Absorption, distribution, metabolism and excretion of carbon nanostructures
- Authors: Litasova E.V.1, Iljin V.V.1, Piotrovskiy L.B.1
-
Affiliations:
- Institute of Experimental Medicine
- Issue: Vol 22, No 3 (2024)
- Pages: 257-276
- Section: Reviews
- Submitted: 14.03.2024
- Accepted: 16.08.2024
- Published: 13.11.2024
- URL: https://journals.eco-vector.com/RCF/article/view/629047
- DOI: https://doi.org/10.17816/RCF629047
- ID: 629047
Cite item
Abstract
The interaction of any substance with the body is determined by several parameters, namely: its adsorption, distribution, metabolism, and excretion (ADME properties). Naturally, this also fully applies to such a class of compounds as carbon nanostructures. They are mostly composed of sp2-hybridized carbon atoms (except for nanodiamonds, which consist of sp3-hybridized atoms). However, they differ significantly in their properties. This review focuses on these differences. It covers fullerenes, nano-onions, carbon nanotubes, carbon nanohorns, graphene and its derivatives, as well as nanodiamonds.
Keywords
Full Text

About the authors
Elena V. Litasova
Institute of Experimental Medicine
Email: llitasova@mail.ru
ORCID iD: 0000-0002-0999-8212
SPIN-code: 5568-8939
Cand. Sci. (Biology)
Russian Federation, Saint PetersburgViktor V. Iljin
Institute of Experimental Medicine
Email: victor.iljin@mail.ru
ORCID iD: 0000-0002-1012-7561
SPIN-code: 5559-8089
Cand. Sci. (Chemistry)
Russian Federation, Saint PetersburgLevon B. Piotrovskiy
Institute of Experimental Medicine
Author for correspondence.
Email: levon-piotrovsky@yandex.ru
ORCID iD: 0000-0001-8679-1365
SPIN-code: 2927-6178
Dr. Sci. (Biology), Professor
Russian Federation, Saint PetersburgReferences
- Schinazi RF, Sijbesma R, Srdanov G, et al. Synthesis and virucidal activity of a water-soluble, configurationally stable, derivatized C60 fullerene. Antimicrob Agents Chemother. 1993;37(8):1707–1710. doi: 10.1128/AAC.37.8.1707
- Nakamura E, Isobe H. Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Acc Chem Res. 2003;36(11):807–815. doi: 10.1021/ar030027y
- Litasova EV, Iljin VV, Myznikov LV, Piotrovskiy LB. Toxicology of carbon nanostructures. Part I. Spherical nanoparticles (fullerenes and nanoonions). Reviews on Clinical Pharmacology and Drug Therapy. 2022;20(1):5–15. EDN: KOKLHW doi: 10.17816/RCF2015-15
- Litasova EV, Iljin VV, Brusina MA, Piotrovskiy LB. Toxicology of carbon nanostructures. Part 2. Nanoscale materials based on graphene sheets. Reviews on Clinical Pharmacology and Drug Therapy. 2023;21(1):5–22. EDN: FUZQXE doi: 10.17816/RCF2115-22
- Moussa F, Trivin F, Ceolin R, et al. Early effects of C60 administration in Swiss mice; a preliminary account for in vivo C60 toxicity. Full Sci Technol. 1996;4(1):21–29. doi: 10.1080/10641229608001534
- Gharbi N, Pressac M, Hadchouel M, et al. [60]Fullerene is an in vivo powerful antioxidant with no acute or sub-acute toxicity. NanoLetters. 2005;5(12):2578–2585. doi: 10.1021/nl051866b
- Baati T, Bourasset F, Gharbi N, et al. The prolongation of the lifespan of rats by repeated oral administration of [60]fullerene. Biomate¬rials. 2012;33(19):4936–4946. doi: 10.1016/j.biomaterials.2012.03.036
- Scrivens WA, Tour JM, Creek KE, Pirisi L. Synthesis of 14C-labeled C60, its suspension in water and it suptake by human keratinocytes. J Am Chem Soc. 1994;116(10):4517–4518. doi: 10.1021/ja00089a067
- Chang X-L, Ruan LF, Yang S-T, et al. Quantification of carbon nanomaterials in vivo; Direct stable isotope labeling on the skeleton of fullerene C60. Environ Sci Nano. 2014;1(1):64–70. doi: 10.1039/C3EN00046J
- Yamago S, Tokuyama H, Nakamura E, et al. In vivo biological behavior of a water-miscible fullerene; 14C labeling, absorption, distribution, excretion and acute toxicity. Chem Biol. 1995;2(6):385–389. doi: 10.1016/1074-5521(95)90219-8
- Bullard-Dillard R, Creek KE, Scrivens WA, Tour JM. Tissue sites of uptake of 14C-labeled C60. Bioorg Chem. 1996;24(4):376–385. doi: 10.1006/bioo.1996.003
- Shipkowski KA, Sanders JM, McDonald JD, et al. Disposition of fullerene C60 in rats following intratracheal or intravenous administration. Xenobiotica. 2019;49(9):1078–1085. doi: 10.1080/00498254.2018.1528646
- Sumner SCJ, Snyder RW, Wingard C, et al. Distribution and biomarkers of carbon-14-labeled fullerene C60(14C–C60) in female rats and mice for up to 30 days after intravenous exposure. J Appl Toxicol. 2015;35(12):1452–1464. doi: 10.1002/jat.3110
- Snyder RW, Fennell TR, Wingard CJ, et al. Distribution and biomarker of carbon-14 labeled fullerene C60 ([14C(U)]C60) in pregnant and lactating rats and their offspring after maternal intravenous exposure. J Appl Toxicol. 2015;35(12):1438–1451. doi: 10.002/jat/3177
- Yamakoshi YN, Yagami T, Fukuhara K, et al. Solubilization of fulleres into water with polyvinylpyrrolidone applicable to biological tests. J Chem Soc. 1994;(4):7236. doi: 10.1039/C39940000517
- Jafvert CT, Kulkarni PP. Buckminsterfullerene’s (C60) octanol-water partition coefficient (Kow) and aqueous solubility. Environ Sci Technol. 2008;42(16):5945–5950. doi: 10.1021/es702809a
- Rajagopalan P, Wudl F, Schinazi RF, Boudinot FD. Pharmacokinetics of a water-soluble fullerene in rats. Antimicrob Agents Chemother. 1996;40(10):2262–2265. doi: 10.1128/AAC.40.10.2262
- Wang C, Bai Y, Li H, et al. Surface modification-mediated biodistribution of 13C-fullerene C60 in vivo. Part Fibre Toxicol. 2016;13:14. doi: 10.1186/s12989-016-0126-8
- Witte P, Beuerle F, Hartnagel U, et al. Water solubility, antioxidant activity and cytochrome C binding of four families of exohedral adducts of C60 and C70. Org Biomol Chem. 2007;5(22):3599–3613. doi: 10.1039/b711912g
- Wang ZZ, Chang XL, Lu ZH, et al. A precision structural model for fullerenols. Chem Sci. 2014;5(8):2940–2948. doi: 10.1039/C4SC00584H
- Gan LB, Zhou DJ, Luo CP, et al. Synthesis of fullerene amino acid derivatives by direct interaction of amino acid ester with C60. J Org Chem. 1996;61(6):1954–1961. doi: 10.1021/jo951933u
- Hardt JI, Perlmutter JS, Smith CJ, et al. Pharmacokinetics toxicology of the neuroprotective e,e,e-methanofullerene(63)-carboxylic acid in mice primates. Eur J Drug Metab Pharmacokinet. 2018;43(5):543–554. doi: 10.1007/s13318-018-0464-z
- Lin Y-L, Lei H-Y, Luh T-Y, et al. Light-independent inactivation of dengue-2 virus by carboxyfullerene C3 isomer. Virology. 2000;275(2):258–262. doi: 10.1006/viro.2000.0490
- Dugan LL, Turetsky DM, Du C, et al. Carboxyfullerenes as neuroprotective agents. PNAS USA. 1997;94(17):9434–9439. doi: 10.1073/pnas.94.17.9434
- Foley S, Crowley C, Smaihi M, et al. Cellular localization of a water-soluble fullerene derivative. Biochem Biophys Res Commun. 2002;294(1):116–119. doi: 10.1016/S0006-291X(02)00445-X
- Wang IC, Tai LA, Lee DD, et al. C60 water-soluble fullerene derivatives as antioxidants against radicalinitiated lipid peroxidation. J Med Chem. 1999;42(22):4614–4620. doi: 10.1021/jm990144s
- Cagle DW, Kennel SJ, Mirzadeh S, et al. In vivo studies of of fullerene-based materials using endohedral metallofullerene radiotracers. PNAS USA. 1999;96(9):5182–5187. doi: 10.1073/pnas.96.9.5182
- Wilson LJ. Medical applications of fullerene and metallofulerenes. Electrochem Soc Interface. 1999;8(4):24–28. doi: 10.1149/2.F04994IF
- Jensen AW, Wilson SR, Schuster DI. Biological applications of fullerenes. Bioorg Med Chem. 1996;4(6):767–779. doi: 10.1016/0968-0896(96)00081-8
- Moussa F, Roux S, Pressac M, et al. In vivo reaction between [60]fullerene vitamin A in mouse liver. New J Chem. 1998;(9):989–992. doi: 10.1039/A803120G
- Litasova E, Iljin V, Sokolov A, et al. The biodegradation of fullerene C60 by myeloperoxidase. Doklady Biochem Biophys. 2016;471: 417–420. doi: 10.1134/S1607672916060119
- Brant JA, Labille J, Bottero J-Y, Wiesner MR. Characterizing the impact of preparation method on fullerene cluster structure chemistry. Langmuir. 2006;22(8):3878–3885. doi: 10.1021/la053293o
- Li D, Fortner JD, Johnson DR, et al. Bioaccumulation of 14C60 by the earthworm Eisenia fetida. Environ Sci Technol. 2010;44(23): 9170–9175. doi: 10.1021/es1024405
- Avanasi R, Jackson WA, Sherwin B, et al. C60 fullerene soil sorption, biodegradation, plant uptake. Environ Sci Technol. 2014;48(5):2792–2797. doi: 10.1021/es405306w
- Berry TD, Filley TR, Clavijo AP, et al. Degradation microbial uptake of C60 fullerols in contrasting agricultural soils. Environ Sci Technol. 2017;51(3):1387–1394. doi: 10.1021/acs.est.6b04637
- Li J, Chen L, Su H, et al. The pharmaceutical multi-activity of metallofullerenol invigorates cancer therapy. Nanoscale. 2019;11(31):14528–14539. doi: 10.1039/c9nr04129j
- Wang J, Chen C, Li B, et al. Antioxidative function and biodistribution of [Gd@C82(OH)22]n nanoparticles in tumor-bearing mice. Biochem Pharmacol. 2006;71(6):872–881. doi: 10.1016/j.bcp.2005.12.001
- Meng J, Xing J, Wang Y, et al. Epigenetic modulation of human breast cancer by metallofullerenol nanoparticles; in vivo treatment and in vitro analysis. Nanoscale. 2011;3(11):4713–4719. doi: 10.1039/c1nr10898k
- Xing GM, Zhang J, Zhao YL, et al. Influences of structural properties on stability of fullerenols. J Phys Chem B. 2004;108(31): 11473–11479. doi: 10.1021/jp0487962
- Kunkel M, Schildknecht S, Boldt K, et al. Increasing the resistance of living cells against oxidative stress by non-natural surfactants as membrane guards. ACS Appl Mater Interfaces. 2018;10(28): 23638–23646. doi: 10.1021/acsami.8b07032
- Kolosnjaj J, Szwarc H, Moussa F. Toxicity studies of fullerenes and derivatives. In: Сhan WCW, editor. Bio-applications of nanoparticles. Advances in experimental medicine and biology. Vol. 620. New York: Springer; 2007. P. 168–180. doi: 10.1007/978-0-387-76713-0_13
- Marisa I, AsnicarD, Matozzo V, et al. Toxicological effects and bioaccumulation of fullerene C60 (FC60) in the marine bivalve Ruditapes philippinarum. Ecotoxicol Environ Saf. 2021;207:111560. doi: 10.1016/j.ecoenv.2020.111560
- Horie M, Nishio K, Kato H, et al. In vitro evaluation of cellular influences induced by stable fullerene C70 medium dispersion; induction of cellular oxidative stress. Chemosphere. 2013;93(6): 1182–1188. doi: 10.1016/j.chemosphere.2013.06.067
- Bartkowski M, Giordani S. Supramolecular chemistry of carbon nano-onions. Nanoscale. 2020;12(17):9352–9358. doi: 10.1039/d0nr01713b
- Kuznetsov VL, Chuvilin AL, Butenko YV, et al. Onion-like carbon from ultra-disperse diamond. Chem Phys Lett. 1994;222(4):343–348. doi: 10.1016/0009-2614(94)87072-1
- Sonkar SK, Ghosh M, Roy M, et al. Carbon nano-onions as nontoxic and high-fluorescence bioimaging agent in food chain — a n in vivo study from unicellular E. coli to multicellular C. elegans. Mater Express. 2012;2(2):105–114. doi: 10.1166/mex.2012.1064
- Bartelmess J, Frasconi M, Balakrishnan PB, et al. Non-covalent functionalization of carbon nano-onions with pyrene — BODIPY dyads for biological imaging. RSC Adv. 2015;5(62):50253–50258. doi: 10.1039/C5RA07683H
- d’Amora M, Rodio M, Bartelmess J, et al. Biocompatibility and biodistribution of functionalized carbon nano-onions (f-CNOs) in a vertebrate model. Sci Rep. 2016;6:33923. doi: 10.1038/srep33923
- Frasconi M, Marotta R, Markey L, et al. Multi-functionalized carbon nano-onions as imaging probes for cancer cells. Chemistry. 2015;21(52):19071–19080. doi: 10.1002/chem.201503166
- d’Amora M, Maffeis V, Brescia R, et al. Carbon nano-onions as non-cytotoxic carriers for cellular uptake of glycopeptides and proteins. Nanomaterials (Basel). 2019;9(8):1069. doi: 10.3390/nano9081069
- Bartkowski M, Giordani S. Carbon nano-onions as potential nanocarriers for drug delivery. Dalton Trans. 2021;50(7):2300–2309. doi: 10.1039/d0dt04093b
- Negri V, Pacheco-Torres J, Calle D, López-Larrubia P. Carbon nanotubes in biomedicine. Top Curr Chem (Cham). 2020;378(1):15. doi: 10.1007/s41061-019-0278-8
- Tanaka K, Yamabe T, Fukui K. The structure and technology of carbon nanotubes. 1st ed. Elsevier; 1999. 190 p.
- Yang K, Liu Z. In vivo biodistribution, pharmacokinetics, and toxicology of carbon nanotubes. Curr Drug Metab. 2012;13(8): 1057–1067. doi: 10.2174/138920012802850029
- García-Hevia L, Saramiforoshani M, Monge J, et al. The unpredictable carbon nanotube biocorona and a functionalization method to prevent protein biofouling. J Nanobiotechnology. 2021;19(1):129. doi: 10.1186/s12951-021-00872-x
- Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993; 363(6430):603–605. doi: 10.1038/363603a0
- Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology; an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–839. doi: 10.1289/ehp.7339
- Cai D, Mataraza JM, Qin Z-H, et al. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Methods. 2005;2(6):449–454. doi: 10.1038/nmeth761
- Shi Kam NW, Jessop TC, Wender PA, Dai H. Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc. 2004;126(22): 6850–6851. doi: 10.1021/ja0486059
- Shi Kam NW, Dai H. Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc. 2005;127(16):6021–6026. doi: 10.1021/ja050062v
- Ito Y, Venkatesan N, Hirako N, et al. Effect of fiber length of carbon nanotubes on the absorption of erythropoietin from rat small intestine. Int J Pharm. 2007;337(1–2):357–360. doi: 10.1016/j.ijpharm.2006.12.042
- Yang Z, Zhang Y, Yang Y, et al. Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine. 2010;6(3):427–441. doi: 10.1016/j.nano.2009.11.007
- Jacobsen NR, Møller P, Clausen PA, et al. Biodistribution of carbon nanotubes in animal models. Basic Clin Pharmacol Toxicol. 2017;121(S3):30–43. doi: 10.1111/bcpt.12705
- Principi E, Girardello R, Bruno A, et al. Systemic distribution of single-walled carbon nanotubes in a novel model: alteration of biochemical parameters, metabolic functions, liver accumulation, and inflammation in vivo. Int J Nanomedicine. 2016;11:4299–4316. doi: 10.2147/IJN.S109950
- Galassi TV, Antman-Passig M, Yaari Z, et al. Long-term in vivo biocompatibility of single-walled carbon nanotubes. PLoS One. 2020;15(5):e0226791. doi: 10.1371/journal.pone.0226791
- Singh R, Pantarotto D, Lacerda L, et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. PNAS USA. 2006;103(9):3357–3362. doi: 10.1073/pnas.0509009103
- Ding W, Minamikawa H, Kameta N, et al. Effects of PEGylation on the physicochemical properties and in vivo distribution of organic nanotubes. Int J Nanomedicine. 2014;9(1):5811–5823. doi: 10.2147/IJN.S75604
- McDevitt MR, Chattopadhyay D, Jaggi JS, et al. PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice. PLoS One. 2007;2(9):e907. doi: 10.1371/journal.pone.0000907
- Liu Z, Cai W, He L, et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol. 2007;2(1):47–52. doi: 10.1038/nnano.2006.170
- Cheng J, Shiral Fernando KA, Veca LM, et al. Reversible accumulation of PEGylated single-walled carbon nanotubes in the mammalian nucleus. ACS Nano. 2008;2(10):2085–2094. doi: 10.1021/nn800461u
- Harik VM. Geometry of carbon nanotubes and mechanisms of phagocytosis and toxic effects. Toxicol Lett. 2017;273:69–85. doi: 10.1016/j.toxlet.2017.03.016
- Ali-Boucetta H, Kostarelos K. Pharmacology of carbon nanotubes; toxicokinetics, excretion and tissue accumulation. Adv Drug Deliv Rev. 2013;65(15):2111–2119. doi: 10.1016/j.addr.2013.10.004
- Cherukuri P, Gannon CJ, Leeuw TK, et al. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. PNAS USA. 2006;103(50):18882–18886. doi: 10.1073/pnas.0609265103
- Yang ST, Guo W, Lin Y, et al. Biodistribution of pristine single-walled carbon nanotubes in vivo. J Phys Chem C. 2007;111(48): 17761–17764. doi: 10.1166/jnn.2004.146
- Al-Jamal KT, Nunes A, Methven L, et al. Degree of chemical functionalization of carbon nanotubes determines tissue distribution and excretion profile. Angew Chem Int Ed Engl. 2012;51(26): 6389–6393. doi: 10.1002/anie.201201991
- Chen M, Qin X, Zeng G. Biodegradation of carbon nanotubes, graphene, and their derivatives. Trends Biotechnol. 2017;35(9):836–846. doi: 10.1016/j.tibtech.2016.12.001
- Chaika V, Pikula K, Vshivkova T, et al. The toxic influence and biodegradation of carbon nanofibers in freshwater invertebrates of the families Gammaridae, Ephemerellidae, and Chironomidae. Toxicol Rep. 2020;7:947–954. doi: 10.1016/j.toxrep.2020.07.011
- Kostarelos K. Fibrillar pharmacology. Nature Materials. 2010;9(10):793–795. doi: 10.1038/nmat2871
- Thakare VS, Das M, Jain AK, et al. Carbon nanotubes in cancer theragnosis. Nanomedicine (Lond). 2010;5(8):1277–1301. doi: 10.2217/nnm.10.95
- Piotrovskiy LB, Kudryavtseva TA, Litasova EV. Properties and bio¬logical potential of single wall carbon nanohorns (SWCNH). Reviews on Clinical Pharmacology and Drug Therapy. 2020;18(3): 185–195. EDN: OHPOQN doi: 10.17816/RCF183185-195
- Shi Y, Peng D, Wang D, et al. Biodistribution survey of oxidized single-wall carbon nanohorns following different administration routes by using label-free multispectral optoacoustic tomography. Int J Nanomedicine. 2019;14:9809–9821. doi: 10.2147/IJN.S215648
- Zhang M, Yamaguchi T, Iijima S, Yudasaka M. Size-dependent biodistribution of carbon nanohorns in vivo. Nanomedicine. 2013;9(5):657–64. doi: 10.1016/j.nano.2012.11.011
- Zhang M, Jasim DA, Ménard-Moyon C, et al. Radiolabeling, whole-body single photon emission computed tomography/computed tomography imaging, and pharmacokinetics of carbon nanohorns in mice. Int J Nanomedicine. 2016;11:3317–3330. doi: 10.2147/IJN.S103162
- Matsumura S, Yuge R, Sato S, et al. Ultrastructural localization of intravenously injected carbon nanohorns in tumor. Int J Nanomedicine. 2014;9:3499–3508. doi: 10.2147/IJN.S62688
- Tahara Y, Miyawaki J, Zhang M, et al. Histological assessments for toxicity and functionalization-dependent biodistribution of carbon nanohorns. Nanotechnology. 2011;22(26):265106. doi: 10.1088/0957-4484/22/26/265106
- Zhang M, Tahara Y, Yang M, et al. Quantification of whole body and excreted carbon nanohorns intravenously injected into mice. Adv Healthc Mater. 2014;3(2):239–244. doi: 10.1002/adhm.201300192
- Miyawaki J, Matsumura S, Yuge R, et al. Biodistribution and ultrastructural localization of single-walled carbon nanohorns determined in vivo with embedded Gd2O3 labels. ACS Nano. 2009;3(6):1399–1406. doi: 10.1021/nn9004846
- Zhang M, Yang M, Bussy C, et al. Biodegradation of carbon nanohorns in macrophage cells. Nanoscale. 2015;7(7):2834–2840. doi: 10.1039/c4nr06175f
- Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696): 666–669. doi: 10.1126/science.1102896
- Chen L, Li J, Chen Z, et al. Toxicological evaluation of graphene-family nanomaterials. J Nanosci Nanotechnol. 2020;20(4):1993–2006. doi: 10.1166/jnn.2020.17364
- Jasim DA, Ménard-Moyon C, Bégin D, et al. Tissue distribution and urinary excretion of intravenously administered chemically functionalized graphene oxide sheets. Chem Sci. 2015;6(7): 3952–3964. doi: 10.1039/c5sc00114e
- Priyadarsini S, Mohanty S, Mukherjee S, et al. Graphene and graphene oxide as nanomaterials for medicine and biology application. Journal of Nanostructure in Chemistry. 2018;8(2):123–137. doi: 10.1007/s40097-018-0265-6
- Wick P, Louw-Gaume AE, Kucki M, et al. Classification framework for graphene-based materials. Angew Chem Int Ed. 2014;53(30):7714–7718. doi: 10.1002/anie.201403335
- Reina G, González-Domínguez JM, Criado A, et al. Promises, facts and challenges for graphene in biomedical applications. Chem Soc Rev. 2017;46(15):4400–4416. doi: 10.1039/c7cs00363c
- Yang K, Wan J, Zhang S, et al. In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano. 2011;5(1):516–522. doi: 10.1021/nn1024303
- Mao L, Hu M, Pan B, et al. Biodistribution and toxicity of radio-labeled few layer graphene in mice after intratracheal instillation. Part Fibre Toxicol. 2016;13:7. doi: 10.1186/s12989-016-0120-1
- Liu J-H, Yang S-T, Wang H, et al. Effect of size and dose on the biodistribution of graphene oxide in mice. Nanomedicine. 2012;7(12):1801–1812. doi: 10.2217/nnm.12.60
- Girish CM, Sasidharan A, Gowd GS, et al. Confocal Raman imaging study showing macrophage mediated biodegradation of graphene in vivo. Adv Healthc Mater. 2013;2(11):1489–1500. doi: 10.1002/adhm.201200489
- Lacerda L, Russier J, Pastorin G, et al. Translocation mechanisms of chemically functionalised carbon nanotubes across plasma membranes. Biomaterials. 2012;33(11):3334–3343. doi: 10.1016/j.biomaterials.2012.01.024
- Kotchey GP, Allen BL, Vedala H, et al. The enzymatic oxidation of graphene oxide. ACS Nano. 2011;5(3):2098–2108. doi: 10.1021/nn103265h
- Lalwani G, Xing W, Sitharaman B. Enzymatic degradation of oxidized and reduced graphene nanoribbons by lignin peroxidase. J Mater Chem B Mater Biol Med. 2014;2(37):6354–6362. doi: 10.1039/C4TB00976B
- Jasim DA, Newman L, Rodrigues AF, et al. The impact of graphene oxide sheet lateral dimensions on their pharmacokinetic and tissue distribution profiles in mice. J Control Release. 2021;338: 330–340. doi: 10.1016/j.jconrel.2021.08.028
- Chen W, Wang B, Liang S, et al. Renal clearance of grapheme oxide: glomerular filtration or tubular secretion and selective kidney injury association with its lateral dimension. J Nanobiotechnology. 2023;21(1):51. doi: 10.1186/s12951-023-01781-x
- Tinwala H, Wairkar S. Production, surface modification and biomedical applications of nanodiamonds: A sparkling tool for theranostics. Mater Sci Eng C: Mater Biol Appl. 2019;97:913–931. doi: 10.1016/j.msec.2018.12.073
- Yadav A, Shukla R, Flora SJS. Nanodiamonds: a versatile drug-delivery system in the recent therapeutics scenario. Crit Rev Ther Drug Carrier Syst. 2021;38(4):39–78. doi: 10.1615/CritRevTherDrugCarrierSyst.2021035845
- Vul A, Shenderova O, editors. Detonation nanodiamonds — science and applications. New York: Jenny Stanford Publishing; 2014. 346 p.
- Boruah A, Saikia BK. Synthesis, characterization, properties, and novel applications of fluorescent nanodiamonds. J Fluoresc. 2022;32(3):863–885. doi: 10.1007/s10895-022-02898-2
- Cheng C-L, Chen C-F, Shaio W-C, et al. The CH stretching features on diamonds of different origins. Diamond Relat Mater. 2005;14(9):1455–1462. doi: 10.1016/j.diamond.2005.03.003
- Lai L, Barnard AS. Functionalized nanodiamonds for biological and medical applications. J Nanosci Nanotechnol. 2015;15(2): 989–999. doi: 10.1166/jnn.2015.9735
- Baron AV, Puzyr AP, Baron II, Bondar VS. Effects of modified detonation nanodiamonds on the biochemical composition of human blood. Bull Exp Biol Med. 2013;154(6):781–784. doi: 10.1007/s10517-013-2055-y
- Yuan S-J, Wang C, Xu H-Z, et al. Conjugation with nanodiamonds via hydrazine bond fundamentally alters intracellular distribution and activity of doxorubicin. Int J Pharm. 2021;606:120872. doi: 10.1016/j.ijpharm.2021.120872
- Tzeng Y-K, Faklaris O, Chang B-M, et al. Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion. Angew Chem Int Ed. 2011;50(100);2262–2265. doi: 10.1002/anie.201007215
- Mohan N, Chen C-S, Hsieh H-H, et al. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 2010;10(9):3692–3699. doi: 10.1021/nl1021909
- Purtov K, Petunin A, Inzhevatkin E, et al. Biodistribution of different sized nanodiamonds in mice. J Nanosci Nanotechnol. 2015;15(2):1070–1075. doi: 10.1166/jnn.2015.9746
- Tsai L-W, Lin Y-C, Perevedentseva E, et al. Nanodiamonds for medical applications; interaction with blood in vitro and in vivo. Int J Mol Sci. 2016;17(7):1111. doi: 10.3390/ijms17071111
- van der Laan K, Hasani M, Zheng T, Schirhagl R. Nanodiamonds for in vivo applications. Small. 2018;14(19):e1703838. doi: 10.1002/smll.201703838
- Zhang X, Yin J, Kang C, et al. Biodistribution and toxicity of nanodiamonds in mice after intratracheal instillation. Toxicol Lett. 2010;198(2):237–243. doi: 10.1016/j.toxlet.2010.07.001
- Inzhevatkin EV, Baron AV, Volkova MB, et al. Biodistribution of detonation synthesis nanodiamonds in mice after intravenous administration and some biochemical changes in blood plasma. Bull Exp Biol Med. 2021;172(1):77–73. doi: 10.1007/s10517-021-05335-9
- Yuan Y, Chen YW, Liu J-H, et al. Biodistribution and fate of nanodiamonds in vivo. Diam Relat Mater. 2009;18(1):95–100. doi: 10.1016/j.diamond.2008.10.031
- Barone FC, Marcinkiewicz C, Li J, et al. Long-term biocompatibility of fluorescent diamonds-(NV)-Z ~800 nm in rats; survival, morbidity, histopathology, particle distribution and excretion studies (part IV). Int J Nanomedicine. 2019;14:1163–1175. doi: 10.2147/IJN.S189048
- Šimková V, Freislebenová H, Neuhöferová E, et al. Coated nanodiamonds interact with tubulin beta-III negative cells of adult brain tissue. Biointerphases. 2020;15(6):061009. doi: 10.1116/6.0000525
- Prabhakar N, Khan MH, Peurla M, et al. Intracellular trafficking of fluorescent nanodiamonds and regulation of their cellular toxicity. ACS Omega. 2017;2(6):2689–2693. doi: 10.1021/acsomega.7b00339
- Cheng C-Y, Perevedentseva E, Tu J-S, et al. Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamonds labeling. Appl Phys Lett. 2007;90(16):163903. doi: 10.1063/1.2727557
- Chauhan S, Jain N, Nagaich U. Nanodiamonds with powerful ability for drug delivery and biomedical applications; Recent updates on in vivo study and patents. J Pharm Anal. 2020;10(1):1–12. doi: 10.1016/j.jpha.2019.09.003
- Morita A, Hamoh T, Martinez FPP, et al. The fate of lipid-coated and uncoated fluorescent nanodiamonds during cell division in yeast. Nanomaterials. 2020;10(3):516. doi: 10.3390/nano10030516
- Hodek P, Janscák P, Anzenbacher P, et al. Metabolism of diamantane by rat liver microsomal cytochromes P-450. Xenobiotica. 1988;18(10):1109–1118. doi: 10.3109/00498258809042233
- Santos AC, Morais F, Simões A, et al. Nanotechnology for the development of new cosmetic formulations. Expert Opin Drug Deliv. 2019;16(4):313–330. doi: 10.1080/17425247.2019.1585426
- Gu M, Toh TB, Hooi L, et al. Nanodiamond-mediated delivery of a G9a inhibitor for hepatocellular carcinoma therapy. ACS Appl Mater Interfaces. 2019;11(49):45427–45441. doi: 10.1021/acsami.9b16323
- Kumari S, Singh MK, Singh SK, et al. Nanodiamonds activate blood platelets and induce thromboembolism. Nanomedicine (London). 2014;9(3):427–440. doi: 10.2217/nnm.13.23
- Yang M, Zhang M. Biodegradation of carbon nanotubes by macrophages. Front Mater. 2019;6:225. doi: 10.3389/fmats.2019.00225
- Tsuji JS, Maynard AD, Howard PC, et al. Research strategies for safety evaluation of nanomaterials. Part IV: risk assessment of nanoparticles. Toxicol Sci.2006;89(1):42–50. doi: 10.1093/toxsci/kfi339
- Lens M. Use of fullerenes in cosmetics. Recent Pat Biotechnol. 2009;3(2):118–123. doi: 10.2174/187220809788700166
- Paramasivam G, Sanmugam A, Palem VV, et al. Nanomaterials for detection of biomolecules and delivering therapeutic agents in theragnosis: A review. Int J Biol Macromol. 2023;254(Pt 2):127904. doi: 10.1016/j.ijbiomac.2023.127904
- Kopcha WP, Biswas R, Sun Y, et al. Water-soluble endohedral metallofullerenes: new horizons for biomedical applications. Chem Commun. (Cambridge, England). 2023;59(91):13551–13561. doi: 10.1039/d3cc03603k
- Lumley JA, Desai P, Wang J, et al. The derivation of a matched molecular pairsbased ADME/tox knowled gebase for compound optimization. J Chem Inf Model. 2020;60(10):4757–4771. doi: 10.1021/acs.jcim.0c00583
