Modulation of electrical activity and ionic currents of isolated neurons by orexin A



Cite item

Full Text

Abstract

The changes in intracellular potential of resting (PR) and potential of action (PA) of the identified neurons of pedal and visceral ganglia of the CNS mollusk Planorbarius corneus registered by means of intracellular electrodes, and ionic currents of isolated neurons under fixed potential after administration of orexin A in concentrations 1, 10, 100 and 1000 µg/ml were studied by the method of fixation of membrane potential in isolated neurons of the Lymnaea stagnalis mollusk. Dibazol in concentrations of 1 and 10 µM effected slightly on the ionic currents. High concentrations of dibazol (100 and 1000 µM) inhibited all currents in dose dependent manner with maximal effect on potassium currents amplitude. ЕС50 were 7.4 мМ for INa, 4.0 мМ for ICa, 83.9 µM for IKs,1 (one group of neurons) and 2.9 мМ for IKs,2 (the another group of neurons). The voltage-amper membrane characteristics shift was not registered, but the kinetics of currents development was changed. Dibazol was more effective in inhibition of ionic currents compared to its structural analogs.

About the authors

Petr Dmitriyevich Shabanov

Institute of Experimental Medicine, NWB RAMS

Email: pdshabanov@mail.ru
Dr. Med. Sci. (Pharmacology), Professor and Head, Anichkov Dept. of Neuropharmacology

Anatoliy Ivanovich Vislobokov

Institute of Experimental Medicine, NWB RAMS

Email: vislobokov@yandex.ru
Dr. Med. Sci. (Physiology), Senior Researcher, Anichkov Dept. of Neuropharmacology

References

  1. Вислобоков А. И., Игнатов Ю. Д., Галенко-Ярошевский П. А., Шабанов П. Д. Мембранотропное действие фармакологических средств. - СПб.; Краснодар: Просвещение-Юг, 2010. - 528 с.
  2. Вислобоков А. И., Игнатов Ю. Д., Середенин С. Б. Изменения электрической активности нейронов под влиянием афобазола // Эксперим. и клин. фармакол. - 2012. - Т. 75, № 6. - С. 3-7.
  3. Камкин А. Г., Киселева И. С. Физиология и молекулярная биология мембран клеток: уч. пособие. - М.: ИЦ Академия, 2008. - 592 с.
  4. Лысенко А. В., Арутюнян А. В., Козина Л. С. Пептидная регуляция адаптации организма к стрессорным воздействиям. - СПб.: ВМедА, 2005. - 207 с.
  5. Фармакология ионных каналов / Вислобоков А. И., Борисова В. А., Прошева В. И., Шабанов П. Д. - Серия: Цитофармакология. Т. 1 - СПб.: Информ-Навигатор, 2012. - 528 с.
  6. Arrigoni E., Mochizuki T., Scammell T. E. Activation of the basal forebrain by the orexin/hypocretin neurons // Acta Physiol. (Oxf). - 2010. - Vol. 198, N 3. - P. 223-235.
  7. Ashcroft F. M. Ion channels and disease. - San Diego: Acad. Press, 2000. - 481 p.
  8. Brisbare-Roch C. et al. Promotion of sleep by targeting the orexin system in rats, dogs and humans // Nat. Med. - 2007. - Vol. 13, N 2. - P. 150-155.
  9. Camerino D. C., Tricarico D., Desaphy J. F. Ion channel pharmacology // Neurotherapeutics. - 2007. - Vol. 4, N 2. - P. 184-198.
  10. Dhuria S. V., Hanson L. R., Frey W. H. Intranasal drug targeting of hypocretin-1 (orexin-A) to the central nervous system // J. Pharm. Sci. - 2009. - Vol. 98, N 7. - P. 2501-2515.
  11. Dugovic C. et al. Blockade of orexin-1 receptors attenuates orexin-2 receptor antagonism-induced sleep promotion in the rat // J. Pharmacol. Exp. Ther. - 2009. - Vol. 330. - P. 142-151.
  12. Fadel J., Frederick-Duus D. Orexin/hypocretin modulation of the basal forebrain cholinergic system: insights from in vivo microdialysis studies // Pharmacol. Biochem. Behav. - 2008. - Vol. 90, N 2. - P. 156-162.
  13. Heinonen M. V. et al. Functions of orexins in peripheral tissues // Acta Physiol. - 2008. - Vol. 192, N 4. - P. 471-485.
  14. Hoang Q. V., Bajic D., Yanagisawa M. et al. Effects of orexin (hypocretin) on GIRK channels // J. Neurophysiol. - 2003. - Vol. 90, N 2. - P. 693-702.
  15. International Union of Basic and Clinical Pharmacology. LXXXVI. Orexin Receptor Function, Nomenclature and Pharmacology // Pharmacol. Rev. - 2012. - Vol. 64, N 3. - P. 389-420.
  16. Ivanov A., Aston-Jones G. Hypocretin/orexin depolarizes and decreases potassium conductance in locus coeruleus neurons // Neuroreport. - 2000. - Vol. 11. - P. 1755-1758.
  17. Karnani M. M., Venner A., Jensen L. T., Fugger L., Burdakov D. Direct and indirect control of orexin/hypocretin neurons by glycine receptors // J. Physiol. - 2011. - Vol. 589, Pt. 3. - P. 639-651.
  18. Kohlmeier K. A., Watanabe S., Tyler C. J., Burlet S., Leonard C. S. Dual orexin actions on dorsal raphe and laterodorsal tegmentum neurons: noisy cation current activation and selective enhancement of Ca 2+ transients mediated by L-type calcium channels // J. Neurophysiol. - 2008. - Vol. 100, N 4. - P. 2265-2281.
  19. Kukkonen J. P. Physiology of the orexinergic/hypocretinergic system: a revisit in 2012 // Amer. J. Physiol. Cell. Physiol. - 2013. - Vol. 304, N 1. - P. 2-32.
  20. Larsson K. P., Peltonen H. M., Bart G. et al. Orexin-A-induced Ca2+ entry: evidence for involvement of trpc channels and protein kinase C regulation // J. Biol. Chem. - 2005. - Vol. 280, N 3. - P. 1771-1781.
  21. Lund P. E., Shariatmadari R., Uustare A. et al. The orexin OX1 receptor activates a novel Ca2+ influx pathway necessary for coupling to phospholipase C // J. Biol. Chem. - 2000. - Vol. 275, N 40. - P. 30 806-30 812.
  22. Malherbe P., Borroni E., Pinard E., Wettstein J. G., Knoflach F. Biochemical and electrophysiological characterization of almorexant, a dual orexin 1 receptor (OX1) /orexin 2 receptor (OX2) antagonist: comparison with selective OX1 and OX2 antagonists // Mol. Pharmacol. - 2009. - Vol. 76. - P. 618-631.
  23. Martin G., Fabre V., Siggins G. R., de Lecea L. Interaction of the hypocretins with neurotransmitters in the nucleus accumbens // Regul. Pept. - 2002. - Vol. 104, N 1-3. - P. 111-117.
  24. Mieda M., Sakurai T. Integrative physiology of orexins and orexin receptors // CNS Neurol Disord Drug Targets. - 2009. - Vol. 8, N 4. - P. 281-295.
  25. Murai Y., Akaike T. Orexins cause depolarization via nonselective cationic and K+ channels in isolated locus coeruleus neurons // Neurosci. Res. - 2005. - Vol. 51, N 1. - P. 55-65.
  26. Narahashi T. Neuroreceptors and ion channels as the basis for drug action: past, present, and future // J. Pharmacol. Exp. Ther. - 2000. - Vol. 294, N 1. - P. 1-26.
  27. Ohno K., Sakurai T. Orexin neuronal circuitry: Role in the regulation of sleep and wakefulness // Front. Neuroendocrinol. - 2008. - Vol. 29, N 1. - P. 70-87.
  28. Ragsdale D. S., McPhee J. C., Scheuer T., Catterall W. A. Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels // Proc. Natl. Acad. Sci. USA. - 1996. - Vol. 93. - P. 9270-9275.
  29. Rodgers R. J. et al. Orexins and appetite regulation // Neuropeptides. - 2002. - Vol. 36, N 5. - P. 303-325.
  30. Sakurai T. Reverse pharmacology of orexin: from an orphan GPCR to integrative physiology // Regulatory peptides. - 2005. - Vol. 126. - P. 3-10.
  31. Sakurai T., Amemiya A., Ishii M. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior // Cell. - 1998. - Vol. 92, N 4. - P. 573-585.
  32. Scammell T. E., Winrow C. J. Orexin receptors: pharmacology and therapeutic opportunities // Annu. Rev. Pharmacol. Toxicol. - 2011. - Vol. 51. - P. 243-266.
  33. Selbach O., Doreulee N., Bohla C. et al. Orexins/hypocretins cause sharp wave- and theta-related synaptic plasticity in the hippocampus via glutamatergic, gabaergic, noradrenergic, and cholinergic signaling // Neuroscience. - 2004. - Vol. 127. - P. 519-528.
  34. Squecco R., Garella R., Luciani G., Francini F., Baccari M. C. Muscular effects of orexin A on the mouse duodenum: mechanical and electrophysiological studies - J. Physiol. - 2011. - Vol. 589, Pt. 21. - P. 5231-5246.
  35. Takahashi K., Lin J. S., Sakai K. Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse // Neuroscience. - 2008. - Vol. 153. - P. 860-870.
  36. Takatoshi M., Elda A. et al. Orexin receptor 2 expression in the posterior hypothalamus rescues sleepiness in narcoleptic mice // PNAS. - 2011. - Vol. 108, N 11. - P. 4471-4476.
  37. Tsujino N., Sakurai T. Orexin/hypocretin: a neuropeptide at the interface of sleep, energy homeostasis, and reward system // Pharm. Rev. - 2009. - Vol. 61, N 2. - P. 162-176.
  38. Volkoff H. Sleep and orexins in nonmammalian vertebrates // Vitam. Horm. - 2012. - Vol. 89. - P. 315-339.
  39. Wu M., Zaborszky L., Hajszan T., van den Pol A. N., Alreja M. Hypocretin/orexin innervation and excitation of identified septohippocampal cholinergic neurons // J. Neurosci. - 2004. - Vol. 24, N 14. - P. 3527-3536.
  40. Yang B., Ferguson A. V. Orexin-A depolarizes dissociated rat area postrema neurons through activation of a nonselective cationic conductance // J. of neuroscience: the official journal of the Society for Neuroscience. - 2002. - Vol. 22, N 15. - P. 6303-6308.
  41. Yang B., Ferguson A. V. Orexin-A depolarizes nucleus tractus solitarius neurons through effects on nonselective cationic and K+ conductances // J. Neurophysiol. - 2003. - Vol. 89, N 4. - P. 2167-2175.
  42. Zhang L., Kolaj M., Renaud L. P. Ca 2+-dependent and Na+-dependent K+ conductances contribute to a slow AHP in thalamic paraventricular nucleus neurons: a novel target for orexin receptors // J. Neurophysiol. - 2010. - Vol. 104, N 4. - P. 2052-2062.

Copyright (c) 2013 Shabanov P.D., Vislobokov A.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies