Ecological Aspects for Clinical Application of Xenon

  • Authors: Shvetskiy F.1
  • Affiliations:
    1. Skobelkin Research and Practical Centre for Laser Medicine - a branch of Federal State Budgetary Institution "Federal Clinical Center of High Medical Technologies” subordinate to the Federal Medical and Biological Agency of Russian Federation (Skobelkin Centre for Laser Medicine, Federal Clinical Center of High Medical Technologies, FMBA of Russia)
  • Section: Reviews
  • Submitted: 16.10.2025
  • Accepted: 31.10.2025
  • URL: https://journals.eco-vector.com/RCF/article/view/693541
  • DOI: https://doi.org/10.17816/RCF693541
  • ID: 693541


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Xenon (Xe) is an inert noble gas with a distinctive pharmacological profile that combines anesthetic, analgesic, neuro- and cardioprotective properties, alongside stress-protective potential. This review synthesizes current concepts linking general anesthesia, sleep, and coma, and examines xenon’s NMDA-receptor antagonism as a driver of mitochondrial adaptation, including modulation of ROS signaling, calcium homeostasis, and cellular defense programs. From a clinical standpoint, we summarize randomized evidence on the efficacy and safety of xenon anesthesia, its impact on cognitive recovery and hemodynamic stability, and its prospective roles in intensive care and critical illness. Particular attention is given to environmental considerations: the comparative global warming potential of inhalational anesthetics, nitrous oxide’s contribution to ozone depletion, and the advantages of closed-circuit and low-flow delivery with xenon capture and recycling. Organizational and economic aspects of implementation are discussed (gas cost and equipment requirements), together with strategies to lower total cost of care via xenon’s rapid elimination, reduction of complications, and recovery of exhaled gas. In an interdisciplinary context, we outline xenon’s potential within pharmacological adaptation programs and prevention of professional burnout among healthcare workers. Overall, xenon emerges as a benchmark anesthetic with a high safety profile for patients and staff and a minimal ecological footprint. Future directions include expanding indications, standardizing recycling technologies, and integrating xenon therapy into sustainable anesthesia and critical care.

Full Text

Restricted Access

About the authors

Filipp Shvetskiy

Skobelkin Research and Practical Centre for Laser Medicine - a branch of Federal State Budgetary Institution "Federal Clinical Center of High Medical Technologies” subordinate to the Federal Medical and Biological Agency of Russian Federation
(Skobelkin Centre for Laser Medicine, Federal Clinical Center of High Medical Technologies, FMBA of Russia)

Author for correspondence.
Email: shvetskiy@mail.ru
ORCID iD: 0000-0003-2954-5007

кандидат медицинских наук старший научный сотрудник

Russian Federation

References

  1. Udut V.V., Naumov S.A., Evtushenko D.N. et al. A case of xenon inhalation therapy for respiratory failure and neuropsychiatric disorders associated with COVID-19 // EXCLI Journal. 2021;20:1517–1525.
  2. Chakkarapani E., Thoresen M., Hobbs C. et al. A closed-circuit neonatal xenon delivery system: a technical and practical neuroprotection feasibility study in newborn pigs // Anesth. Analg. 2009;109:451–460.
  3. Coburn M., Baumert J.H., Zühlsdorff A. et al. A comparison of waste gas concentrations during xenon or nitrous oxide anaesthesia // European Journal of Anaesthesiology. 2008;25(9):748–751.
  4. Abraini J.H., David H.N., Lemaire M. Potentially neuroprotective and therapeutic properties of nitrous oxide and xenon // Annals of the New York Academy of Sciences. 2005;1053:289–300.
  5. Zeng J., Fu Y., Wu Y. et al. Absolute CO₂/Xenon separation in ultramicropore MOF for anesthetic gases regeneration // Angewandte Chemie – International Edition. 2023;135(42):e202310235.
  6. Tomi K., Mashimo T., Tashiro C. et al. Alterations in pain threshold and psychomotor response associated with subanaesthetic concentrations of inhalation anaesthetics in humans // British Journal of Anaesthesia. 1993;70(6):684–686.
  7. Lane G.A., Nahrwold M.L., Tait A.R. et al. Anesthetics as teratogens: nitrous oxide is fetotoxic, xenon is not // Science. 1980;210:899–901.
  8. Liu W., Khatibi N., Sridharan A., Zhang J.H. Application of medical gases in the field of neurobiology // Medical Gas Research. 2011;1:13.
  9. Ashmann N., Terblanche M., Griffiths R. An overview of anaesthesia for day surgery // Anaesthesia & Intensive Care Medicine. 2000;5(3):100–103.
  10. Martin J.L., Ma D., Hossain M. et al. Asynchronous administration of xenon and hypothermia significantly reduces brain infarction in the neonatal rat // British Journal of Anaesthesia. 2007;98:236–240.
  11. Balzer K. Ambulatory surgery in venous surgery // Chirurg. 1991;62(8):598–603.
  12. Banks P., Franks N.P., Dickinson R. Competitive inhibition at the glycine site of the NMDA receptor mediates xenon neuroprotection against hypoxia-ischemia // Anesthesiology. 2010;112:614–622.
  13. Bantel C., Maze M., Trape S. Neuronal preconditioning by inhalational anesthetics // Anesthesiology. 2009;110:986–995.
  14. Baumert J.H. Xenon-based anesthesia: theory and practice // Open Access Surgery. 2009;2:5–13.
  15. Bein B., Höcker J., Scholz J. Xenon – the ideal anaesthetic agent? // Anästhesiologie, Intensivmedizin, Notfallmedizin, Schmerztherapie. 2007;42(11):784–791.
  16. Benavides R., Maze M., Franks N.P. Expansion of gas bubbles by nitrous oxide and xenon // Anesthesiology. 2006;104(2):299–302.
  17. Růzicka J., Benes J., Bolek L., Markvartová V. Biological effects of noble gases // Physiological Research. 2007;56(Suppl 1):S39–S44.
  18. Laitio R.M., Kaskinoro K., Särkelä M.O. et al. Bispectral index, entropy, and quantitative electroencephalogram during single-agent xenon anesthesia // Anesthesiology. 2008;108(1):63–70.
  19. Bovill J.G. Inhalation anaesthesia: from diethyl ether to xenon // Handbook of Experimental Pharmacology. 2008;182:121–142.
  20. Bullok N. Dental care of patients with substance abuse // Dental Clinics of North America. 1999;43:513–526.
  21. Burov N., Makeev G., Potapov V. Applying Xenon Technologies in Russia // Applied Cardiopulmonary Pathophysiology. 2000;9(2):132–133.
  22. Li M., Inoue K., Si H., Xiong Z. Calcium-permeable ion channels involved in glutamate receptor-independent ischemic brain injury // Acta Pharmacologica Sinica. 2011;32:734–740.
  23. Canturk B., Erarslan Z., Gurdal Y. Noncovalent chemistry of xenon opens the door for anesthetic xenon recovery using Bio-MOFs // Physical Chemistry Chemical Physics. 2023;25(40):27264–27275.
  24. Neukirchen M., Hipp J., Schaefer M.S., Brandenburger T. et al. Cardiovascular stability and unchanged muscle sympathetic activity during xenon anaesthesia: role of norepinephrine uptake inhibition // British Journal of Anaesthesia. 2012;109(6):887–896.
  25. Shimizu M., Matsuzuka T., Matsumi F. et al. Change of tinnitus with xenon phototherapy of the stellate ganglion // Photomedicine and Laser Surgery. 2018;36(9):468–471.
  26. Arakawa K., Hosono A., Shibata K. et al. Changes in blood biochemical markers before, during, and after a 2-day ultramarathon // Journal of Sports Medicine. 2016;7:43–50.
  27. Colie D.M., Rait J.L., Galbraith J.E. Public hospital day-case surgery in a dedicated facility // Australian and New Zealand Journal of Ophthalmology. 1997;17(4):409–412.
  28. McGuigan S., Evered L., Scott D.A. et al. Comparing the effect of xenon and sevoflurane anesthesia on postoperative neural injury biomarkers: a randomized controlled trial // Medical Gas Research. 2022;12(1):10–17.
  29. McGuigan S., Evered L., Silbert B. et al. Comparison of the spectral features of the frontal EEG in patients receiving xenon and sevoflurane general anesthesia // Anesthesia & Analgesia. 2021;133(5):1269–1279.
  30. Dickinson R., Peterson B.K., Banks P. et al. Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor by the anesthetics xenon and isoflurane // Anesthesiology. 2007;107:756–767.
  31. Horiguchi T., Snipes J.A., Kis B. et al. Cyclooxygenase-2 mediates the development of cortical spreading depression-induced tolerance to transient focal cerebral ischemia in rats // Neuroscience. 2006;140:723–730.
  32. Dalrymple P., Griffits R. Selection criteria and preoperative evaluation in day surgery // Anaesthesia & Intensive Care Medicine. 2005;5(3):97–99.
  33. Russel J.T., Delvin H.B., Fell B. et al. Day-care surgery for hernia and haemorrhoids // Lancet. 1977;1:844–846.
  34. Plested A.J., Wildman S.S., Lieb W.R., Franks N.P. Determinants of the sensitivity of AMPA receptors to xenon // Anesthesiology. 2004;100:347–358.
  35. Dingley J., Mason R.S. A cryogenic machine for selective recovery of xenon from breathing system waste gases // Anesthesia & Analgesia. 2007;105(5):1312–1318.
  36. Ishiguro Y., Kikuchi T., Etsuki H. et al. Does xenon anesthesia inhibit cholinesterases: an in vitro radiometric assessment // Anesthesiology. 2003;98(3):791–792.
  37. Dorn G.W., Mochly-Rosen D. Intracellular transport mechanisms of signal transducers // Annual Review of Physiology. 2002;64:407–429.
  38. He M., Robertson S.H., Kaushik S.S. et al. Dose and pulse sequence considerations for hyperpolarized (129)Xe ventilation MRI // Magnetic Resonance Imaging. 2015;33(7):877–885.
  39. Dworschak M. Pharmacologic neuroprotection – is xenon the light at the end of the tunnel // Critical Care Medicine. 2008;36:2477–2479.
  40. Laitio R., Hynninen M., Arola O. et al. Effect of inhaled xenon on cerebral white matter damage in comatose survivors of out-of-hospital cardiac arrest: randomized clinical trial // JAMA. 2016;315(11):1120–1128.
  41. Rizvi M., Jawad N., Li Y. et al. Effect of noble gases on oxygen- and glucose-deprived injury in human tubular kidney cells // Experimental Biology and Medicine. 2010;235:886–891.
  42. Bein B., Hanne P., Hanss R. et al. Effect of xenon anaesthesia on accuracy of cardiac output measurement using partial CO₂ rebreathing // Anaesthesia. 2004;59(11):1104–1110.
  43. Laaksonen M., Rinne J., Rahi M. et al. Effect of xenon on brain injury, neurological outcome, and survival in patients after aneurysmal subarachnoid hemorrhage: study protocol for a randomized clinical trial // Trials. 2023;24(1):417.
  44. Hoshi T., Fujii Y., Takahashi S., Toyooka H. Effect of xenon on diaphragmatic contractility in dogs // Canadian Journal of Anesthesia. 2000;47:819–822.
  45. Jin M., Yang Y., Pan X. et al. Effects of pulmonary static inflation with 50% xenon on oxygen impairment during cardiopulmonary bypass for Stanford type A acute aortic dissection: a pilot study // Medicine (Baltimore). 2017;96(10):e6253.
  46. Huneke R., Jungling E., Skasa M. et al. Effects of the anesthetic gases xenon, halothane, and isoflurane on calcium and potassium currents in human atrial cardiomyocytes // Anesthesiology. 2001;95(4):999–1006.
  47. Chakkarapani E., Dingley J., Aquilina K. et al. Effects of xenon and hypothermia on cerebrovascular pressure reactivity in newborn global hypoxic-ischemic pig model // Journal of Cerebral Blood Flow and Metabolism. 2013;33(11):1752–1760.
  48. Laitio R.M., Kaisti K.K., Långsjö J.W. et al. Effects of xenon anesthesia on cerebral blood flow in humans: a PET study // Anesthesiology. 2007;106(6):1128–1133.
  49. Wilhelm S., Ma D., Maze M., Franks N.P. Effects of xenon on in vitro and in vivo models of neuronal injury // Anesthesiology. 2002;96:1485–1491.
  50. Stoppe C., Coburn M., Fahlenkamp A. et al. Elevated serum concentrations of erythropoietin after xenon anaesthesia in cardiac surgery: secondary analysis of a randomized controlled trial // British Journal of Anaesthesia. 2015;114(4):701–703.
  51. Peng T., Booher K., Moody M.R. et al. Enhanced cerebroprotection of xenon-loaded liposomes in combination with rtPA thrombolysis for embolic ischemic stroke // Biomolecules. 2023;13(8):1256.
  52. Solaroglu I., Solaroglu A., Kaptanoglu E. et al. Erythropoietin prevents ischemia-reperfusion from inducing oxidative damage in fetal rat brain // Child’s Nervous System. 2003;19:19–22.
  53. Kyoyama H., Hirata Y., Kikuchi S. et al. Evaluation of pulmonary function using single-breath-hold dual-energy CT with xenon: preliminary study // Medicine (Baltimore). 2017;96(3):e5937.
  54. Connell C.J., Thompson B., Turuwhenua J. et al. Fatigue-related impairments in oculomotor control are prevented by norepinephrine-dopamine reuptake inhibition // Scientific Reports. 2017;7:42726.
  55. Fatokun A.A., Stone T.W., Smith R.A. Adenosine receptor ligands protect against combined apoptotic and necrotic cell death in cerebellar granule neurons // Experimental Brain Research. 2008;186:151–160.
  56. Faulconer A.J., Keys T.E. Foundations of Anesthesiology. Springfield (IL): Charles C. Thomas; 1965. Р. 51.
  57. Fortier J., Chung F., Su J. Unanticipated admission after ambulatory surgery: a prospective study // Canadian Journal of Anesthesia. 1998;45(7):612–619.
  58. Fries M., Weis J., Rossaint R. Is xenon really neuroprotective after cardiac arrest // Anesthesiology. 2006;104(1):211.

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.