et al. Magnetically-assisted viral transduction (magnetofection) medical applications: An update. Biomater Adv. 2023;154:213657. doi: 10.1016/j.bioadv.2023.213657 EDN: VUONEN
  156. Hong J, Wang L, Zheng Q, et al. The recent applications of magnetic nanoparticles in biomedical fields. Materials (Basel). 2024;17(12):2870. doi: 10.3390/ma17122870 EDN: GMCSYM
  157. Zhu L, Xu Z, Wu Y, et al. Prophylactic chemotherapeutic hyperthermic intraperitoneal perfusion reduces peritoneal metastasis in gastric cancer: a retrospective clinical study. BMC Cancer. 2020;20(1):827. doi: 10.1186/s12885-020-07339-6 EDN: HDGFMX

© Эко-Вектор, 2025



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.