Absorption, distribution, metabolism and excretion of carbon nanostructures

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The interaction of any substance with the body is determined by several parameters, namely: its adsorption, distribution, metabolism, and excretion (ADME properties). Naturally, this also fully applies to such a class of compounds as carbon nanostructures. They are mostly composed of sp2-hybridized carbon atoms (except for nanodiamonds, which consist of sp3-hybridized atoms). However, they differ significantly in their properties. This review focuses on these differences. It covers fullerenes, nano-onions, carbon nanotubes, carbon nanohorns, graphene and its derivatives, as well as nanodiamonds.

Full Text

Restricted Access

About the authors

Elena V. Litasova

Institute of Experimental Medicine

Email: llitasova@mail.ru
ORCID iD: 0000-0002-0999-8212
SPIN-code: 5568-8939

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Viktor V. Iljin

Institute of Experimental Medicine

Email: victor.iljin@mail.ru
ORCID iD: 0000-0002-1012-7561
SPIN-code: 5559-8089

Cand. Sci. (Chemistry)

Russian Federation, Saint Petersburg

Levon B. Piotrovskiy

Institute of Experimental Medicine

Author for correspondence.
Email: levon-piotrovsky@yandex.ru
ORCID iD: 0000-0001-8679-1365
SPIN-code: 2927-6178

Dr. Sci. (Biology), Professor

Russian Federation, Saint Petersburg

References

  1. Schinazi RF, Sijbesma R, Srdanov G, et al. Synthesis and virucidal activity of a water-soluble, configurationally stable, derivatized C60 fullerene. Antimicrob Agents Chemother. 1993;37(8):1707–1710. doi: 10.1128/AAC.37.8.1707
  2. Nakamura E, Isobe H. Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Acc Chem Res. 2003;36(11):807–815. doi: 10.1021/ar030027y
  3. Litasova EV, Iljin VV, Myznikov LV, Piotrovskiy LB. Toxicology of carbon nanostructures. Part I. Spherical nanoparticles (fullerenes and nanoonions). Reviews on Clinical Pharmacology and Drug Therapy. 2022;20(1):5–15. EDN: KOKLHW doi: 10.17816/RCF2015-15
  4. Litasova EV, Iljin VV, Brusina MA, Piotrovskiy LB. Toxicology of carbon nanostructures. Part 2. Nanoscale materials based on graphene sheets. Reviews on Clinical Pharmacology and Drug Therapy. 2023;21(1):5–22. EDN: FUZQXE doi: 10.17816/RCF2115-22
  5. Moussa F, Trivin F, Ceolin R, et al. Early effects of C60 administration in Swiss mice; a preliminary account for in vivo C60 toxicity. Full Sci Technol. 1996;4(1):21–29. doi: 10.1080/10641229608001534
  6. Gharbi N, Pressac M, Hadchouel M, et al. [60]Fullerene is an in vivo powerful antioxidant with no acute or sub-acute toxicity. NanoLetters. 2005;5(12):2578–2585. doi: 10.1021/nl051866b
  7. Baati T, Bourasset F, Gharbi N, et al. The prolongation of the lifespan of rats by repeated oral administration of [60]fullerene. Biomate¬rials. 2012;33(19):4936–4946. doi: 10.1016/j.biomaterials.2012.03.036
  8. Scrivens WA, Tour JM, Creek KE, Pirisi L. Synthesis of 14C-labeled C60, its suspension in water and it suptake by human keratinocytes. J Am Chem Soc. 1994;116(10):4517–4518. doi: 10.1021/ja00089a067
  9. Chang X-L, Ruan LF, Yang S-T, et al. Quantification of carbon nanomaterials in vivo; Direct stable isotope labeling on the skeleton of fullerene C60. Environ Sci Nano. 2014;1(1):64–70. doi: 10.1039/C3EN00046J
  10. Yamago S, Tokuyama H, Nakamura E, et al. In vivo biological behavior of a water-miscible fullerene; 14C labeling, absorption, distribution, excretion and acute toxicity. Chem Biol. 1995;2(6):385–389. doi: 10.1016/1074-5521(95)90219-8
  11. Bullard-Dillard R, Creek KE, Scrivens WA, Tour JM. Tissue sites of uptake of 14C-labeled C60. Bioorg Chem. 1996;24(4):376–385. doi: 10.1006/bioo.1996.003
  12. Shipkowski KA, Sanders JM, McDonald JD, et al. Disposition of fullerene C60 in rats following intratracheal or intravenous administration. Xenobiotica. 2019;49(9):1078–1085. doi: 10.1080/00498254.2018.1528646
  13. Sumner SCJ, Snyder RW, Wingard C, et al. Distribution and biomarkers of carbon-14-labeled fullerene C60(14C–C60) in female rats and mice for up to 30 days after intravenous exposure. J Appl Toxicol. 2015;35(12):1452–1464. doi: 10.1002/jat.3110
  14. Snyder RW, Fennell TR, Wingard CJ, et al. Distribution and biomarker of carbon-14 labeled fullerene C60 ([14C(U)]C60) in pregnant and lactating rats and their offspring after maternal intravenous exposure. J Appl Toxicol. 2015;35(12):1438–1451. doi: 10.002/jat/3177
  15. Yamakoshi YN, Yagami T, Fukuhara K, et al. Solubilization of fulleres into water with polyvinylpyrrolidone applicable to biological tests. J Chem Soc. 1994;(4):7236. doi: 10.1039/C39940000517
  16. Jafvert CT, Kulkarni PP. Buckminsterfullerene’s (C60) octanol-water partition coefficient (Kow) and aqueous solubility. Environ Sci Technol. 2008;42(16):5945–5950. doi: 10.1021/es702809a
  17. Rajagopalan P, Wudl F, Schinazi RF, Boudinot FD. Pharmacokinetics of a water-soluble fullerene in rats. Antimicrob Agents Chemother. 1996;40(10):2262–2265. doi: 10.1128/AAC.40.10.2262
  18. Wang C, Bai Y, Li H, et al. Surface modification-mediated biodistribution of 13C-fullerene C60 in vivo. Part Fibre Toxicol. 2016;13:14. doi: 10.1186/s12989-016-0126-8
  19. Witte P, Beuerle F, Hartnagel U, et al. Water solubility, antioxidant activity and cytochrome C binding of four families of exohedral adducts of C60 and C70. Org Biomol Chem. 2007;5(22):3599–3613. doi: 10.1039/b711912g
  20. Wang ZZ, Chang XL, Lu ZH, et al. A precision structural model for fullerenols. Chem Sci. 2014;5(8):2940–2948. doi: 10.1039/C4SC00584H
  21. Gan LB, Zhou DJ, Luo CP, et al. Synthesis of fullerene amino acid derivatives by direct interaction of amino acid ester with C60. J Org Chem. 1996;61(6):1954–1961. doi: 10.1021/jo951933u
  22. Hardt JI, Perlmutter JS, Smith CJ, et al. Pharmacokinetics toxicology of the neuroprotective e,e,e-methanofullerene(63)-carboxylic acid in mice primates. Eur J Drug Metab Pharmacokinet. 2018;43(5):543–554. doi: 10.1007/s13318-018-0464-z
  23. Lin Y-L, Lei H-Y, Luh T-Y, et al. Light-independent inactivation of dengue-2 virus by carboxyfullerene C3 isomer. Virology. 2000;275(2):258–262. doi: 10.1006/viro.2000.0490
  24. Dugan LL, Turetsky DM, Du C, et al. Carboxyfullerenes as neuroprotective agents. PNAS USA. 1997;94(17):9434–9439. doi: 10.1073/pnas.94.17.9434
  25. Foley S, Crowley C, Smaihi M, et al. Cellular localization of a water-soluble fullerene derivative. Biochem Biophys Res Commun. 2002;294(1):116–119. doi: 10.1016/S0006-291X(02)00445-X
  26. Wang IC, Tai LA, Lee DD, et al. C60 water-soluble fullerene derivatives as antioxidants against radicalinitiated lipid peroxidation. J Med Chem. 1999;42(22):4614–4620. doi: 10.1021/jm990144s
  27. Cagle DW, Kennel SJ, Mirzadeh S, et al. In vivo studies of of fullerene-based materials using endohedral metallofullerene radiotracers. PNAS USA. 1999;96(9):5182–5187. doi: 10.1073/pnas.96.9.5182
  28. Wilson LJ. Medical applications of fullerene and metallofulerenes. Electrochem Soc Interface. 1999;8(4):24–28. doi: 10.1149/2.F04994IF
  29. Jensen AW, Wilson SR, Schuster DI. Biological applications of fullerenes. Bioorg Med Chem. 1996;4(6):767–779. doi: 10.1016/0968-0896(96)00081-8
  30. Moussa F, Roux S, Pressac M, et al. In vivo reaction between [60]fullerene vitamin A in mouse liver. New J Chem. 1998;(9):989–992. doi: 10.1039/A803120G
  31. Litasova E, Iljin V, Sokolov A, et al. The biodegradation of fullerene C60 by myeloperoxidase. Doklady Biochem Biophys. 2016;471: 417–420. doi: 10.1134/S1607672916060119
  32. Brant JA, Labille J, Bottero J-Y, Wiesner MR. Characterizing the impact of preparation method on fullerene cluster structure chemistry. Langmuir. 2006;22(8):3878–3885. doi: 10.1021/la053293o
  33. Li D, Fortner JD, Johnson DR, et al. Bioaccumulation of 14C60 by the earthworm Eisenia fetida. Environ Sci Technol. 2010;44(23): 9170–9175. doi: 10.1021/es1024405
  34. Avanasi R, Jackson WA, Sherwin B, et al. C60 fullerene soil sorption, biodegradation, plant uptake. Environ Sci Technol. 2014;48(5):2792–2797. doi: 10.1021/es405306w
  35. Berry TD, Filley TR, Clavijo AP, et al. Degradation microbial uptake of C60 fullerols in contrasting agricultural soils. Environ Sci Technol. 2017;51(3):1387–1394. doi: 10.1021/acs.est.6b04637
  36. Li J, Chen L, Su H, et al. The pharmaceutical multi-activity of metallofullerenol invigorates cancer therapy. Nanoscale. 2019;11(31):14528–14539. doi: 10.1039/c9nr04129j
  37. Wang J, Chen C, Li B, et al. Antioxidative function and biodistribution of [Gd@C82(OH)22]n nanoparticles in tumor-bearing mice. Biochem Pharmacol. 2006;71(6):872–881. doi: 10.1016/j.bcp.2005.12.001
  38. Meng J, Xing J, Wang Y, et al. Epigenetic modulation of human breast cancer by metallofullerenol nanoparticles; in vivo treatment and in vitro analysis. Nanoscale. 2011;3(11):4713–4719. doi: 10.1039/c1nr10898k
  39. Xing GM, Zhang J, Zhao YL, et al. Influences of structural properties on stability of fullerenols. J Phys Chem B. 2004;108(31): 11473–11479. doi: 10.1021/jp0487962
  40. Kunkel M, Schildknecht S, Boldt K, et al. Increasing the resistance of living cells against oxidative stress by non-natural surfactants as membrane guards. ACS Appl Mater Interfaces. 2018;10(28): 23638–23646. doi: 10.1021/acsami.8b07032
  41. Kolosnjaj J, Szwarc H, Moussa F. Toxicity studies of fullerenes and derivatives. In: Сhan WCW, editor. Bio-applications of nanoparticles. Advances in experimental medicine and biology. Vol. 620. New York: Springer; 2007. P. 168–180. doi: 10.1007/978-0-387-76713-0_13
  42. Marisa I, AsnicarD, Matozzo V, et al. Toxicological effects and bioaccumulation of fullerene C60 (FC60) in the marine bivalve Ruditapes philippinarum. Ecotoxicol Environ Saf. 2021;207:111560. doi: 10.1016/j.ecoenv.2020.111560
  43. Horie M, Nishio K, Kato H, et al. In vitro evaluation of cellular influences induced by stable fullerene C70 medium dispersion; induction of cellular oxidative stress. Chemosphere. 2013;93(6): 1182–1188. doi: 10.1016/j.chemosphere.2013.06.067
  44. Bartkowski M, Giordani S. Supramolecular chemistry of carbon nano-onions. Nanoscale. 2020;12(17):9352–9358. doi: 10.1039/d0nr01713b
  45. Kuznetsov VL, Chuvilin AL, Butenko YV, et al. Onion-like carbon from ultra-disperse diamond. Chem Phys Lett. 1994;222(4):343–348. doi: 10.1016/0009-2614(94)87072-1
  46. Sonkar SK, Ghosh M, Roy M, et al. Carbon nano-onions as nontoxic and high-fluorescence bioimaging agent in food chain — a n in vivo study from unicellular E. coli to multicellular C. elegans. Mater Express. 2012;2(2):105–114. doi: 10.1166/mex.2012.1064
  47. Bartelmess J, Frasconi M, Balakrishnan PB, et al. Non-covalent functionalization of carbon nano-onions with pyrene — BODIPY dyads for biological imaging. RSC Adv. 2015;5(62):50253–50258. doi: 10.1039/C5RA07683H
  48. d’Amora M, Rodio M, Bartelmess J, et al. Biocompatibility and biodistribution of functionalized carbon nano-onions (f-CNOs) in a vertebrate model. Sci Rep. 2016;6:33923. doi: 10.1038/srep33923
  49. Frasconi M, Marotta R, Markey L, et al. Multi-functionalized carbon nano-onions as imaging probes for cancer cells. Chemistry. 2015;21(52):19071–19080. doi: 10.1002/chem.201503166
  50. d’Amora M, Maffeis V, Brescia R, et al. Carbon nano-onions as non-cytotoxic carriers for cellular uptake of glycopeptides and proteins. Nanomaterials (Basel). 2019;9(8):1069. doi: 10.3390/nano9081069
  51. Bartkowski M, Giordani S. Carbon nano-onions as potential nanocarriers for drug delivery. Dalton Trans. 2021;50(7):2300–2309. doi: 10.1039/d0dt04093b
  52. Negri V, Pacheco-Torres J, Calle D, López-Larrubia P. Carbon nanotubes in biomedicine. Top Curr Chem (Cham). 2020;378(1):15. doi: 10.1007/s41061-019-0278-8
  53. Tanaka K, Yamabe T, Fukui K. The structure and technology of carbon nanotubes. 1st ed. Elsevier; 1999. 190 p.
  54. Yang K, Liu Z. In vivo biodistribution, pharmacokinetics, and toxicology of carbon nanotubes. Curr Drug Metab. 2012;13(8): 1057–1067. doi: 10.2174/138920012802850029
  55. García-Hevia L, Saramiforoshani M, Monge J, et al. The unpredictable carbon nanotube biocorona and a functionalization method to prevent protein biofouling. J Nanobiotechnology. 2021;19(1):129. doi: 10.1186/s12951-021-00872-x
  56. Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993; 363(6430):603–605. doi: 10.1038/363603a0
  57. Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology; an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–839. doi: 10.1289/ehp.7339
  58. Cai D, Mataraza JM, Qin Z-H, et al. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Methods. 2005;2(6):449–454. doi: 10.1038/nmeth761
  59. Shi Kam NW, Jessop TC, Wender PA, Dai H. Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc. 2004;126(22): 6850–6851. doi: 10.1021/ja0486059
  60. Shi Kam NW, Dai H. Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc. 2005;127(16):6021–6026. doi: 10.1021/ja050062v
  61. Ito Y, Venkatesan N, Hirako N, et al. Effect of fiber length of carbon nanotubes on the absorption of erythropoietin from rat small intestine. Int J Pharm. 2007;337(1–2):357–360. doi: 10.1016/j.ijpharm.2006.12.042
  62. Yang Z, Zhang Y, Yang Y, et al. Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine. 2010;6(3):427–441. doi: 10.1016/j.nano.2009.11.007
  63. Jacobsen NR, Møller P, Clausen PA, et al. Biodistribution of carbon nanotubes in animal models. Basic Clin Pharmacol Toxicol. 2017;121(S3):30–43. doi: 10.1111/bcpt.12705
  64. Principi E, Girardello R, Bruno A, et al. Systemic distribution of single-walled carbon nanotubes in a novel model: alteration of biochemical parameters, metabolic functions, liver accumulation, and inflammation in vivo. Int J Nanomedicine. 2016;11:4299–4316. doi: 10.2147/IJN.S109950
  65. Galassi TV, Antman-Passig M, Yaari Z, et al. Long-term in vivo biocompatibility of single-walled carbon nanotubes. PLoS One. 2020;15(5):e0226791. doi: 10.1371/journal.pone.0226791
  66. Singh R, Pantarotto D, Lacerda L, et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. PNAS USA. 2006;103(9):3357–3362. doi: 10.1073/pnas.0509009103
  67. Ding W, Minamikawa H, Kameta N, et al. Effects of PEGylation on the physicochemical properties and in vivo distribution of organic nanotubes. Int J Nanomedicine. 2014;9(1):5811–5823. doi: 10.2147/IJN.S75604
  68. McDevitt MR, Chattopadhyay D, Jaggi JS, et al. PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice. PLoS One. 2007;2(9):e907. doi: 10.1371/journal.pone.0000907
  69. Liu Z, Cai W, He L, et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol. 2007;2(1):47–52. doi: 10.1038/nnano.2006.170
  70. Cheng J, Shiral Fernando KA, Veca LM, et al. Reversible accumulation of PEGylated single-walled carbon nanotubes in the mammalian nucleus. ACS Nano. 2008;2(10):2085–2094. doi: 10.1021/nn800461u
  71. Harik VM. Geometry of carbon nanotubes and mechanisms of phagocytosis and toxic effects. Toxicol Lett. 2017;273:69–85. doi: 10.1016/j.toxlet.2017.03.016
  72. Ali-Boucetta H, Kostarelos K. Pharmacology of carbon nanotubes; toxicokinetics, excretion and tissue accumulation. Adv Drug Deliv Rev. 2013;65(15):2111–2119. doi: 10.1016/j.addr.2013.10.004
  73. Cherukuri P, Gannon CJ, Leeuw TK, et al. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. PNAS USA. 2006;103(50):18882–18886. doi: 10.1073/pnas.0609265103
  74. Yang ST, Guo W, Lin Y, et al. Biodistribution of pristine single-walled carbon nanotubes in vivo. J Phys Chem C. 2007;111(48): 17761–17764. doi: 10.1166/jnn.2004.146
  75. Al-Jamal KT, Nunes A, Methven L, et al. Degree of chemical functionalization of carbon nanotubes determines tissue distribution and excretion profile. Angew Chem Int Ed Engl. 2012;51(26): 6389–6393. doi: 10.1002/anie.201201991
  76. Chen M, Qin X, Zeng G. Biodegradation of carbon nanotubes, graphene, and their derivatives. Trends Biotechnol. 2017;35(9):836–846. doi: 10.1016/j.tibtech.2016.12.001
  77. Chaika V, Pikula K, Vshivkova T, et al. The toxic influence and biodegradation of carbon nanofibers in freshwater invertebrates of the families Gammaridae, Ephemerellidae, and Chironomidae. Toxicol Rep. 2020;7:947–954. doi: 10.1016/j.toxrep.2020.07.011
  78. Kostarelos K. Fibrillar pharmacology. Nature Materials. 2010;9(10):793–795. doi: 10.1038/nmat2871
  79. Thakare VS, Das M, Jain AK, et al. Carbon nanotubes in cancer theragnosis. Nanomedicine (Lond). 2010;5(8):1277–1301. doi: 10.2217/nnm.10.95
  80. Piotrovskiy LB, Kudryavtseva TA, Litasova EV. Properties and bio¬logical potential of single wall carbon nanohorns (SWCNH). Reviews on Clinical Pharmacology and Drug Therapy. 2020;18(3): 185–195. EDN: OHPOQN doi: 10.17816/RCF183185-195
  81. Shi Y, Peng D, Wang D, et al. Biodistribution survey of oxidized single-wall carbon nanohorns following different administration routes by using label-free multispectral optoacoustic tomography. Int J Nanomedicine. 2019;14:9809–9821. doi: 10.2147/IJN.S215648
  82. Zhang M, Yamaguchi T, Iijima S, Yudasaka M. Size-dependent biodistribution of carbon nanohorns in vivo. Nanomedicine. 2013;9(5):657–64. doi: 10.1016/j.nano.2012.11.011
  83. Zhang M, Jasim DA, Ménard-Moyon C, et al. Radiolabeling, whole-body single photon emission computed tomography/computed tomography imaging, and pharmacokinetics of carbon nanohorns in mice. Int J Nanomedicine. 2016;11:3317–3330. doi: 10.2147/IJN.S103162
  84. Matsumura S, Yuge R, Sato S, et al. Ultrastructural localization of intravenously injected carbon nanohorns in tumor. Int J Nanomedicine. 2014;9:3499–3508. doi: 10.2147/IJN.S62688
  85. Tahara Y, Miyawaki J, Zhang M, et al. Histological assessments for toxicity and functionalization-dependent biodistribution of carbon nanohorns. Nanotechnology. 2011;22(26):265106. doi: 10.1088/0957-4484/22/26/265106
  86. Zhang M, Tahara Y, Yang M, et al. Quantification of whole body and excreted carbon nanohorns intravenously injected into mice. Adv Healthc Mater. 2014;3(2):239–244. doi: 10.1002/adhm.201300192
  87. Miyawaki J, Matsumura S, Yuge R, et al. Biodistribution and ultrastructural localization of single-walled carbon nanohorns determined in vivo with embedded Gd2O3 labels. ACS Nano. 2009;3(6):1399–1406. doi: 10.1021/nn9004846
  88. Zhang M, Yang M, Bussy C, et al. Biodegradation of carbon nanohorns in macrophage cells. Nanoscale. 2015;7(7):2834–2840. doi: 10.1039/c4nr06175f
  89. Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696): 666–669. doi: 10.1126/science.1102896
  90. Chen L, Li J, Chen Z, et al. Toxicological evaluation of graphene-family nanomaterials. J Nanosci Nanotechnol. 2020;20(4):1993–2006. doi: 10.1166/jnn.2020.17364
  91. Jasim DA, Ménard-Moyon C, Bégin D, et al. Tissue distribution and urinary excretion of intravenously administered chemically functionalized graphene oxide sheets. Chem Sci. 2015;6(7): 3952–3964. doi: 10.1039/c5sc00114e
  92. Priyadarsini S, Mohanty S, Mukherjee S, et al. Graphene and graphene oxide as nanomaterials for medicine and biology application. Journal of Nanostructure in Chemistry. 2018;8(2):123–137. doi: 10.1007/s40097-018-0265-6
  93. Wick P, Louw-Gaume AE, Kucki M, et al. Classification framework for graphene-based materials. Angew Chem Int Ed. 2014;53(30):7714–7718. doi: 10.1002/anie.201403335
  94. Reina G, González-Domínguez JM, Criado A, et al. Promises, facts and challenges for graphene in biomedical applications. Chem Soc Rev. 2017;46(15):4400–4416. doi: 10.1039/c7cs00363c
  95. Yang K, Wan J, Zhang S, et al. In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano. 2011;5(1):516–522. doi: 10.1021/nn1024303
  96. Mao L, Hu M, Pan B, et al. Biodistribution and toxicity of radio-labeled few layer graphene in mice after intratracheal instillation. Part Fibre Toxicol. 2016;13:7. doi: 10.1186/s12989-016-0120-1
  97. Liu J-H, Yang S-T, Wang H, et al. Effect of size and dose on the biodistribution of graphene oxide in mice. Nanomedicine. 2012;7(12):1801–1812. doi: 10.2217/nnm.12.60
  98. Girish CM, Sasidharan A, Gowd GS, et al. Confocal Raman imaging study showing macrophage mediated biodegradation of graphene in vivo. Adv Healthc Mater. 2013;2(11):1489–1500. doi: 10.1002/adhm.201200489
  99. Lacerda L, Russier J, Pastorin G, et al. Translocation mechanisms of chemically functionalised carbon nanotubes across plasma membranes. Biomaterials. 2012;33(11):3334–3343. doi: 10.1016/j.biomaterials.2012.01.024
  100. Kotchey GP, Allen BL, Vedala H, et al. The enzymatic oxidation of graphene oxide. ACS Nano. 2011;5(3):2098–2108. doi: 10.1021/nn103265h
  101. Lalwani G, Xing W, Sitharaman B. Enzymatic degradation of oxidized and reduced graphene nanoribbons by lignin peroxidase. J Mater Chem B Mater Biol Med. 2014;2(37):6354–6362. doi: 10.1039/C4TB00976B
  102. Jasim DA, Newman L, Rodrigues AF, et al. The impact of graphene oxide sheet lateral dimensions on their pharmacokinetic and tissue distribution profiles in mice. J Control Release. 2021;338: 330–340. doi: 10.1016/j.jconrel.2021.08.028
  103. Chen W, Wang B, Liang S, et al. Renal clearance of grapheme oxide: glomerular filtration or tubular secretion and selective kidney injury association with its lateral dimension. J Nanobiotechnology. 2023;21(1):51. doi: 10.1186/s12951-023-01781-x
  104. Tinwala H, Wairkar S. Production, surface modification and biomedical applications of nanodiamonds: A sparkling tool for theranostics. Mater Sci Eng C: Mater Biol Appl. 2019;97:913–931. doi: 10.1016/j.msec.2018.12.073
  105. Yadav A, Shukla R, Flora SJS. Nanodiamonds: a versatile drug-delivery system in the recent therapeutics scenario. Crit Rev Ther Drug Carrier Syst. 2021;38(4):39–78. doi: 10.1615/CritRevTherDrugCarrierSyst.2021035845
  106. Vul A, Shenderova O, editors. Detonation nanodiamonds — science and applications. New York: Jenny Stanford Publishing; 2014. 346 p.
  107. Boruah A, Saikia BK. Synthesis, characterization, properties, and novel applications of fluorescent nanodiamonds. J Fluoresc. 2022;32(3):863–885. doi: 10.1007/s10895-022-02898-2
  108. Cheng C-L, Chen C-F, Shaio W-C, et al. The CH stretching features on diamonds of different origins. Diamond Relat Mater. 2005;14(9):1455–1462. doi: 10.1016/j.diamond.2005.03.003
  109. Lai L, Barnard AS. Functionalized nanodiamonds for biological and medical applications. J Nanosci Nanotechnol. 2015;15(2): 989–999. doi: 10.1166/jnn.2015.9735
  110. Baron AV, Puzyr AP, Baron II, Bondar VS. Effects of modified detonation nanodiamonds on the biochemical composition of human blood. Bull Exp Biol Med. 2013;154(6):781–784. doi: 10.1007/s10517-013-2055-y
  111. Yuan S-J, Wang C, Xu H-Z, et al. Conjugation with nanodiamonds via hydrazine bond fundamentally alters intracellular distribution and activity of doxorubicin. Int J Pharm. 2021;606:120872. doi: 10.1016/j.ijpharm.2021.120872
  112. Tzeng Y-K, Faklaris O, Chang B-M, et al. Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion. Angew Chem Int Ed. 2011;50(100);2262–2265. doi: 10.1002/anie.201007215
  113. Mohan N, Chen C-S, Hsieh H-H, et al. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 2010;10(9):3692–3699. doi: 10.1021/nl1021909
  114. Purtov K, Petunin A, Inzhevatkin E, et al. Biodistribution of different sized nanodiamonds in mice. J Nanosci Nanotechnol. 2015;15(2):1070–1075. doi: 10.1166/jnn.2015.9746
  115. Tsai L-W, Lin Y-C, Perevedentseva E, et al. Nanodiamonds for medical applications; interaction with blood in vitro and in vivo. Int J Mol Sci. 2016;17(7):1111. doi: 10.3390/ijms17071111
  116. van der Laan K, Hasani M, Zheng T, Schirhagl R. Nanodiamonds for in vivo applications. Small. 2018;14(19):e1703838. doi: 10.1002/smll.201703838
  117. Zhang X, Yin J, Kang C, et al. Biodistribution and toxicity of nanodiamonds in mice after intratracheal instillation. Toxicol Lett. 2010;198(2):237–243. doi: 10.1016/j.toxlet.2010.07.001
  118. Inzhevatkin EV, Baron AV, Volkova MB, et al. Biodistribution of detonation synthesis nanodiamonds in mice after intravenous administration and some biochemical changes in blood plasma. Bull Exp Biol Med. 2021;172(1):77–73. doi: 10.1007/s10517-021-05335-9
  119. Yuan Y, Chen YW, Liu J-H, et al. Biodistribution and fate of nanodiamonds in vivo. Diam Relat Mater. 2009;18(1):95–100. doi: 10.1016/j.diamond.2008.10.031
  120. Barone FC, Marcinkiewicz C, Li J, et al. Long-term biocompatibility of fluorescent diamonds-(NV)-Z ~800 nm in rats; survival, morbidity, histopathology, particle distribution and excretion studies (part IV). Int J Nanomedicine. 2019;14:1163–1175. doi: 10.2147/IJN.S189048
  121. Šimková V, Freislebenová H, Neuhöferová E, et al. Coated nanodiamonds interact with tubulin beta-III negative cells of adult brain tissue. Biointerphases. 2020;15(6):061009. doi: 10.1116/6.0000525
  122. Prabhakar N, Khan MH, Peurla M, et al. Intracellular trafficking of fluorescent nanodiamonds and regulation of their cellular toxicity. ACS Omega. 2017;2(6):2689–2693. doi: 10.1021/acsomega.7b00339
  123. Cheng C-Y, Perevedentseva E, Tu J-S, et al. Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamonds labeling. Appl Phys Lett. 2007;90(16):163903. doi: 10.1063/1.2727557
  124. Chauhan S, Jain N, Nagaich U. Nanodiamonds with powerful ability for drug delivery and biomedical applications; Recent updates on in vivo study and patents. J Pharm Anal. 2020;10(1):1–12. doi: 10.1016/j.jpha.2019.09.003
  125. Morita A, Hamoh T, Martinez FPP, et al. The fate of lipid-coated and uncoated fluorescent nanodiamonds during cell division in yeast. Nanomaterials. 2020;10(3):516. doi: 10.3390/nano10030516
  126. Hodek P, Janscák P, Anzenbacher P, et al. Metabolism of diamantane by rat liver microsomal cytochromes P-450. Xenobiotica. 1988;18(10):1109–1118. doi: 10.3109/00498258809042233
  127. Santos AC, Morais F, Simões A, et al. Nanotechnology for the development of new cosmetic formulations. Expert Opin Drug Deliv. 2019;16(4):313–330. doi: 10.1080/17425247.2019.1585426
  128. Gu M, Toh TB, Hooi L, et al. Nanodiamond-mediated delivery of a G9a inhibitor for hepatocellular carcinoma therapy. ACS Appl Mater Interfaces. 2019;11(49):45427–45441. doi: 10.1021/acsami.9b16323
  129. Kumari S, Singh MK, Singh SK, et al. Nanodiamonds activate blood platelets and induce thromboembolism. Nanomedicine (London). 2014;9(3):427–440. doi: 10.2217/nnm.13.23
  130. Yang M, Zhang M. Biodegradation of carbon nanotubes by macrophages. Front Mater. 2019;6:225. doi: 10.3389/fmats.2019.00225
  131. Tsuji JS, Maynard AD, Howard PC, et al. Research strategies for safety evaluation of nanomaterials. Part IV: risk assessment of nanoparticles. Toxicol Sci.2006;89(1):42–50. doi: 10.1093/toxsci/kfi339
  132. Lens M. Use of fullerenes in cosmetics. Recent Pat Biotechnol. 2009;3(2):118–123. doi: 10.2174/187220809788700166
  133. Paramasivam G, Sanmugam A, Palem VV, et al. Nanomaterials for detection of biomolecules and delivering therapeutic agents in theragnosis: A review. Int J Biol Macromol. 2023;254(Pt 2):127904. doi: 10.1016/j.ijbiomac.2023.127904
  134. Kopcha WP, Biswas R, Sun Y, et al. Water-soluble endohedral metallofullerenes: new horizons for biomedical applications. Chem Commun. (Cambridge, England). 2023;59(91):13551–13561. doi: 10.1039/d3cc03603k
  135. Lumley JA, Desai P, Wang J, et al. The derivation of a matched molecular pairsbased ADME/tox knowled gebase for compound optimization. J Chem Inf Model. 2020;60(10):4757–4771. doi: 10.1021/acs.jcim.0c00583

Copyright (c) 2024 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.