Абсорбция, распределение, метаболизм и экскреция наноструктур углерода
- Авторы: Литасова Е.В.1, Ильин В.В.1, Пиотровский Л.Б.1
-
Учреждения:
- Институт экспериментальной медицины
- Выпуск: Том 22, № 3 (2024)
- Страницы: 257-276
- Раздел: Научные обзоры
- Статья получена: 14.03.2024
- Статья одобрена: 16.08.2024
- Статья опубликована: 13.11.2024
- URL: https://journals.eco-vector.com/RCF/article/view/629047
- DOI: https://doi.org/10.17816/RCF629047
- ID: 629047
Цитировать
Аннотация
Взаимодействие любого вещества с организмом определяется несколькими параметрами, а именно: его проникновением, распределением, трансформацией и выведением, другими словами свойствами ADME (absorption, distribution, metabolism and excretion). Естественно, это в полной мере относится и к такому классу соединений, как углеродные наноструктуры. В основном они образованы sp2-гибридизированными атомами углерода (за исключением наноалмазов, образованных sp3-гибридизированными атомами). Однако по свойствам они заметно отличаются друг от друга. Рассмотрению этих различий посвящен данный обзор, в котором рассмотрены фуллерены, наноонионы, углеродные нанотрубки, углеродные нанохорны, графен и его производные, а также наноалмазы.
Ключевые слова
Полный текст

Об авторах
Елена Викторовна Литасова
Институт экспериментальной медицины
Email: llitasova@mail.ru
ORCID iD: 0000-0002-0999-8212
SPIN-код: 5568-8939
канд. биол. наук
Россия, Санкт-ПетербургВиктор Владимирович Ильин
Институт экспериментальной медицины
Email: victor.iljin@mail.ru
ORCID iD: 0000-0002-1012-7561
SPIN-код: 5559-8089
канд. хим. наук
Россия, Санкт-ПетербургЛевон Борисович Пиотровский
Институт экспериментальной медицины
Автор, ответственный за переписку.
Email: levon-piotrovsky@yandex.ru
ORCID iD: 0000-0001-8679-1365
SPIN-код: 2927-6178
д-р биол. наук, профессор
Россия, Санкт-ПетербургСписок литературы
- Schinazi R.F., Sijbesma R., Srdanov G., et al. Synthesis and virucidal activity of a water-soluble, configurationally stable, derivatized C60 fullerene // Antimicrob Agents Chemother. 1993. Vol. 37, N 8. P. 1707–1710. doi: 10.1128/AAC.37.8.1707
- Nakamura E., Isobe H. Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience // Acc Chem Res. 2003. Vol. 36, N 11. P. 807–815. doi: 10.1021/ar030027y
- Литасова Е.В., Ильин В.В., Мызников Л.В., Пиотровский Л.Б. Токсикология наноструктур углерода. Часть I. Сферические наночастицы (фуллерены и наноонионы) // Обзоры по клинической фармакологии и лекарственной терапии. 2022. Т. 20, № 1. С. 5–15. EDN: KOKLHW doi: 10.17816/RCF2015-15
- Литасова Е.В., Ильин В.В., Брусина М.А., Пиотровский Л.Б. Токсикология наноструктур углерода. Часть 2. Наноразмерные материалы на основе графеновых листов // Обзоры по клинической фармакологии и лекарственной терапии. 2023. Т. 21, № 1. С. 5–22. EDN: FUZQXE doi: 10.17816/RCF2115-22
- Moussa F., Trivin F., Ceolin R., et al. Early effects of C60 administration in Swiss mice; a preliminary account for in vivo C60 toxicity // Full Sci Technol. 1996. Vol. 4, N 1. P. 21–29. doi: 10.1080/10641229608001534
- Gharbi N., Pressac M., Hadchouel M., et al. [60]Fullerene is an in vivo powerful antioxidant with no acute or sub-acute toxicity // NanoLetters. 2005. Vol. 5, N 12. P. 2578–2585. doi: 10.1021/nl051866b
- Baati T., Bourasset F., Gharbi N., et al. The prolongation of the lifespan of rats by repeated oral administration of [60]fullerene // Biomaterials. 2012. Vol. 33, N 19. P. 4936–4946. doi: 10.1016/j.biomaterials.2012.03.036
- Scrivens W.A., Tour J.M., Creek K.E., Pirisi L. Synthesis of 14C-labeled C60, its suspension in water and it suptake by human keratinocytes // J Am Chem Soc. 1994. Vol. 116, N 10. P. 4517–4518. doi: 10.1021/ja00089a067
- Chang X.-L., Ruan L.F., Yang S.-T., et al. Quantification of carbon nanomaterials in vivo; Direct stable isotope labeling on the skeleton of fullerene C60 // Environ Sci Nano. 2014. Vol. 1, N 1. P. 64–70. doi: 10.1039/C3EN00046J
- Yamago S., Tokuyama H., Nakamura E., et al. In vivo biological behavior of a water-miscible fullerene; 14C labeling, absorption, distribution, excretion and acute toxicity // ChemBiol.1995. Vol. 2, N 6. P. 385–389. doi: 10.1016/1074-5521(95)90219-8
- Bullard-Dillard R., Creek K.E., Scrivens W.A., Tour J.M. Tissue sites of uptake of 14C-labeled C60 // Bioorg Chem. 1996. Vol. 24, N 4. P. 376–385. doi: 10.1006/bioo.1996.003
- Shipkowski K.A., Sanders J.M., McDonald J.D., et al. Disposition of fullerene C60 in rats following intratracheal or intravenous administration // Xenobiotica. 2019. Vol. 49, N 9. P. 1078–1085. doi: 10.1080/00498254.2018.1528646
- Sumner S.C.J., Snyder R.W., Wingard C., et al. Distribution and biomarkers of carbon-14-labeled fullerene C60(14C–C60) in female rats and mice for up to 30 days after intravenous exposure // J Appl Toxicol. 2015. Vol. 35, N 12. P. 1452–1464. doi: 10.1002/jat.3110
- Snyder R.W., Fennell T.R., Wingard C.J., et al. Distribution and biomarker of carbon-14 labeled fullerene C60 ([14C(U)]C60) in pregnant and lactating rats and their offspring after maternal intravenous exposure // J Appl Toxicol. 2015. Vol. 35, N 12. P. 1438–1451. doi: 10.002/jat/3177
- Yamakoshi Y.N., Yagami T., Fukuhara K., et al. Solubilization of fulleres into water with polyvinylpyrrolidone applicable to biological tests // J Chem Soc. 1994. N 4. ID 7236. doi: 10.1039/C39940000517
- Jafver tC.T., Kulkarni P.P. Buckminsterfullerene’s (C60) octanol-water partition coefficient (Kow) and aqueous solubility // Environ Sci Technol. 2008. Vol. 42, N 16. P. 5945–5950. doi: 10.1021/es702809a
- Rajagopalan P., Wudl F., Schinazi R.F., Boudinot F.D. Pharmacokinetics of a water-soluble fullerene in rats // Antimicrob Agents Chemother. 1996. Vol. 40, N 10. P. 2262–2265. doi: 10.1128/AAC.40.10.2262
- Wang C., Bai Y., Li H., et al. Surface modification-mediated biodistribution of 13C-fullerene C60 in vivo // Part Fibre Toxicol. 2016. Vol. 13. ID 14. doi: 10.1186/s12989-016-0126-8
- Witte P., Beuerle F., Hartnagel U., et al. Water solubility, antioxidant activity and cytochrome C binding of four families of exohedral adducts of C60 and C70 // Org Biomol Chem. 2007. Vol. 5, N 22. P. 3599–3613. doi: 10.1039/b711912g
- Wang Z.Z., Chang X.L., Lu Z.H., et al. A precision structural model for fullerenols // Chem Sci. 2014. Vol. 5, N 8. P. 2940–2948. doi: 10.1039/C4SC00584H
- Gan L.B., Zhou D.J., Luo C.P., et al. Synthesis of fullerene amino acid derivatives by direct interaction of amino acid ester with C60 // J Org Chem.1996. Vol. 61, N 6. P. 1954–1961. doi: 10.1021/jo951933u
- Hardt J.I., Perlmutter J.S., Smith C.J., et al. Pharmacokinetics toxicology of the neuroprotective e,e,e-methanofullerene(63)-carboxylic acid in mice primates // Eur J Drug Metab Pharmacokinet. 2018. Vol. 43, N 5. P. 543–554. doi: 10.1007/s13318-018-0464-z
- Lin Y.-L., Lei H.-Y., Luh T.-Y., et al. Light-independent inactivation of dengue-2 virus by carboxyfullerene C3 isomer // Virology. 2000. Vol. 275, N 2. P. 258–262. doi: 10.1006/viro.2000.0490
- Dugan L.L., Turetsky D.M., Du C., et al. Carboxyfullerenes as neuroprotective agents // PNAS USA. 1997. Vol. 94, N 17. P. 9434–9439. doi: 10.1073/pnas.94.17.9434
- Foley S., Crowley C., Smaihi M., et al. Cellular localization of a water-soluble fullerene derivative // Biochem Biophys Res Commun. 2002. Vol. 294, N 1. P. 116–119. doi: 10.1016/S0006-291X(02)00445-X
- Wang I.C., Tai L.A., Lee D.D., et al. C60 water-soluble fullerene derivatives as antioxidants against radicalinitiated lipid peroxidation // J Med Chem. 1999. Vol. 42, N 22. P. 4614–4620. doi: 10.1021/jm990144s
- Cagle D.W., Kennel S.J., Mirzadeh S., et al. In vivo studies of of fullerene-based materials using endohedral metallofullerene radiotracers // PNAS USA. 1999. Vol. 96, N 9. P. 5182–5187. doi: 10.1073/pnas.96.9.5182
- Wilson L.J. Medical applications of fullerene and metallofulerenes // Electrochem Soc Interface. 1999. Vol. 8, N 4. P. 24–28. doi: 10.1149/2.F04994IF
- Jensen A.W., Wilson S.R., Schuster D.I. Biological applications of fullerenes // Bioorg Med Chem. 1996. Vol. 4, N 6. P. 767–779. doi: 10.1016/0968-0896(96)00081-8
- Moussa F., Roux S., Pressac M., et al. In vivo reaction bet¬ween [60] fullerene vitamin A in mouse liver // NewJ Chem. 1998. N 9. P. 989–992. doi: 10.1039/A803120G
- Litasova E., Iljin V., Sokolov A., et al. The biodegradation of fullerene C60 by myeloperoxidase // Doklady Biochem Biophys. 2016. Vol. 471. P. 417–420. doi: 10.1134/S1607672916060119
- Brant J.A., Labille J., Bottero J.-Y., Wiesner M.R. Characterizing the impact of preparation method on fullerene cluster structure chemistry // Langmuir. 2006. Vol. 22, N 8. P. 3878–3885. doi: 10.1021/la053293o
- Li D., Fortner J.D., Johnson D.R., et al. Bioaccumulation of 14C60 by the earthworm Eisenia fetida // Environ Sci Technol. 2010. Vol. 44, N 23. P. 9170–9175. doi: 10.1021/es1024405
- Avanasi R., Jackson W.A., Sherwin B., et al. C60 fullerene soil sorption, biodegradation, plant uptake // Environ Sci Technol. 2014. Vol. 48, N 5. P. 2792–2797. doi: 10.1021/es405306w
- Berry T.D., Filley T.R., Clavijo A.P., et al. Degradation microbial uptake of C60 fullerols in contrasting agricultural soils // Environ Sci Technol. 2017. Vol. 51, N 3. P. 1387–1394. doi: 10.1021/acs.est.6b04637
- Li J., Chen L., Su H., et al. The pharmaceutical multi-activity of metallofullerenol invigorates cancer therapy // Nanoscale. 2019. Vol. 11, N 31. P. 14528–14539. doi: 10.1039/c9nr04129j
- Wang J., Chen C., Li B., et al. Antioxidative function and biodistribution of [Gd@C82(OH)22]n nanoparticles in tumor-bearing mice // Biochem Pharmacol. 2006. Vol. 71, N 6. P. 872–881. doi: 10.1016/j.bcp.2005.12.001
- Meng J., Xing J., Wang Y., et al. Epigenetic modulation of human breast cancer by metallofullerenol nanoparticles; in vivo treatment and in vitro analysis // Nanoscale. 2011. Vol. 3, N 11. P. 4713–4719. doi: 10.1039/c1nr10898k
- Xing G.M., Zhang J., Zhao Y.L., et al. Influences of structural properties on stability of fullerenols // J Phys Chem B. 2004. Vol. 108, N 31. P. 11473–11479. doi: 10.1021/jp0487962
- Kunkel M., Schildknecht S., Boldt K., et al. Increasing the resistance of living cells against oxidative stress by non-natural surfactants as membrane guards // ACS Appl Mater Interfaces. 2018. Vol. 10, N 28. P. 23638–23646. doi: 10.1021/acsami.8b07032
- Kolosnjaj J., Szwarc H., Moussa F. Toxicity studies of fullerenesand derivatives. В кн.: Bio-applications of nanoparticles. Advances in experimental medicine and biology. Vol. 620 / W.C.W. Сhan, editor. New York: Springer, 2007. P. 168–180. doi: 10.1007/978-0-387-76713-0_13
- Marisa I., Asnicar D., Matozzo V., et al. Toxicological effects and bioaccumulation of fullerene C60 (FC60) in the marine bivalve Ruditapes philippinarum // Ecotoxicol Environ Saf. 2021. Vol. 207. ID 111560. doi: 10.1016/j.ecoenv.2020.111560
- Horie M., Nishio K., Kato H., et al. In vitro evaluation of cellular influences induced by stable fullerene C70 medium dispersion; induction of cellular oxidative stress // Chemosphere. 2013. Vol. 93, N 6. P. 1182–1188. doi: 10.1016/j.chemosphere.2013.06.067
- Bartkowski M., Giordani S. Supramolecular chemistry of carbon nano-onions // Nanoscale. 2020. Vol. 12, N 17. P. 9352–9358. doi: 10.1039/d0nr01713b
- Kuznetsov V.L., Chuvilin A.L., Butenko Y.V., et al. Onion-like carbon from ultra-disperse diamond // Chem Phys Lett. 1994. Vol. 222, N 4. P. 343–348. doi: 10.1016/0009-2614(94)87072-1
- Sonkar S.K., Ghosh M., Roy M., et al. Carbon nano-onions as nontoxic and high-fluorescence bioimaging agent in food chain — an in vivo study from unicellular E. coli to multicellular C. elegans // Mater Express. 2012. Vol. 2, N 2. P. 105–114. doi: 10.1166/mex.2012.1064
- Bartelmess J., Frasconi M., Balakrishnan P.B., et al. Non-covalent functionalization of carbon nano-onions with pyrene — BODIPY dyads for biological imaging // RSC Adv. 2015. Vol. 5, N 62. P. 50253–50258. doi: 10.1039/C5RA07683H
- d’Amora M., Rodio M., Bartelmess J., et al. Biocompatibility and biodistribution of functionalized carbon nano-onions (f-CNOs) in a vertebrate model // Sci Rep. 2016. Vol. 6. ID 33923. doi: 10.1038/srep33923
- Frasconi M., Marotta R., Markey L., et al. Multi-functionalized carbon nano-onions as imaging probes for cancer cells // Chemistry. 2015. Vol. 21, N 52. P. 19071–19080. doi: 10.1002/chem.201503166
- d’Amora M., Maffeis V., Brescia R., et al. Carbon nano-onions as non-cytotoxic carriers for cellular uptake of glycopeptides and proteins // Nanomaterials (Basel). 2019. Vol. 9, N 8. ID 1069. doi: 10.3390/nano9081069
- Bartkowski M., Giordani S. Carbon nano-onions as potential nanocarriers for drug delivery // Dalton Trans. 2021. Vol. 50, N 7. P. 2300–2309. doi: 10.1039/d0dt04093b
- Negri V., Pacheco-Torres J., Calle D., López-Larrubia P. Carbon nanotubes in biomedicine // Top Curr Chem (Cham). 2020. Vol. 378, N 1. ID 15. doi: 10.1007/s41061-019-0278-8
- Tanaka K., Yamabe T., Fukui K. The structure and technology of carbon nanotubes. 1st ed. Elsevier; 1999. 190 p.
- Yang K., Liu Z. In vivo biodistribution, pharmacokinetics, and toxicology of carbon nanotubes // Curr Drug Metab. 2012. Vol. 13, N 8. P. 1057–1067. doi: 10.2174/138920012802850029
- García-Hevia L., Saramiforoshani M., Monge J., et al. The unpredictable carbon nanotube biocorona and a functionalization method to prevent protein biofouling // J Nanobiotechnology. 2021. Vol. 19, N 1. ID 129. doi: 10.1186/s12951-021-00872-x
- Iijima S., Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter // Nature. 1993. Vol. 363(6430). P. 603–605. doi: 10.1038/363603a0
- Oberdörster G., Oberdörster E., Oberdörster J. Nanotoxicology; an emerging discipline evolving from studies of ultrafine particles // Environ Health Perspect. 2005. Vol. 113, N 7. P. 823–839. doi: 10.1289/ehp.7339
- Cai D., Mataraza J.M., Qin Z.-H., et al. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing // Nat Methods. 2005. Vol. 2, N 6. P. 449–454. doi: 10.1038/nmeth761
- Shi Kam N.W., Jessop T.C., Wender P.A., Dai H. Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells // J Am Chem Soc. 2004. Vol. 126, N 22. P. 6850–6851. doi: 10.1021/ja0486059
- Shi Kam N.W., Dai H. Carbon nanotubes as intracellular protein transporters: generality and biological functionality // J Am Chem Soc. 2005. Vol. 127, N 16. P. 6021–6026. doi: 10.1021/ja050062v
- Ito Y., Venkatesan N., Hirako N., et al. Effect of fiber length of carbon nanotubes on the absorption of erythropoietin from rat small intestine // Int J Pharm. 2007. Vol. 337, N 1–2. P. 357–360. doi: 10.1016/j.ijpharm.2006.12.042
- Yang Z., Zhang Y., Yang Y., et al. Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease // Nanomedicine. 2010. Vol. 6, N 3. P. 427–441. doi: 10.1016/j.nano.2009.11.007
- Jacobsen N.R., Møller P., Clausen P.A., et al. Biodistribution of carbon nanotubes in animal models // Basic Clin Pharmacol Toxicol. 2017. Vol. 121, N S3. P. 30–43. doi: 10.1111/bcpt.12705
- Principi E., Girardello R., Bruno A., et al. Systemic distribution of single-walled carbon nanotubes in a novel model: alteration of biochemical parameters, metabolic functions, liver accumulation, and inflammation in vivo // Int J Nanomedicine. 2016. Vol. 11. P. 4299–4316. doi: 10.2147/IJN.S109950
- Galassi T.V., Antman-Passig M., Yaari Z., et al. Long-term in vivo biocompatibility of single-walled carbon nanotubes // PLoS One. 2020. Vol. 15, N 5. ID e0226791. doi: 10.1371/journal.pone.0226791
- Singh R., Pantarotto D., Lacerda L., et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers // PNAS USA. 2006. Vol. 103, N 9. P. 3357–3362. doi: 10.1073/pnas.0509009103
- Ding W., Minamikawa H., Kameta N., et al. Effects of PEGylation on the physicochemical properties and in vivo distribution of organic nanotubes // Int J Nanomedicine. 2014. Vol. 9, N 1. P. 5811–5823. doi: 10.2147/IJN.S75604
- McDevitt M.R., Chattopadhyay D., Jaggi J.S., et al. PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice // PLoS One. 2007. Vol. 2, N 9. ID e907. doi: 10.1371/journal.pone.0000907
- Liu Z., Cai W., He L., et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice // Nat Nanotechnol. 2007. Vol. 2, N 1. P. 47–52. doi: 10.1038/nnano.2006.170
- Cheng J., Shiral Fernando K.A., Veca L.M., et al. Reversible accumulation of PEGylated single-walled carbon nanotubes in the mammalian nucleus // ACS Nano. 2008. Vol. 2, N 10. P. 2085–2094. doi: 10.1021/nn800461u
- Harik V.M. Geometry of carbon nanotubes and mechanisms of phagocytosis and toxic effects // Toxicol Lett. 2017. Vol. 273. P. 69–85. doi: 10.1016/j.toxlet.2017.03.016
- Ali-Boucetta H., Kostarelos K. Pharmacology of carbon nanotubes; toxicokinetics, excretion and tissue accumulation // Adv Drug Deliv Rev. 2013. Vol. 65, N 15. P. 2111–2119. doi: 10.1016/j.addr.2013.10.004
- Cherukuri P., Gannon C.J., Leeuw T.K., et al. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence // PNAS USA. 2006. Vol. 103, N 50. P. 18882–18886. doi: 10.1073/pnas.0609265103
- Yang S.T., Guo W., Lin Y., et al. Biodistribution of pristine single-walled carbon nanotubes in vivo // J Phys Chem C. 2007. Vol. 111, N 48. P. 17761–17764. doi: 10.1166/jnn.2004.146
- Al-Jamal K.T., Nunes A., Methven L., et al. Degree of chemical functionalization of carbon nanotubes determines tissue distribution and excretion profile // Angew Chem Int Ed Engl. 2012. Vol. 51, N 26. P. 6389–6393. doi: 10.1002/anie.201201991
- Chen M., Qin X., Zeng G. Biodegradation of carbon nanotubes, graphene, and their derivatives // Trends Biotechnol. 2017. Vol. 35, N 9. P. 836–846. doi: 10.1016/j.tibtech.2016.12.001
- Chaika V., Pikula K., Vshivkova T., et al. The toxic influence and biodegradation of carbon nanofibers in freshwater invertebrates of the families Gammaridae, Ephemerellidae, and Chironomidae // To¬xicol Rep. 2020. Vol. 7. P. 947–954. doi: 10.1016/j.toxrep.2020.07.011
- Kostarelos K. Fibrillar pharmacology // Nature Materials. 2010. Vol. 9(10). P. 793–795. doi: 10.1038/nmat2871
- Thakare V.S., Das M., Jain A.K., et al. Carbon nanotubes in cancer theragnosis // Nanomedicine (Lond). 2010. Vol. 5, N 8. P. 1277–1301. doi: 10.2217/nnm.10.95
- Пиотровский Л.Б., Кудрявцева Т.А., Литасова Е.В. Свойства и биологический потенциал одностенных углеродных нанохорнов (SWCNH) // Обзоры по клинической фармакологии и лекарственной терапии. 2020. Т. 18, № 3. С. 185–195. EDN: OHPOQN doi: 10.17816/RCF183185-195
- Shi Y., Peng D., Wang D., et al. Biodistribution survey of oxidized single-wall carbon nanohorns following different administration routes by using label-free multispectral optoacoustic tomography // Int J Nanomedicine. 2019. Vol. 14. P. 9809–9821. doi: 10.2147/IJN.S215648
- Zhang M., Yamaguchi T., Iijima S., Yudasaka M. Size-dependent biodistribution of carbon nanohorns in vivo // Nanomedicine. 2013. Vol. 9, N 5. P. 657–64. doi: 10.1016/j.nano.2012.11.011
- Zhang M., Jasim D.A., Ménard-Moyon C., et al. Radiolabeling, whole-body single photon emission computed tomography/computed tomography imaging, and pharmacokinetics of carbon nanohorns in mice // Int J Nanomedicine. 2016. Vol. 11. P. 3317–3330. doi: 10.2147/IJN.S103162
- Matsumura S., Yuge R., Sato S., et al. Ultrastructural localization of intravenously injected carbon nanohorns in tumor // Int J Nanomedicine. 2014. Vol. 9. P. 3499–3508. doi: 10.2147/IJN.S62688
- Tahara Y., Miyawaki J., Zhang M., et al. Histological assessments for toxicity and functionalization-dependent biodistribution of carbon nanohorns // Nanotechnology. 2011. Vol. 22, N 26. ID 265106. doi: 10.1088/0957-4484/22/26/265106
- Zhang M., Tahara Y., Yang M., et al. Quantification of whole body and excreted carbon nanohorns intravenously injected into mice // Adv Healthc Mater. 2014. Vol. 3, N 2. P. 239–244. doi: 10.1002/adhm.201300192
- Miyawaki J., Matsumura S., Yuge R., et al. Biodistribution and ultrastructural localization of single-walled carbon nanohorns determined in vivo with embedded Gd2O3 labels // ACS Nano. 2009. Vol. 3, N 6. P. 1399–1406. doi: 10.1021/nn9004846
- Zhang M., Yang M., Bussy C., et al. Biodegradation of carbon nanohorns in macrophage cells // Nanoscale. 2015. Vol. 7, N 7. P. 2834–2840. doi: 10.1039/c4nr06175f
- Novoselov K.S., Geim A.K., Morozov S.V., et al. Electric field effect in atomically thin carbon films // Science. 2004. Vol. 306, N 5696. P. 666–669. doi: 10.1126/science.1102896
- Chen L., Li J., Chen Z., et al. Toxicological evaluation of graphene-family nanomaterials // J Nanosci Nanotechnol. 2020. Vol. 20, N 4. P. 1993–2006. doi: 10.1166/jnn.2020.17364
- Jasim D.A., Ménard-Moyon C., Bégin D., et al. Tissue distribution and urinary excretion of intravenously administered chemically functionalized graphene oxide sheets // Chem Sci. 2015. Vol. 6, N 7. P. 3952–3964. doi: 10.1039/c5sc00114e
- Priyadarsini, S., Mohanty, S., Mukherjee, S., et al. Graphene and graphene oxide as nanomaterials for medicine and biology application // Journal of Nanostructure in Chemistry. 2018. Vol. 8(2). P. 123–137. doi: 10.1007/s40097-018-0265-6
- Wick P., Louw-Gaume A.E., Kucki M., et al. Classification framework for graphene-based materials // Angew Chem IntEd. 2014. Vol. 53, N 30. P. 7714–7718. doi: 10.1002/anie.201403335
- Reina G., González-Domínguez J.M., Criado A., et al. Promises, facts and challenges for graphene in biomedical applications // Chem Soc Rev. 2017. Vol. 46, N 15. P. 4400–4416. doi: 10.1039/c7cs00363c
- Yang K., Wan J., Zhang S., et al. In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice // ACS Nano. 2011. Vol. 5, N 1. P. 516–522. doi: 10.1021/nn1024303
- Mao L., Hu M., Pan B., et al. Biodistribution and toxicity of radio-labeled few layer graphene in mice after intratracheal instillation // Part Fibre Toxicol. 2016. Vol. 13. ID 7. doi: 10.1186/s12989-016-0120-1
- Liu J.-H., Yang S.-T., Wang H., et al. Effect of size and dose on the biodistribution of graphene oxide in mice // Nanomedicine. 2012. Vol. 7, N 12. P. 1801–1812. doi: 10.2217/nnm.12.60
- Girish C.M., Sasidharan A., Gowd G.S., et al. Confocal Raman imaging study showing macrophage mediated biodegradation of graphene in vivo // Adv Healthc Mater. 2013. Vol. 2, N 11. P. 1489–1500. doi: 10.1002/adhm.201200489
- Lacerda L., Russier J., Pastorin G., et al. Translocation mechanisms of chemically functionalised carbon nanotubes across plasma membranes // Biomaterials. 2012. Vol. 33, N 11. P. 3334–3343. doi: 10.1016/j.biomaterials.2012.01.024
- Kotchey G.P., Allen B.L., Vedala H., et al. The enzymatic oxidation of graphene oxide // ACS Nano. 2011. Vol. 5, N 3. P. 2098–2108.doi: 10.1021/nn103265h
- Lalwani G., Xing W., Sitharaman B. Enzymatic degradation of oxidized and reduced graphene nanoribbons by lignin peroxidase // J Mater Chem B Mater Biol Med. 2014. Vol. 2, N 37. P. 6354–6362. doi: 10.1039/C4TB00976B
- Jasim D.A., Newman L., Rodrigues A.F., et al. The impact of graphene oxide sheet lateral dimensions on their pharmacokinetic and tissue distribution profiles in mice // J Control Release. 2021. Vol. 338. P. 330–340. doi: 10.1016/j.jconrel.2021.08.028
- Chen W., Wang B., Liang S., et al. Renalclearanceof grapheme oxide: glomerular filtration or tubular secretion and selective kidney injury association with its lateral dimension // J Nanobiotechnology. 2023. Vol. 21, N 1. ID 51. doi: 10.1186/s12951-023-01781-x
- Tinwala H., Wairkar S. Production, surface modification and biomedical applications of nanodiamonds: A sparkling tool for theranostics // Mater Sci Eng C: Mater Biol Appl. 2019. Vol. 97. P. 913–931. doi: 10.1016/j.msec.2018.12.073
- Yadav A., Shukla R., Flora S.J.S. Nanodiamonds: a versatile drug-delivery system in the recent therapeutics scenario // CritRev Ther Drug Carrier Syst. 2021.Vol. 38, N 4. P. 39–78. doi: 10.1615/CritRevTherDrugCarrierSyst.2021035845
- Detonation nanodiamonds — science and applications / Ed. by A. Vul, O. Shenderova. New York: Jenny Stanford Publishing, 2014. 346 p.
- Boruah A., Saikia B.K. Synthesis, characterization, properties, and novel applications of fluorescent nanodiamonds // J Fluoresc. 2022. Vol. 32, N 3. P. 863–885. doi: 10.1007/s10895-022-02898-2
- Cheng C.-L., Chen C.-F., Shaio W.-C., et al. The CH stretching features on diamonds of different origins // Diamond Relat Mater 2005. Vol. 14, N 9. P. 1455–1462. doi: 10.1016/j.diamond.2005.03.003
- Lai L., Barnard A.S. Functionalized nanodiamonds for biological and medical applications // J Nanosci Nanotechnol. 2015. Vol. 15, N 2. P. 989–999. doi: 10.1166/jnn.2015.9735
- Baron A.V., Puzyr A.P., Baron I.I., Bondar V.S. Effects of modified detonation nanodiamonds on the biochemical composition of human blood // Bull Exp Biol Med. 2013. Vol. 154, N 6. P. 781–784. doi: 10.1007/s10517-013-2055-y
- Yuan S.-J., Wang C., Xu H.-Z., et al. Conjugation with nanodiamonds via hydrazine bond fundamentally alters intracellular distribution and activity of doxorubicin // Int J Pharm. 2021. Vol. 606. ID 120872. doi: 10.1016/j.ijpharm.2021.120872
- Tzeng Y.-K., Faklaris O., Chang B.-M., et al. Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion // Angew Chem Int Ed. 2011. Vol. 50, N 10. P. 2262–2265. doi: 10.1002/anie.201007215
- Mohan N., Chen C.-S., Hsieh H.-H., et al. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans // NanoLett. 2010. Vol. 10, N 9. P. 3692–3699. doi: 10.1021/nl1021909
- Purtov K., Petunin A., Inzhevatkin E., et al. Biodistribution of different sized nanodiamonds in mice // J Nanosci Nanotechnol. 2015. Vol. 15, N 2. P. 1070–1075. doi: 10.1166/jnn.2015.9746
- Tsai L.-W., Lin Y.-C., Perevedentseva E., et al. Nanodiamonds for medical applications; interaction with blood in vitro and in vivo // Int J Mol Sci. 2016. Vol. 17, N 7. ID 1111. doi: 10.3390/ijms17071111
- van der Laan K., Hasani M., Zheng T., Schirhagl R. Nanodiamonds for in vivo applications // Small. 2018. Vol. 14, N 19. ID e1703838. doi: 10.1002/smll.201703838
- Zhang X., Yin J., Kang C., et al. Biodistribution and toxicity of nanodiamonds in mice after intratracheal instillation // Toxicol Lett. 2010. Vol. 198, N 2. P. 237–243. doi: 10.1016/j.toxlet.2010.07.001
- Inzhevatkin E.V., Baron A.V., Volkova M.B., et al. Biodistribution of detonation synthesis nanodiamonds in mice after intravenous administration and some biochemical changes in blood plasma // Bull Exp Biol Med. 2021. Vol. 172, N 1. P. 77–73. doi: 10.1007/s10517-021-05335-9
- Yuan Y., Chen Y.W., Liu J.-H., et al. Biodistribution and fate of nanodiamonds in vivo // Diam Relat Mater.2009. Vol. 18, N 1. P. 95–100. doi: 10.1016/j.diamond.2008.10.031
- Barone F.C., Marcinkiewicz C., Li J., et al. Long-term biocompatibility of fluorescent diamonds-(NV)-Z ~800 nm in rats; survival, morbidity, histopathology, particle distribution and excretion stu¬dies (part IV) // Int J Nanomedicine. 2019. Vol. 14. P. 1163–1175. doi: 10.2147/IJN.S189048
- Šimková V., Freislebenová H., Neuhöferová E., et al. Coated nanodiamonds interact with tubulin beta-III negative cells of adult brain tissue // Biointerphases. 2020. Vol. 15, N 6. ID 061009. doi: 10.1116/6.0000525
- Prabhakar N., Khan M.H., Peurla M., et al. Intracellular trafficking of fluorescent nanodiamonds and regulation of their cellular toxicity // ACS Omega. 2017. Vol. 2, N 6. P. 2689–2693. doi: 10.1021/acsomega.7b00339
- Cheng C.-Y., Perevedentseva E., Tu J.-S., et al. Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamonds labeling // Appl Phys Lett. 2007. Vol. 90, N 16. ID 163903. doi: 10.1063/1.2727557
- Chauhan S., Jain N., Nagaich U. Nanodiamonds with powerful ability for drug delivery and biomedical applications; Recent updates on in vivo study and patents // J Pharm Anal. 2020. Vol. 10, N 1. P. 1–12. doi: 10.1016/j.jpha.2019.09.003
- Morita A., Hamoh T., Martinez F.P.P., et al. The fate of lipid-coated and uncoated fluorescent nanodiamonds during cell division in yeast // Nanomaterials. 2020. Vol. 10, N 3. ID 516. doi: 10.3390/nano10030516
- Hodek P., Janscák P., Anzenbacher P., et al. Metabolism of diamantane by rat liver microsomal cytochromes P-450 // Xenobiotica. 1988. Vol. 18, N 10. P. 1109–1118. doi: 10.3109/00498258809042233
- Santos A.C., Morais F., Simões A., et al. Nanotechnology for the development of new cosmetic formulations // Expert Opin Drug Deliv. 2019. Vol. 16, N 4. P. 313–330. doi: 10.1080/17425247.2019.1585426
- Gu M., Toh T.B., Hooi L., et al. Nanodiamond-mediated delivery of a G9a inhibitor for hepatocellular carcinoma therapy // ACS Appl Mater Interfaces. 2019. Vol. 11, N 49. P. 45427–45441. doi: 10.1021/acsami.9b16323
- Kumari S., Singh M.K., Singh S.K., et al. Nanodiamonds activate blood platelets and induce thromboembolism // Nanomedicine (London). 2014. Vol. 9, N 3. P. 427–440. doi: 10.2217/nnm.13.23
- Yang M., Zhang M. Biodegradation of carbon nanotubes by macrophages // Front Mater.2019. Vol. 6. ID 225. doi: 10.3389/fmats.2019.00225
- Tsuji J.S., Maynard A.D., Howard P.C., et al. Research strategies for safety evaluation of nanomaterials. Part IV: risk assessment of nanoparticles // Toxicol Sci. 2006. Vol. 89, N 1. P. 42–50. doi: 10.1093/toxsci/kfi339
- Lens M. Use of fullerenes in cosmetics // Recent Pat Biotechnol. 2009. Vol. 3, N 2. P. 118–123. doi: 10.2174/187220809788700166
- Paramasivam G., Sanmugam A., Palem V.V., et al. Nanomaterials for detection of biomolecules and delivering therapeutic agents in theragnosis: A review // Int J Biol Macromol. 2023. Vol. 254, Pt 2. ID 127904. doi: 10.1016/j.ijbiomac.2023.127904
- Kopcha W.P., Biswas R., Sun Y., et al. Water-soluble endohedral metallofullerenes: new horizons for biomedical applications // Chem Commun. (Cambridge, England). 2023. Vol. 59, N 91. P. 13551–13561. doi: 10.1039/d3cc03603k
- Lumley J.A., Desai P., Wang J., et al. The derivation of a matched molecular pairs based ADME / tox knowled gebase for compound optimization // J Chem Inf Model. 2020. Vol. 60, N 10. P. 4757–4771. doi: 10.1021/acs.jcim.0c00583
