Патофизиология микроРНК-146a при раке легких. Перспективы повышения эффективности таргетной терапии
- Авторы: Ващенко В.И.1, Ромашова Ю.Е.1, Шабанов П.Д.1
-
Учреждения:
- Военно-медицинская академия им. С.М. Кирова
- Выпуск: Том 19, № 4 (2021)
- Страницы: 359-381
- Раздел: Научные обзоры
- Статья получена: 01.02.2022
- Статья одобрена: 01.02.2022
- Статья опубликована: 15.12.2021
- URL: https://journals.eco-vector.com/RCF/article/view/100012
- DOI: https://doi.org/10.17816/RCF194359-381
- ID: 100012
Цитировать
Полный текст



Аннотация
Рак легких — широко распространенная злокачественная опухоль дыхательных путей, наносит значительный урон здоровью человека. МикроРНК (miRNAs) являются небольшими, некодируемыми РНК размером примерно 20–25 нуклеотидов, которые функционируют как мощные модуляторы мРНК и белковых продуктов соответствующего гена. МикроРНК может смодулировать много биологических процессов, в том числе дифференцировку, пролиферацию, некроз и апоптоз клеток, и играет ключевую роль в патогенезе различных видов раковых новообразований. Накопившиеся данные последних лет доказали, что микроРНК, особенно микроРНК-146a, являются критическими модуляторами врожденных систем иммунного ответа. Новая и захватывающая область исследований рака включила микроРНК для обнаружения и супрессии рака. Однако фактический механизм, используемый этими микроРНК, все еще неясен. МикроРНК применялись в качестве связанного с раком биомаркера в ряде исследований, что предполагает их нарушенную экспрессию в различных видах рака по сравнению со здоровыми тканями. Уровень экспрессии микроРНК может также использоваться, чтобы определить стадию болезни, а также помочь при раннем обнаружении рака. Установлено, что при раке легких, панкреатическом и гепатоцеллюлярном раке, раке желудка, пролиферации раковых клеток и в метастазах уровень микроРНК-146а сильно подавлен. Изменения в уровнях экспрессии микроРНК служат хорошим биомаркером и обладают высоким прогностическим потенциалом для улучшения терапии при раке легких. Модуляция содержания микроРНК задерживает эпителиально-мезенхимальный переход и улучшает терапевтическое действие лекарственных средств. Полученные результаты позволяют предположить, что микроРНК-146a оказывает влияние на экспрессию гена через различные сигнальные пути: ФНО-α, NF-κB, MEK-1/2, JNK-1/2. Требуется дальнейшее исследование, чтобы понять детали молекулярных механизмов микроРНК-146a при раке легких, а также должна быть более подробно проанализирована роль микроРНК-146a в качестве диагностического маркера рака легких.
Ключевые слова
Полный текст

Об авторах
Владимир Иванович Ващенко
Военно-медицинская академия им. С.М. Кирова
Автор, ответственный за переписку.
Email: vaschenko@yandex.ru
д-р биол. наук
Россия, 194044, Санкт-Петербург, ул. Академика Лебедева, д. 6Юлия Евгеньевна Ромашова
Военно-медицинская академия им. С.М. Кирова
Email: vladimir-vaschenko@yandex.ru
зав. отделом Центра крови и тканей
Россия, 194044, Санкт-Петербург, ул. Академика Лебедева, д. 6Петр Дмитриевич Шабанов
Военно-медицинская академия им. С.М. Кирова
Email: pdshabanov@mail.ru
ORCID iD: 0000-0003-1464-1127
SPIN-код: 8974-7477
д-р мед. наук, профессор
Россия, 194044, Санкт-Петербург, ул. Академика Лебедева, д. 6Список литературы
- Богданова И.М., Болтовская М.Н., Разомилевич А.Л., Артемьева К.А. Ключевая роль опухоль-ассоциированных макрофагов в прогрессировании и метастазировании опухолей // Иммунология. 2019. Т. 40, № 4. C. 41–47. doi: 10.24411/0206-4952-2019-14005
- Лактионов К.К., Реутова E.В., Ардзинба М.С., Мещерякова Н.А. Таргетная терапия немелкоклеточного рака легкого // Медицинский совет. 2017. № 6. C. 51–55. doi: 10.21518/2079-2017.6.51-55
- Лясников К.А., Шляхтунов E.A. Клиническая значимость молекулярно-генетических маркеров при диагностике и персонализации терапии рака легкого // Вестник ВГМУ. 2020. Т. 19, № 2. C. 7–18. doi: 10.22263/2312-4156.2020.2.7
- Хвастунов Р.А., Скрыпникова Г.В., Усачев А.А. Таргетная терапия в онкологии // Лекарственный вестник. 2014. Т. 8, № 4. C. 3–10.
- Шабанов П.Д., Ващенко В.И. Биологическая роль микроРНК-146a при вирусных инфекциях. Современная стратегия поиска новых безопасных фармакологических средств лечения // Обзоры по клинической фармакологии и лекарственной терапии. 2021. Т. 19, № 2. C. 145–174. doi: 10.17816/RCF192145-174
- Balkwill F., Charles K.A., Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease // Cancer Cell. 2005. Vol. 7. No. 3. P. 211–217. doi: 10.1016/j.ccr.2005.02.013
- Beauchemin N., Arabzadeh A. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis // Cancer Metastasis Rev. 2013. Vol. 32. No. 3–4. P. 643–671. doi: 10.1007/s10555-013-9444-6
- Bertoli G., Cava C., Castiglioni I. MicroRNAs: New biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer // Theranostics. 2015. Vol. 5. No. 10. P. 1122–1143. doi: 10.7150/thno.11543
- Bhaumik D., Scott G.K., Schokrpur S., et al. MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8 // Aging. 2009. Vol. 1. No. 4. P. 402–411. doi: 10.18632/aging.100042
- Bleau A.M., Redrado M., Nistal-Villan E., et al. miR-146a targets c-met and abolishes colorectal cancer liver metastasis // Cancer Lett. 2018. Vol. 414. P. 257–267. doi: 10.1016/j.canlet.2017.11.008
- Boeri M., Verri C., Conte D., et al. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer // Proc Natl Acad Sci USA. 2011. Vol. 108. No. 9. P. 3713–3718. doi: 10.1073/pnas.1100048108
- Boldin M.P., Teganov K.D., Rao D.J., et al. miR-146q is a significant brake on autoimmunity, myeloproliferation, and cancer in mice // J Exp Med. 2011. Vol. 208. No. 6. P. 1189–1201. doi: 10.1084/jem.20101823
- Bray F., Ferlay J., Soerjomataram I., et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries // CA Cancer J Clin. 2018. Vol. 68. No. 6. P. 394–424. doi: 10.3322/caac.21492
- Brown K.A., Aakre M.E., Gorska A.E., et al. Induction by transforming growth factor-beta1 of epithelial to mesenchymal transition is a rare event in vitro // Breast Cancer Res. 2004. Vol. 6. No. 3. P. R215–R231. doi: 10.1186/bcr778
- Bui N., Woodward B., Johnson A., Husain H. Novel Treatment Strategies for Brain Metastases in Non-small-cell Lung Cancer // Curr Treat Opt Oncol. 2016. Vol. 17. No. 5. P. 25. doi: 10.1007/s11864-016-0400-x
- Burke J.M., Kelenis D.P., Kincaid R.P., Sullivan C.S. A central role for the primary microRNA stem in guiding the position and efficiency of Drosha processing of a viral pri-miRNA // RNA. 2014. Vol. 20. No. 7. P. 1068–1077. doi: 10.1261/rna.044537.114
- Butkiewicz D., Krześniak M., Gdowicz-Kłosok A., et al. Polymorphisms in EGFR Gene Predict Clinical Outcome in Unresectable Non-Small Cell Lung Cancer Treated with Radiotherapy and Platinum-Based Chemoradiotherapy // Int J Mol Sci. 2021. Vol. 22. No. 11. ID5605. doi: 10.3390/ijms22115605
- Chang T.-C., Yu D., Lee Y.-S., et al. Widespread microRNA repression by Myc contributes to tumorigenesis // Nat Genet. 2007. Vol. 40. No. 1. P. 43–50. doi: 10.1038/ng.2007.30
- Chang Y.-C., Jan C.-I., Peng C.-Y., et al. Activation of microRNA-494-targeting Bmi1 and ADAM10 by silibinin ablates cancer stemness and predicts favourable prognostic value in head and neck squamous cell carcinomas // Oncotarget. 2015. Vol. 6. No. 27. P. 24002–24016. doi: 10.18632/oncotarget.4365
- Chen G., Umelo I.A., Lv S., et al. miR-146a Inhibits Cell Growth, Cell Migration and Induces Apoptosis in Non-Small Cell Lung Cancer Cells // PLoS ONE. 2013. Vol. 8. No. 3. ID e60317. doi: 10.1371/journal.pone.0060317
- Chen X., Ba Y., Ma L., et al. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases // Cell Res. 2008. Vol. 18. No. 10. P. 997–1006. doi: 10.1038/cr.2008.282
- Chendrimada T.P., Gregory R.I., Kumaraswamy E., et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing // Nature. 2005. Vol. 436. No. 7051. P. 740–744. doi: 10.1038/nature03868
- Cheung K.J., Ewald A.J. A collective route to metastasis: Seeding by tumor cell clusters // Science. 2016. Vol. 352. No. 6282. P. 167–169. doi: 10.1126/science.aaf6546
- Cho K.B., Cho M.K., Lee W.Y., et al. Overexpression of c-myc induces epithelial mesenchymal transition in mammary epithelial cells // Cancer Lett. 2010. Vol. 293. No. 2. P. 230–239. doi: 10.1016/j.canlet.2010.01.013
- Condrat C.E., Thompson D.C., Barbu M.G., et al. miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis // Cells. 2020. Vol. 9. No. 2. P. 276. doi: 10.3390/cells9020276
- Cornett A.L., Lutz C.S. Regulation of COX-2 expression by miR-146a in lung cancer cells // RNA. 2014. Vol. 20. No. 9. P. 1419–1430. doi: 10.1261/rna.044149.113
- Conti I., Simioni C., Varano G., et al. MicroRNAs Patterns as Potential Tools for Diagnostic and Prognostic Follow-Up in Cancer Survivorship // Cell. 2021. Vol. 10. No. 8. ID2069. doi: 10.3390/cells10082069
- Corral-Fernandez N.E., Salgado-Bustamante M., Martinez-Leija M.E., et al. Dysregulated miR-155 expression in peripheral blood mononuclear cells from patients with type 2 diabetes // Exp Clin Endocrinol Diabetes. 2013. Vol. 121. No. 6. P. 347–353. doi: 10.1055/s-0033-1341516
- de Giorgio A., Krell J., Harding V., et al. Emerging Roles of Competing Endogenous RNAs in Cancer: Insights from the Regulation of PTEN // Mol Cell Biol. 2013. Vol. 33. No. 20. P. 3976–3982. doi: 10.1128/MCB.00683-13
- Deiters A. Small Molecule Modifiers of the microRNA and RNA Interference Pathway // AAPS J. 2009. Vol. 12. No. 1. P. 51–60. doi: 10.1208/s12248-009-9159-3
- Denli A.M., Tops B.B.J., Plasterk R.H.A., et al. Processing of primary microRNAs by the Microprocessor complex // Nature. 2004. Vol. 432. No. 7014. P. 231–235. doi: 10.1038/nature03049
- Du H., Li Y., Sun R., et al. CEACAM6 promotes cisplatin resistance in lung adenocarcinoma and is regulated by microRNA-146a and microRNA-26a // Thorac Cancer. 2020. Vol. 11. No. 9. P. 2473–2482. doi: 10.1111/1759-7714.13558
- Eulalio A., Behm-Ansmant I., Schweizer D., Izaurralde E. P-Body formation is a consequence, not the cause, of RNA-mediated gene silencing // Mol Cell Biol. 2007. Vol. 27. No. 11. P. 3970–3981. doi: 10.1128/MCB.00128-07
- Filipowicz W., Bhattacharyya S.N., Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? // Nat Rev Genet. 2008. Vol. 9. No. 2. P. 102–114. doi: 10.1038/nrg2290
- Forloni M., Dogra S.K., Dong Y., et al. miR-146a promotes the initiation and progression of melanoma by activating Notch signaling // eLife. 2014. Vol. 3. ID e01460. doi: 10.7554/eLife.01460
- Fu J., Rodova M., Nanta R., et al. NPV-LDE-225 (Erismodegib) inhibits epithelial mesenchymal transition and self-renewal of glioblastoma initiating cells by regulating miR-21, miR-128, and miR-200 // Neuro-oncology. 2013. Vol. 15. No. 6. P. 691–706. doi: 10.1093/neuonc/not011
- Garg M. Targeting microRNAs in epithelial-to-mesenchymal transition-induced cancer stem cells: therapeutic approaches in cancer // Expert Opin Ther Targets. 2015. Vol. 19. No. 2. P. 285–297. doi: 10.1517/14728222.2014.975794
- Garzon R., Marcucci G., Targeting C.C.M. MicroRNAs in cancer: rationale, strategies and challenges // Nat Rev Drug Discov. 2010. Vol. 9. No. 10. P. 775–789. doi: 10.1038/nrd3179
- Ghany S., Riemke P., Schonheit J., et al. Macrophage development from HSCs requires PU.1-coordinated microRNA expression // Blood. 2011. Vol. 118. No. 8. P. 2275–2284. doi: 10.1182/blood-2011-02-335141
- Ghuwalewala S., Ghatak D., Das S., et al. MiR-146a-dependent regulation of CD24/AKT/β-catenin axis drives cancer stem cell phenotype in oral squamous cell carcinoma // bioRxiv. 2019. ID429068. doi: 10.1101/429068
- Gibbons D.L., Lin W., Creighton C.J., et al. Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression // Genes Dev. 2009. Vol. 23. No. 18. P. 2140–2151. doi: 10.1101/gad.1820209
- Gilad S., Lithwick-Yanai G., Barshack I., et al. Classification of the four main types of lung cancer using a microRNA-based diagnostic assay // J Mol Diagn. 2012. Vol. 14. No. 5. P. 510–517. doi: 10.1016/j.jmoldx.2012.03.004
- Gregory R.I., Yan K.-P., Amuthan G., et al. The Microprocessor complex mediates the genesis of microRNAs // Nature. 2004. Vol. 432. No. 7014. P. 235–240. doi: 10.1038/nature03120
- Gomes M., Teixeira A.L., Coelho A., et al. The role of inflammation in lung cancer. In: B.B. Aggarwal, B. Sung, S.C. Gupta, editors. Advances in experimental medicine and biology. Switzerland, Basel: Springer Basel, 2014. P. 1–23. doi: 10.1007/978-3-0348-0837-8_1
- Hagemann T., Wilson J., Kulbe H., et al. Macrophages Induce Invasiveness of Epithelial Cancer Cells Via NF-κB and JNK // J Immunol. 2005. Vol. 175. No. 2. P. 1197–1205. doi: 10.4049/jimmunol.175.2.1197
- Han J., Lee Y., Yeom K.-H., et al. Molecular Basis for the Recognition of Primary microRNAs by the Drosha-DGCR8 Complex // Cell. 2006. Vol. 125. No. 5. P. 887–901. doi: 10.1016/j.cell.2006.03.043
- Han J. The Drosha-DGCR8 complex in primary microRNA processing // Genes Dev. 2004. Vol. 18. No. 24. P. 3016–3027. doi: 10.1101/gad.1262504
- Han W., Du X., Liu M., et al. Increased expression of long non-coding RNA SNHG16 correlates with tumor progression and poor prognosis in non-small cell lung cancer // Int J Biol Macromol. 2019. Vol. 121. P. 270–278. doi: 10.1016/j.ijbiomac.2018.10.004
- Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation // Cell. 2011. Vol. 144. No. 5. P. 646–674. doi: 10.1016/j.cell.2011.02.013
- Hata A., Kashima R. Dysregulation of microRNA biogenesis machinery in cancer // Crit Rev Biochem Mol Biol. 2016. Vol. 51. No. 3. P. 121–134. doi: 10.3109/10409238.2015.1117054
- Hay E.D., Zuk A. Transformations between epithelium and mesenchyme: normal, pathological, and experimentally induced // Am J Kidney Dis. 1995. Vol. 26. No. 4. P. 678–690. doi: 10.1016/0272-6386(95)90610-x
- He H., Xu C., Zheng L., et al. Polyphyllin VII induces apoptotic cell death via inhibition of the PI3K/Akt and NF-κB pathways in A549 human lung cancer cells // Mol Med Rep. 2020. Vol. 21. No. 2. P. 597–606. doi: 10.3892/mmr.2019.10879
- Heuberger J., Birchmeier W. Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling // Cold Spring Harb Perspect Biol. 2010. Vol. 2. No. 2. ID a002915. doi: 10.1101/cshperspect.a002915
- Huang W.T., He R.Q., Li X.J., et al. miR-146a-5p targets TCSF and influences cell growth and apoptosis to repress NSCLC progression // Oncol Rep. 2019. Vol. 41. No. 4. P. 2226–2240. doi: 10.3892/or.2019.7030
- Jiang P., Jia W., Wei X., et al. MicroRNA-146a regulates cisplatin-resistance of non-small cell lung cancer cells by targeting NF-kappaB pathway // Int J Clin Exp Pathol. 2017. Vol. 10. No. 12. P. 11545–11553.eCollection 2017.
- Jiang W.G., Sanders A.J., Katoh M., et al. Tissue invasion and metastasis: Molecular, biological and clinical perspectives // Semin Cancer Biol. 2015. Vol. 35. Suppl. P. S244–S275. doi: 10.1016/j.semcancer.2015.03.008
- Jung Y.Y., Shanmugam M.K., Narula A.S., et al. Oxymatrine Attenuates Tumor Growth and Deactivates STAT5 Signaling in a Lung Cancer Xenograft Model // Cancers. 2019. Vol. 11. No. 1. P. 49. doi: 10.3390/cancers11010049
- Iacona J.R., Monteleone N.J., Lutz C.S. miR-146a suppresses 5-lipoxygenase activating protein (FLAP) expression and Leukotriene B4 production in lung cancer cells // Oncotarget. 2018. Vol. 9. No. 42. P. 26751–26769. doi: 10.18632/oncotarget.25482
- Kim J., Yao F., Xiao Z., et al. MicroRNAs and metastasis: Small RNAs play big roles // Cancer Metastasis Rev. 2018. Vol. 37. No. 1. P. 5–15. doi: 10.1007/s10555-017-9712-y
- Kim Y.K., Kim B., Kim V.N. Re-evaluation of the roles of DROSHA, Export in 5, and DICER in microRNA biogenesis // Proc Natl Acad Sci USA. 2016. Vol. 113. No. 13. P. E1881–Е1889. doi: 10.1073/pnas.1602532113
- Kola I., Landis J. Can the pharmaceutical industry reduce attrition rates? // Nat Rev Drug Discov. 2004. Vol. 3. No. 8. P. 711–716. doi: 10.1038/nrd1470
- Ko J.-H., Nam D., Um J.-Y., et al. Bergamottin Suppresses Metastasis of Lung Cancer Cells through Abrogation of Diverse Oncogenic Signaling Cascades and Epithelial-to-Mesenchymal Transition // Моlecules. 2018. Vol. 23. No. 7. ID1601. doi: 10.3390/молекулы 23071601
- Kong W., Yang H., He L., et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA // Mol Cell Biol. 2008. Vol. 28. No. 22. P. 6773–6784. doi: 10.1128/MCB.00941-08
- Kotha N.V., Cherry D.R., Bryant A.K., et al. Prognostic utility of pretreatment neutrophil-lymphocyte ratio in survival outcomes in localized non-small cell lung cancer patients treated with stereotactic body radiotherapy: Selection of an ideal clinical cutoff point // Clin Transl Radiat Oncol. 2021. Vol. 28. P. 133–140. doi: 10.1016/j.ctro.2021.03.010
- Kulis M., Esteller M. 2-DNA Methylation and Cancer // Advances and Genetics. 2010. Vol. 70. P. 27–56. doi: 10.1016/B978-0-12-380866-0.60002-2
- Kumaraswamy E., Wendt K.L., Augustine L.A., et al. BRCA1 regulation of epidermal growth factor receptor (EGFR) expression in human breast cancer cells involves microRNA-146a and is critical for its tumor suppressor function // Oncogene. 2014. Vol. 34. No. 33. P. 4333–4346. doi: 10.1038/onc.2014.363
- Kumarswamy R., Mudduluru G., Ceppi P., et al. MicroRNA-30a inhibits epithelial-to-mesenchymal transition by targeting Snai1 and is downregulated in non-small cell lung cancer // Int J Cancer. 2012. Vol. 130. No. 9. P. 2044–2053. doi: 10.1002/ijc.26218
- Labbaye C., Spinello I., Quaranta M.T., et al. A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis // Nat Cell Biol. 2008. Vol. 10. No. 7. P. 788–800. doi: 10.1038/ncb1741
- Lagos-Quintana M., Rauhut R., Yalcin A., et al. Identification of Tissue-Specific microRNAs from Mouse // Curr Biol. 2002. Vol. 12. No. 9. P. 735–739. doi: 10.1016/S0960-9822(02)00809-6
- Lamar J.M., Xiao Y., Norton E., et al. SRC-tyrosine kinase activates the YAP/TAZ axis and thereby drives tumor growth and metastasis // J Biol Chem. 2019. Vol. 294. No. 7. P. 2302–2317. doi: 10.1074/jbc.RA118.004364
- Lambert K.A., Roff A.N., Panganiban R.P., et al. MicroRNA-146a is induced by inflammatory stimuli in airway epithelial cells and augments the anti-inflammatory effects of glucocorticoids // PLoS ONE. 2018. Vol. 13. No. 10. ID e0205434. doi: 10.1371/journal.pone.0205434
- Landi M.T., Zhao Y., Rotunno M., et al. MicroRNA Expression Differentiates Histology and Predicts Survival of Lung Cancer // Clin Cancer Res. 2010. Vol. 16. No. 2. P. 430–441. doi: 10.1158/1078-0432.CCR-09-1736
- Larner-Svensson H.M., Williams A.E., Tsitsiou E., et al. Pharmacological studies of the mechanism and function of interleukin-1β-induced miRNA-146a expression in primary human airway smooth muscle // Respir Res. 2010. Vol. 11. No. 1. P. 1–13. doi: 10.1186/1465-9921-11-68
- Lebanony D., Benjamin H., Gilad S., et al. Diagnostic Assay Based on hsa-miR-205 Expression Distinguishes Squamous From Nonsquamous Non-Small-Cell Lung Carcinoma // J Clin Oncol. 2009. Vol. 27. No. 12. P. 2030–2037. doi: 10.1200/JCO.2008.19.4134
- Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 // Cell. 1993. Vol. 75. No. 5. P. 843–854. doi: 10.1016/0092-8674(93)90529-Y
- Lee Y., Ahn C., Han J., et al. The nuclear RNase III Drosha initiates microRNA processing // Nature. 2003. Vol. 425. No. 6956. P. 415–419. doi: 10.1038/nature01957
- Li B., Ren S., Li X., et al. MiR-21 overexpression is associated with acquired resistance of EGFR-TKI in non-small cell lung cancer // Lung Cancer. 2014. Vol. 83. No. 2. P. 146–153. doi: 10.1016/j.lungcan.2013.11.003
- Li J., Zhang J., Xie F., et al. Macrophage migration inhibitory factor promotes Warburg effect via activation of the NF-κB/HIF-1α pathway in lung cancer // Int J Mol Med. 2017. Vol. 41. No. 2. P. 1062–1068. doi: 10.3892/ijmm.2017.3277
- Li M.-W., Gao L., Dang Y.-W., et al. Protective potential of miR-146a-5p and its underlying molecular mechanism in diverse cancers: A comprehensive meta-analysis and bioinformatics analysis // Cancer Cell Int. 2019. Vol. 19. P. 1–21. doi: 10.1186/s12935-019-0886-y
- Li Y.-L., Wang J., Zhang C.-Y., et al. MiR-146a-5p inhibits cell proliferation and cell cycle progression in NSCLC cell lines by targeting CCND1 and CCND2 // Oncotarget. 2016. Vol. 7. No. 37. P. 59287–59298. doi: 10.18632/oncotarget.1104
- Liu J., Valencia-Sanchez M.A., Hannon G.J., Parker R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies // Nat Cell Biol. 2005. Vol. 7. No. 7. P. 719–723. doi: 10.1038/ncb1274
- Liu L., Wan C., Zhang W., et al. MiR-146a regulates PM1-induced inflammation via NF-kappaB signaling pathway in BEAS-2B cells // Environ Toxicol. 2018. Vol. 33. No. 7. P. 743–751. doi: 10.1002/tox.22561
- Liu R., Liu C., Chen D., et al. FOXP3 Controls an miR-146/NF-κB Negative Feedback Loop That Inhibits Apoptosis in Breast Cancer Cells // Cancer Res. 2015. Vol. 75. No. 8. P. 1703–1713. doi: 10.1158/0008-5472.CAN-14-2108
- Lorenz D.A., Garner A.L. Approaches for the Discovery of Small Molecule Ligands Targeting microRNAs. In: Bernstein P.R., Garner A.L., Georg G.I., et al. editors. Topics in Medicinal Chemistry. USA, NY: Springer International Publishing, 2017. 79–110 pp. doi: 10.1007/7355_2017_3
- Madhavan D., Cuk K., Burwinkel B., Yang R. Cancer diagnosis and prognosis decoded by blood-based circulating microRNA signatures // Front Genet. 2013. Vol. 4. P. 116. doi: 10.3389/fgene.2013.00116
- Mani S.A., Guo W., Liao M.J., et al. The epithelial-mesenchymal transition generates cells with properties of stem cells // Cell. 2008. Vol. 133. No. 4. P. 704–715. doi: 10.1016/j.cell.2008.03.027
- McClure J.J., Li X., Chou C.J. Advances and Challenges of HDAC Inhibitors in Cancer Therapeutics // Adv Cancer Res. 2018. Vol. 138. P. 183–211. doi: 10.1016/bs.acr.2018.02.006
- Mehta M., Tewari D., Gupta G., et al. Oligonucleotide therapy: An emerging focus area for drug delivery in chronic inflammatory respiratory diseases // Chem Biol Interact. 2019. Vol. 308. P. 206–215. doi: 10.1016/j.cbi.2019.05.028
- Mohamed R.H., Pasha H.F., Gad D.M., Toam M.M. miR-146a and miR-196a-2 genes polymorphisms and its circulating levels in lung cancer patients // J Biochem. 2019. Vol. 166. No. 4. P. 323–329. doi: 10.1093/jb/mvz044
- Molina J.R., Yang P., Cassivi S.D., et al. Non-Small Cell Lung Cancer: Epidemiology, Risk Factors, Treatment, and Survivorship // Mayo Clin Proc. 2008. Vol. 83. No. 5. P. 584–594. doi: 10.1016/S0025-6196(11)60735-0
- Mongroo P.S., Rustgi A.K. The role of the miR-200 family in epithelial-mesenchymal transition // Cancer Biol Ther. 2010. Vol. 10. No. 3. P. 219–222. doi: 10.4161/cbt.10.3.12548
- Oft M., Peli J., Rudaz C., et al. TGF-beta1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells // Genes Dev. 1996. Vol. 10. No. 19. P. 2462–2477. doi: 10.1101/gad.10.19.2462
- Opalinska J.B., Bersenev A., Zhang Z., et al. MicroRNA expression in maturing megakaryocytes // Blood. 2010. Vol. 116. No. 23. P. e128–e138. doi: 10.1182/blood-2010-06-292920
- Pang L., Lu J., Huang J., et al. Upregulation of miR-146a increases cisplatin sensitivity of the non-small cell lung cancer A549 cell line by targeting JNK-2 // Oncol Lett. 2017. Vol. 14. No. 6. P. 7745–7752. doi: 10.3892/ol.2017.7242
- Park D.H., Jeon H.S., Lee S.Y., et al. MicroRNA-146a inhibits epithelial mesenchymal transition in non-small cell lung cancer by targeting insulin receptor substrate 2 // Int J Oncol. 2015. Vol. 47. No. 4. P. 1545–1553. doi: 10.3892/ijo.2015.3111
- Pavel A.B., Campbell J.D., Liu G., et al. Alterations in Bronchial Airway miRNA Expression for Lung Cancer Detection // Cancer Prev Res. 2017. Vol. 10. No. 11. P. 651–659. doi: 10.1158/1940-6207.CAPR-17-0098.
- Pérez-García E.I., Meza-Sosa K.F., López-Sevilla Y., et al. Merlin negative regulation by miR-146a promotes cell transformation // Biochem Biophys Res Commun. 2015. Vol. 468. No. 4. P. 594–600. doi: 10.1016/j.bbrc.2015.10.156
- Perry M.M., Moschos S.A., Williams A.E., et al. Rapid Changes in microRNA-146a Expression Negatively Regulate the IL-1β-Induced Inflammatory Response in Human Lung Alveolar Epithelial Cells // J Immunol. 2008. Vol. 180. No. 8. P. 5689–5698. doi: 10.4049/jimmunol.180.8.5689
- Pritchard C.C., Cheng H.H., Tewari M. MicroRNA profiling: Approaches and considerations // Nat Rev Genet. 2012. Vol. 13. No. 5. P. 358–369. doi: 10.1038/nrg3198
- Ren Y.-G., Zhou X.-M., Cui Z.-G., Hou G. Effects of common polymorphisms in miR-146a and miR-196a2 on lung cancer susceptibility: A meta-analysis // J Thorac Dis. 2016. Vol. 8. No. 6. P. 1297–1305. doi: 10.21037/jtd.2016.05.02
- Richardson C.M., Sharma R.A., Cox G., O’Byrne K.J. Epidermal growth factor receptors and cyclooxygenase-2 in the pathogenesis of non-small cell lung cancer: Potential targets for chemoprevention and systemic therapy // Lung Cancer. 2003. Vol. 39. No. 1. P. 1–13. doi: 10.1016/S0169-5002(02)00382-3
- Rieber M., Strasberg Rieber M. DN-R175H p53 mutation is more effective than p53 interference in inducing epithelial disorganization and activation of proliferation signals in human carcinoma cells: role of E-cadherin // Int J Cancer. 2009. Vol. 125. No. 7. P. 1604–1612. doi: 10.1002/ijc.24512
- Rosenfeld N., Aharonov R., Meiri E., et al. MicroRNAs accurately identify cancer tissue origin // Nat Biotechnol. 2008. Vol. 26. P. 462–469. doi: 10.1038/nbt1392
- Ryasen G.W., Starczynowski D.T. Deregulation of microRNA in myelodysplastic syndrome // Leukemia. 2012. Vol. 26. No. 1. P. 13–22. doi: 10.1038/leu.2011.221
- Qiu H., Xie Z., Tang W., et al. Association between microRNA-146a, -499a and -196a-2 SNPs and non-small cell lung cancer: a case-control study involving 2249 subjects // Biosci Rep. 2021. Vol. 41. No. 2. ID BSR20201158. doi: 10.1042/BSR20201158
- Qi P., Li Y., Liu X., et al. Cryptotanshinone Suppresses Non-Small Cell Lung Cancer via microRNA-146a-5p/EGFR Axis // Int J Biol Sci. 2019. Vol. 15. No. 5. P. 1072–1079. doi: 10.7150/ijbs.31277
- Qu J., Chen X., Sun Y.-Z., et al. In Silico Prediction of Small Molecule-miRNA Associations Based on the HeteSim Algorithm // Mol Ther Nucleic Acids. 2019. Vol. 14. P. 274–286. doi: 10.1016/j.omtn.2018.12.002
- Saba R., Sorensen D.L., Booth S.A. MicroRNA-146a: A Dominant, Negative Regulator of the Innate Immune Response // Front Immunol. 2014. Vol. 5. P. 578. doi: 10.3389/fimmu.2014.00578
- Said N.A., Williams E.D. Growth factors in induction of epithelial-mesenchymal transition and metastasis // Cells Tissues Organs. 2011. Vol. 193. No. 1–2. P. 85–97. doi: 10.1159/000320360
- Saito R.A., Watabe T., Horiguchi K., et al. Thyroid transcription factor-1 inhibits transforming growth factor-beta-mediated epithelial-to-mesenchymal transition in lung adenocarcinoma cells // Cancer Res. 2009. Vol. 69. No. 7. P. 2783–2791. doi: 10.1158/0008-5472.CAN-08-3490
- Sanchez N.C., Medrano-Jimenez E., Aguilar-Leon D., et al. Tumor Necrosis Factor-Induced miR-146a Upregulation Promotes Human Lung Adenocarcinoma Metastasis by Targeting Merlin // DNA Cell Biol. 2020. Vol. 39. No. 3. P. 484–497. doi: 10.1089/dna.2019.4620
- Samec M., Liskova A., Koklesova L., et al. Flavonoids against the Warburg phenotype – Concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism // EPMA J. 2020. Vol. 11. No. 3. P. 377–398. doi: 10.1007/s13167-020-00217-y
- Sato M., Shames D.S., Hasagawa Y. Emerging evidence of epithelial-to-mesenchymal transition in lung cancinogenesis // Respirology. 2012. Vol. 17. No. 7. P. 1048–1059. doi: 10.1111/j.1440-1843.2012.02173.x
- Shahriar A., Ghaleh-Aziz Shiva G., Ghader B., et al. The dual role of miR-146a in metastasis and disease progression // Biomed Pharm. 2020. Vol. 126. ID110099. doi: 10.1016/j.biopha.2020.110099
- Saunders N.A., Simpson F., Thompson E.W., et al. Role of intratumoural heterogeneity in cancer drug resistance: Molecular and clinical perspectives // Embo Mol Med. 2012. Vol. 4. No. 8. P. 675–684. doi: 10.1002/emmm.201101131
- Sharma S.V., Bell D.W., Settleman J., Haber D.A. Epidermal growth factor receptor mutations in lung cancer // Nat Rev Cancer. 2007. Vol. 7. No. 3. P. 169–181. doi: 10.1038/nrc2088
- Shi L., Xu Z., Wu G., et al. Up-regulation of miR-146a increases the sensitivity of non-small cell lung cancer to DDP by downregulating cyclin // J BMC Cancer. 2017. Vol. 17. No. 1. P. 1–14. doi: 10.1186/s12885-017-3132-9
- Shen K.-H., Hung J.-H., Chang C.-W., et al. Solasodine inhibits invasion of human lung cancer cell through downregulation of miR-21 and MMPs expression // Chem Biol Interact. 2017. Vol. 268. P. 129–135. doi: 10.1016/j.cbi.2017.03.005
- Singh A., Settleman J. EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer // Oncogene. 2010. Vol. 29. No. 34. P. 4741–4751. doi: 10.1038/onc.2010.215
- Sodhi K.K., Bahl C., Singh N., et al. Functional genetic variants in pre-miR-146a and 196a2 genes are associated with risk of lung cancer in North Indians // Future Oncol. 2015. Vol. 11. No. 15. P. 2159–2173. doi: 10.2217/fon.15.143
- Stahlhut C., Slack F.J. Combinatorial Action of MicroRNAs let-7 and miR-34 Effectively Synergizes with Erlotinib to Suppress Non-small Cell Lung Cancer Cell Proliferation // Cell Cycle. 2015. Vol. 14. No. 13. P. 2171–2180. doi: 10.1080/15384101.2014.1003008
- Starczynowski D.T., Kuchenbauer F., Wegrzyn J., et al. MicroRNA-146a disrupts hematopoietic differentiation and survival // Exp Hematol. 2011. Vol. 39. No. 2. P. 167–178. doi: 10.1016/j.exphem.2010.09.011
- Starczynowski D.T., Kukenbauer F., Arigiropoulos B., et al. Identification of miR-145 and miR-146a as mediators of the 5q-syndrome phenotype // Nature Med. 2010. Vol. 16. No. 1. P. 49–58. doi: 10.1038/nm.2054
- Stenvang J., Petri A., Lindow M., et al. Inhibition of microRNA function by antimiR oligonucleotides // Silence. 2012. Vol. 3. No. 1. P. 1–17. doi: 10.1186/1758-907X-3-1
- Stuckrath I., Rack B., Janni W., et al. Aberrant plasma levels of circulating miR-16, miR-107, miR-130a and miR-146a are associated with lymph node metastasis and receptor status of breast cancer patients // Oncotarget. 2015. Vol. 6. No. 15. P. 13387–13401. doi: 10.18632/oncotarget.3874
- Sun M., Fang S., Li W., et al. Associations of miR-146a and miR-146b expression and clinical characteristics in papillary thyroid carcinoma // Cancer Biomark. 2015. Vol. 15. No. 1. P. 33–40. doi: 10.3233/CBM-140431
- Taganov K.D., Boldin M.P., Chang K.J., Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses // Proc Natl Acad Sci USA. 2006. Vol. 103. No. 33. P. 12481–12486. doi: 10.1073/pnas.0605298103
- Tan W., Liao Y., Qiu Y., et al. miRNA 146a promotes chemotherapy resistance in lung cancer cells by targeting DNA damage inducible transcript 3 (CHOP) // Cancer Lett. 2018. Vol. 428. P. 55–68. doi: 10.1016/j.canlet.2018.04.028
- Treiber T., Treiber N., Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways // Nat Rev Mol Cell Biol. 2019. Vol. 20. P. 5–20. doi: 10.1038/s41580-018-0059-1
- Turchinovich A., Weiz L., Langheinz A., Burwinkel B. Characterization of extracellular circulating microRNA // Nucleic Acids Res. 2011. Vol. 39. No. 16. P. 7223–7233. doi: 10.1093/nar/gkr254
- Vang S., Wu H.T., Fischer A., et al. Identification of ovarian cancer metastatic miRNAs // PLoS ONE. 2013. Vol. 8. No. 3. ID e58226. doi: 10.1371/journal.pone.0058226
- Velagapudi S.P., Vummidi B.R., Disney M.D. Small molecule chemical probes of microRNA function // Curr Opin Chem Biol. 2015. Vol. 24. P. 97–103. doi: 10.1016/j.cbpa.2014.10.024
- Viswanathan S.R., Daley G.Q. Lin28: A MicroRNA Regulator with a Macro Role // Cell. 2010. Vol. 140. No. 4. P. 445–449. doi: 10.1016/j.cell.2010.02.007
- Wani J.A., Majid S.M., Khan A., et al. Clinico-Pathological Importance of miR-146a in Lung Cancer // Diagnostics (Basel). 2021. Vol. 11. No. 2. ID274. doi: 10.3390/diagnostics11020274
- Wang C.-C., Chen X., Qu J., et al. RFSMMA: A New Computational Model to Identify and Prioritize Potential Small Molecule–miRNA Associations // J Chem Inf Model. 2019. Vol. 59. No. 4. P. 1668–1679. doi: 10.1021/acs.jcim.9b00129
- Wang R.J., Zheng Y.H., Wang P., Zhang J.Z. Serum miR-125a-5p, miR-145 and miR-146a as diagnostic biomarkers in non-small cell lung cancer // Int J Clin Exp Pathol. 2015. Vol. 8. No. 1. P. 765–771.
- Wang X., Gao H., Ren L., et al. Demethylation of the miR-146a promoter by 5-Aza-2'-deoxycytidine correlates with delayed progression of castration-resistant prostate cancer // BMC Cancer. 2014. Vol. 14. P. 1–11. doi: 10.1186/1471-2407-14-308
- Wang W.-M., Liu J.-C. Effect and molecular mechanism of mir-146a on proliferation of lung cancer cells by targeting and regulating MIF gene // Asian Pac J Trop Med. 2016. Vol. 9. No. 8. P. 806–811. doi: 10.1016/j.apjtm.2016.06.001
- Watashi K., Yeung M.L., Starost M.F., et al. Identification of Small Molecules That Suppress MicroRNA Function and Reverse Tumorigenesis // J Biol Chem. 2010. Vol. 285. No. 32. P. 24707–24716. doi: 10.1074/jbc.M109.062976
- Wei Y., Zou Z., Becker N., et al. EGFR-Mediated Beclin 1 Phosphorylation in Autophagy Suppression, Tumor Progression, and Tumor Chemoresistance // Cell. 2013. Vol. 154. No. 6. P. 1269–1284. doi: 10.1016/j.cell.2013.08.015
- Wiggins J.F., Ruffino L., Kelnar K., et al. Development of a Lung Cancer Therapeutic Based on the Tumor Suppressor MicroRNA-34 // Cancer Res. 2010. Vol. 70. No. 14. P. 5923–5930. doi: 10.1158/0008-5472.CAN-10-0655
- Woodhouse E.C., Chuaqui R.F., Liotta L.A. General mechanisms of metastasis // Cancer. 1997. Vol. 80. No. 8. P. 1529–1537. doi: 10.1002/(sici)1097-0142(19971015)80:8+<1529::aid-cncr2>3.3.co;2-#
- Wu C., Cao Y., He Z., et al. Serum Levels of miR-19b and miR-146a as Prognostic Biomarkers for Non-Small Cell Lung Cancer // Tohoku J Exp Med. 2014. Vol. 232. No. 2. P. 85–95. doi: 10.1620/tjem.232.85
- Wu K., He J., Pu W., Peng Y. The Role of Exportin-5 in MicroRNA Biogenesis and Cancer // Genomics Proteomics Bioinformatics. 2018. Vol. 16. No. 2. P. 120–126. doi: 10.1016/j.gpb.2017.09.004
- Xiao W., Zhong Y., Wu L., et al. Prognostic value of microRNAs in lung cancer: A systematic review and meta-analysis // Mol Clin Oncol. 2018. Vol. 10. No. 1. P. 67–77. doi: 10.3892/mco.2018.1763
- Yang H., Sun B., Xu K., et al. Pharmaco-transcriptomic correlation analysis reveals novel responsive signatures to HDAC inhibitors and identifies Dasatinib as a synergistic interactor in small-cell lung cancer // EBioМеdicine. 2021. Vol. 69. ID103457. doi: 10.1016/j.ebiom.2021.103457
- Yin J., Zhao J., Hu W., et al. Disturbance of the let-7/LIN28 double-negative feedback loop is associated with radio- and chemo-resistance in non-small cell lung cancer // PLoS ONE. 2017. Vol. 12. No. 2. ID e0172787. doi: 10.1371/journal.pone.0172787
- Yoon K.-A., Yoon H., Park S., et al. The prognostic impact of microRNA sequence polymorphisms on the recurrence of patients with completely resected non-small cell lung cancer // J Thorac Cardiovasc Surg. 2012. Vol. 144. No. 4. P. 794–807. doi: 10.1016/j.jtcvs.2012.06.030
- Yuwen D.L., Sheng B.B., Liu J., et al. MiR-146a-5p level in serum exosomes predicts therapeutic effect of cisplatin in non-small cell lung cancer // Eur Rev Med Pharm Sci. 2017. Vol. 21. No. 11. P. 2650–2658.
- Zaman M.S., Chen Y., Deng G., et al. The functional significance of microRNA-145 in prostate cancer // Br J Cancer. 2010. Vol. 103. No. 2. P. 256–264. doi: 10.1038/sj.bjc.6605742
- Zhang Y., Du H., Li Y., et al. Elevated TRIM23 expression predicts cisplatin resistance in lung adenocarcinoma // Cancer Sci. 2020. Vol. 111. No. 2. P. 637–646. doi: 10.1111/cas.14226
- Zhang Z., Zhang Y., Sun X.X., et al. microRNA-146a inhibits cancer metastasis by downregulating VEGF through dual pathways in hepatocellular carcinoma // Mol Cancer. 2015. Vol. 14. P. 1–15. doi: 10.1186/1476-4598-14-5
- Zhao J.L., Rao D.S., Boldin M.P., et al. NF-κB dysregulation in microRNAa-deficient mice drives the development of myeloid malignancies // Proc Natl Acad Sci USA. 2011. Vol. 108. No. 22. P. 9184–9189. doi: 10.1073/pnas.1105398108
- Zheng D., Haddadin S., Wang Y., et al. Plasma microRNAs as novel biomarkers for early detection of lung cancer // Int J Clin Exp Pathol. 2011. Vol. 4. No. 6. P. 575–586.
- Zeng Y., Yi R., Cullen B.R. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha // Embo J. 2004. Vol. 24. No. 1. P. 138–148. doi: 10.1038/sj.emboj.7600491
- Zhong H., Lu J., Jing S., et al. Low-dose rituximab lowers serum Exosomal miR-150-5p in AChR-positive refractory myasthenia gravis patients // J Neuroimmunol. 2020. Vol. 348. ID577383. doi: 10.1016/j.jneuroim.2020.577383
- Zhong M., Ma X., Sun C., Chen L. MicroRNAs reduce tumor growth and contribute to enhance cytotoxicity induced by gefitinib in non-small cell lung cancer // Chem Biol Interact. 2010. Vol. 184. No. 3. P. 431–438. doi: 10.1016/j.cbi.2010.01.025
- Zhou Y.-X., Zhao W., Mao L.-W., et al. Long non-coding RNA NIFK-AS1 inhibits M2 polarization of macrophages in endometrial cancer through targeting miR-146a // Int J Biochem Cell Biol. 2018. Vol. 104. P. 25–33. doi: 10.1016/j.biocel.2018.08.017
- Zhu X., Li Y., Xie C., et al. miR-145 sensitizes ovarian cancer cells to paclitaxel by targeting Sp1 and Cdk6 // Int J Cancer. 2014. Vol. 135. No. 6. P. 1286–1296. doi: 10.1002/ijc.28774
- Zucker S., Hymowitz M., Rollo E.E., et al. Tumorigenic Potential of Extracellular Matrix Metalloproteinase Inducer // Am J Pathol. 2001. Vol. 158. No. 6. P. 1921–1928. doi: 10.1016/S0002-9440(10)64660-3
