Anticompulsive effects of novel derivatives of coumarin in rats

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


BACKGROUND: Until now, the neurotropic effect, in particular the effect on the emotional behavior of oxy-coumarins, has not been adequately studied. There are only few data on their central action. Currently, research is underway on the synthesis of new compounds based on natural oxy-coumarins, which will potentially have a higher biological activity.

AIM: Was to study the central action of new oxycoumarin-based compounds – IEM-2886, LVM-99, LVM-S144, in particular, on compulsive behavior in rats.

MATERIALS AND METHODS: To assess the behavior of Wistar rats, the “Marble-test” and “Elevated plus maze” methods were used. Oxycoumarin derivatives (IEM-2886, LVM-99, LVM-S144) were injected intraperitoneally at doses of 1, 10 and 25 mg/kg. The effectiveness of the drugs was judged by the number of balls buried in the “Marble test” and by the duration of staying in the open and closed sleeves of the “Elevated plus maze”. Results. It was shown that in the Marble test, oxycoumarin-based compounds (IEM-2886, LVM-99, LVM-S144) caused a decrease in the number of buried balls, which shows their anti-compulsive effect. After administration of IEM-2886, LVM-99, LVM-S144 (1–25 mg / kg) compounds, dose-dependent effects were observed (p < 0.05). The “elevated plus maze” test did not show the anxiolytic effect typical for tranquilizers. Moreover, after the administration of IEM-2886 and LVM-S144 at a dose of 25 mg / kg, an increase in the time spent in the closed sleeve of the maze (p < 0.05) was observed, i.e. an anxiogenic effect.

CONCLUSION: Thus, oxy-coumarin-based compounds are selective for the assessment of anticompulsive effects.

Full Text

Restricted Access

About the authors

Bakhodir B. Daliev

Institute of Experimental Medicine

Author for correspondence.

post graduate student

Russian Federation, 12, Academika Pavlova str., Saint Petersburg, 197376

Eugenii R. Bychkov

Institute of Experimental Medicine

ORCID iD: 0000-0002-8911-6805
SPIN-code: 9408-0799

PhD, Cand. Sci. (Med.)

Russian Federation, 12, Academika Pavlova str., Saint Petersburg, 197376

Leonid V. Myznikov

Institute of Experimental Medicine


PhD, Dr. Sci. (Chem.)

Russian Federation, 12, Academika Pavlova str., Saint Petersburg, 197376

Andrei A. Lebedev

Institute of Experimental Medicine

ORCID iD: 0000-0003-0297-0425
SPIN-code: 4998-5204

PhD, Dr. Sci. (Biol.), Professor

Russian Federation, 12, Academika Pavlova str., Saint Petersburg, 197376

Petr D. Shabanov

Institute of Experimental Medicine

ORCID iD: 0000-0003-1464-1127
SPIN-code: 8974-7477

Dr. Sci. (Med.), Professor

Russian Federation, 12, Academika Pavlova str., Saint Petersburg, 197376


  1. Kashirin AO, Polukeev VA, Pshenichnaya AG, et al. Behavioral effects of new compounds based on coumarin in rat. Reviews on clinical pharmacology and drug therapy. 2020;18(1):37–42. (In Russ.) doi: 10.7816/RCF18137-42
  2. Rodionova OM, Safonova AF, Kashirin AO, et al. The influence of new coumarin derivatives on survival rate of mice in model conditions of acute hypoxia. Medical academic journal. 2019;19(4):103–108. (In Russ.) doi: 10.17816/MAJ19258
  3. Tissen IYu, Yakushina ND, Lebedev AA, et al. Effect of SB-408124, an OREX in a ox1r receptor antagonist, on the compulsive behavior and the level of anxiety after the vital stress in rats. Reviews on clinical pharmacology and drug therapy. 2018;16(1):34–42. (In Russ.) doi: 10.17816/RCF16134-42
  4. Shabanov PD, Lebedev AA, Yakushina ND, et al. Modeling the obsessive-compulsive and addictive gambling behavior in a rat marble test by means of amphetamine administration. Narcology. 2017;16(1):32–38. (In Russ.)
  5. Albelda N, Joel D. Current animal models of obsessive compulsive disorder: an update. Neuroscience. 2012;211:83–106. doi: 10.1016/j.neuroscience.2011.08.070
  6. De Brouwer G, Fick A, Harvey BH, Wolmarans DW. A critical inquiry into marble-burying as a preclinical screening paradigm of relevance for anxiety and obsessive-compulsive disorder: Mapping the way forward. Cogn Affect Behav Neurosci. 2019;19(1):1–39. doi: 10.3758/s13415-018-00653-4
  7. Debeljak Z, Skrbo A, Jasprica I, et al. QSAR study of antimicrobial activity of some 3-nitrocoumarins and related compounds. J Chem Inf Model. 2007;47(3):918–926. doi: 10.1021/ci600473z
  8. Decloedt EH, Stein DJ. Current trends in drug treatment of obsessive-compulsive disorder. Neuropsychiatr Dis Treat. 2010;6(1):233–242. doi: 10.2147/NDT.S3149
  9. Dexeus FH, Logothetis CJ, Sella A, et al. Phase II study of coumarin and cimetidine in patients with metastatic renal cell carcinoma. J Clin Oncol. 1990;8(2):325–329. doi: 10.1200/JCO.1990.8.2.325
  10. Egan D, O’Kennedy R, Moran E, et al. The pharmacology, metabolism, analysis, and applications of coumarin and coumarin-related compounds. Drug Metab Rev. 1990;22(5):503–529. doi: 10.3109/03602539008991449
  11. Lake BG. Coumarin metabolism, toxicity and carcinogenicity: relevance for human risk assessment. Food Chem Toxicol. 1999;37(4):423–453. doi: 10.1016/s0278-6915(99)00010-1
  12. Marazziti D, Carlini M, Dell’Osso L. Treatment Strategies of Obsessive-Compulsive Disorder and Panic Disorder/Agoraphobia. Curr Top Med Chem. 2012;12(4):238–253. doi: 10.2174/1568026799078688
  13. Treit D, Pinel JPJ, Fibiger HC. Conditioned defensive burying: a new paradigm for the study of anxiolytic agents. Pharmacol Biochem Behav. 1981;15(4):619–626. doi: 10.1016/0091-3057(81)90219-7
  14. Veale D, Roberts A. Obsessive-compulsive disorder. Brit Med J. 2014;348: g2183. doi: 10.1136/bmj.g2183



Abstract: 43


Article Metrics

Metrics Loading ...


Copyright (c) 2021 Daliev B.B., Bychkov E.R., Myznikov L.V., Lebedev A.A., Shabanov P.D.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies