Патофизиология микроРНК-146a при раке легких. Перспективы повышения эффективности таргетной терапии

Обложка


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Рак легких — широко распространенная злокачественная опухоль дыхательных путей, наносит значительный урон здоровью человека. МикроРНК (miRNAs) являются небольшими, некодируемыми РНК размером примерно 20–25 нуклеотидов, которые функционируют как мощные модуляторы мРНК и белковых продуктов соответствующего гена. МикроРНК может смодулировать много биологических процессов, в том числе дифференцировку, пролиферацию, некроз и апоптоз клеток, и играет ключевую роль в патогенезе различных видов раковых новообразований. Накопившиеся данные последних лет доказали, что микроРНК, особенно микроРНК-146a, являются критическими модуляторами врожденных систем иммунного ответа. Новая и захватывающая область исследований рака включила микроРНК для обнаружения и супрессии рака. Однако фактический механизм, используемый этими микроРНК, все еще неясен. МикроРНК применялись в качестве связанного с раком биомаркера в ряде исследований, что предполагает их нарушенную экспрессию в различных видах рака по сравнению со здоровыми тканями. Уровень экспрессии микроРНК может также использоваться, чтобы определить стадию болезни, а также помочь при раннем обнаружении рака. Установлено, что при раке легких, панкреатическом и гепатоцеллюлярном раке, раке желудка, пролиферации раковых клеток и в метастазах уровень микроРНК-146а сильно подавлен. Изменения в уровнях экспрессии микроРНК служат хорошим биомаркером и обладают высоким прогностическим потенциалом для улучшения терапии при раке легких. Модуляция содержания микроРНК задерживает эпителиально-мезенхимальный переход и улучшает терапевтическое действие лекарственных средств. Полученные результаты позволяют предположить, что микроРНК-146a оказывает влияние на экспрессию гена через различные сигнальные пути: ФНО-α, NF-κB, MEK-1/2, JNK-1/2. Требуется дальнейшее исследование, чтобы понять детали молекулярных механизмов микроРНК-146a при раке легких, а также должна быть более подробно проанализирована роль микроРНК-146a в качестве диагностического маркера рака легких.

Полный текст

Доступ закрыт

Об авторах

Владимир Иванович Ващенко

Военно-медицинская академия им. С.М. Кирова

Автор, ответственный за переписку.
Email: vaschenko@yandex.ru

д-р биол. наук

Россия, 194044, Санкт-Петербург, ул. Академика Лебедева, д. 6

Юлия Евгеньевна Ромашова

Военно-медицинская академия им. С.М. Кирова

Email: vladimir-vaschenko@yandex.ru

зав. отделом Центра крови и тканей

Россия, 194044, Санкт-Петербург, ул. Академика Лебедева, д. 6

Петр Дмитриевич Шабанов

Военно-медицинская академия им. С.М. Кирова

Email: pdshabanov@mail.ru
ORCID iD: 0000-0003-1464-1127
SPIN-код: 8974-7477

д-р мед. наук, профессор

Россия, 194044, Санкт-Петербург, ул. Академика Лебедева, д. 6

Список литературы

  1. Богданова И.М., Болтовская М.Н., Разомилевич А.Л., Артемьева К.А. Ключевая роль опухоль-ассоциированных макрофагов в прогрессировании и метастазировании опухолей // Иммунология. 2019. Т. 40, № 4. C. 41–47. doi: 10.24411/0206-4952-2019-14005
  2. Лактионов К.К., Реутова E.В., Ардзинба М.С., Мещерякова Н.А. Таргетная терапия немелкоклеточного рака легкого // Медицинский совет. 2017. № 6. C. 51–55. doi: 10.21518/2079-2017.6.51-55
  3. Лясников К.А., Шляхтунов E.A. Клиническая значимость молекулярно-генетических маркеров при диагностике и персонализации терапии рака легкого // Вестник ВГМУ. 2020. Т. 19, № 2. C. 7–18. doi: 10.22263/2312-4156.2020.2.7
  4. Хвастунов Р.А., Скрыпникова Г.В., Усачев А.А. Таргетная терапия в онкологии // Лекарственный вестник. 2014. Т. 8, № 4. C. 3–10.
  5. Шабанов П.Д., Ващенко В.И. Биологическая роль микроРНК-146a при вирусных инфекциях. Современная стратегия поиска новых безопасных фармакологических средств лечения // Обзоры по клинической фармакологии и лекарственной терапии. 2021. Т. 19, № 2. C. 145–174. doi: 10.17816/RCF192145-174
  6. Balkwill F., Charles K.A., Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease // Cancer Cell. 2005. Vol. 7. No. 3. P. 211–217. doi: 10.1016/j.ccr.2005.02.013
  7. Beauchemin N., Arabzadeh A. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis // Cancer Metastasis Rev. 2013. Vol. 32. No. 3–4. P. 643–671. doi: 10.1007/s10555-013-9444-6
  8. Bertoli G., Cava C., Castiglioni I. MicroRNAs: New biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer // Theranostics. 2015. Vol. 5. No. 10. P. 1122–1143. doi: 10.7150/thno.11543
  9. Bhaumik D., Scott G.K., Schokrpur S., et al. MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8 // Aging. 2009. Vol. 1. No. 4. P. 402–411. doi: 10.18632/aging.100042
  10. Bleau A.M., Redrado M., Nistal-Villan E., et al. miR-146a targets c-met and abolishes colorectal cancer liver metastasis // Cancer Lett. 2018. Vol. 414. P. 257–267. doi: 10.1016/j.canlet.2017.11.008
  11. Boeri M., Verri C., Conte D., et al. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer // Proc Natl Acad Sci USA. 2011. Vol. 108. No. 9. P. 3713–3718. doi: 10.1073/pnas.1100048108
  12. Boldin M.P., Teganov K.D., Rao D.J., et al. miR-146q is a significant brake on autoimmunity, myeloproliferation, and cancer in mice // J Exp Med. 2011. Vol. 208. No. 6. P. 1189–1201. doi: 10.1084/jem.20101823
  13. Bray F., Ferlay J., Soerjomataram I., et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries // CA Cancer J Clin. 2018. Vol. 68. No. 6. P. 394–424. doi: 10.3322/caac.21492
  14. Brown K.A., Aakre M.E., Gorska A.E., et al. Induction by transforming growth factor-beta1 of epithelial to mesenchymal transition is a rare event in vitro // Breast Cancer Res. 2004. Vol. 6. No. 3. P. R215–R231. doi: 10.1186/bcr778
  15. Bui N., Woodward B., Johnson A., Husain H. Novel Treatment Strategies for Brain Metastases in Non-small-cell Lung Cancer // Curr Treat Opt Oncol. 2016. Vol. 17. No. 5. P. 25. doi: 10.1007/s11864-016-0400-x
  16. Burke J.M., Kelenis D.P., Kincaid R.P., Sullivan C.S. A central role for the primary microRNA stem in guiding the position and efficiency of Drosha processing of a viral pri-miRNA // RNA. 2014. Vol. 20. No. 7. P. 1068–1077. doi: 10.1261/rna.044537.114
  17. Butkiewicz D., Krześniak M., Gdowicz-Kłosok A., et al. Polymorphisms in EGFR Gene Predict Clinical Outcome in Unresectable Non-Small Cell Lung Cancer Treated with Radiotherapy and Platinum-Based Chemoradiotherapy // Int J Mol Sci. 2021. Vol. 22. No. 11. ID5605. doi: 10.3390/ijms22115605
  18. Chang T.-C., Yu D., Lee Y.-S., et al. Widespread microRNA repression by Myc contributes to tumorigenesis // Nat Genet. 2007. Vol. 40. No. 1. P. 43–50. doi: 10.1038/ng.2007.30
  19. Chang Y.-C., Jan C.-I., Peng C.-Y., et al. Activation of microRNA-494-targeting Bmi1 and ADAM10 by silibinin ablates cancer stemness and predicts favourable prognostic value in head and neck squamous cell carcinomas // Oncotarget. 2015. Vol. 6. No. 27. P. 24002–24016. doi: 10.18632/oncotarget.4365
  20. Chen G., Umelo I.A., Lv S., et al. miR-146a Inhibits Cell Growth, Cell Migration and Induces Apoptosis in Non-Small Cell Lung Cancer Cells // PLoS ONE. 2013. Vol. 8. No. 3. ID e60317. doi: 10.1371/journal.pone.0060317
  21. Chen X., Ba Y., Ma L., et al. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases // Cell Res. 2008. Vol. 18. No. 10. P. 997–1006. doi: 10.1038/cr.2008.282
  22. Chendrimada T.P., Gregory R.I., Kumaraswamy E., et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing // Nature. 2005. Vol. 436. No. 7051. P. 740–744. doi: 10.1038/nature03868
  23. Cheung K.J., Ewald A.J. A collective route to metastasis: Seeding by tumor cell clusters // Science. 2016. Vol. 352. No. 6282. P. 167–169. doi: 10.1126/science.aaf6546
  24. Cho K.B., Cho M.K., Lee W.Y., et al. Overexpression of c-myc induces epithelial mesenchymal transition in mammary epithelial cells // Cancer Lett. 2010. Vol. 293. No. 2. P. 230–239. doi: 10.1016/j.canlet.2010.01.013
  25. Condrat C.E., Thompson D.C., Barbu M.G., et al. miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis // Cells. 2020. Vol. 9. No. 2. P. 276. doi: 10.3390/cells9020276
  26. Cornett A.L., Lutz C.S. Regulation of COX-2 expression by miR-146a in lung cancer cells // RNA. 2014. Vol. 20. No. 9. P. 1419–1430. doi: 10.1261/rna.044149.113
  27. Conti I., Simioni C., Varano G., et al. MicroRNAs Patterns as Potential Tools for Diagnostic and Prognostic Follow-Up in Cancer Survivorship // Cell. 2021. Vol. 10. No. 8. ID2069. doi: 10.3390/cells10082069
  28. Corral-Fernandez N.E., Salgado-Bustamante M., Martinez-Leija M.E., et al. Dysregulated miR-155 expression in peripheral blood mononuclear cells from patients with type 2 diabetes // Exp Clin Endocrinol Diabetes. 2013. Vol. 121. No. 6. P. 347–353. doi: 10.1055/s-0033-1341516
  29. de Giorgio A., Krell J., Harding V., et al. Emerging Roles of Competing Endogenous RNAs in Cancer: Insights from the Regulation of PTEN // Mol Cell Biol. 2013. Vol. 33. No. 20. P. 3976–3982. doi: 10.1128/MCB.00683-13
  30. Deiters A. Small Molecule Modifiers of the microRNA and RNA Interference Pathway // AAPS J. 2009. Vol. 12. No. 1. P. 51–60. doi: 10.1208/s12248-009-9159-3
  31. Denli A.M., Tops B.B.J., Plasterk R.H.A., et al. Processing of primary microRNAs by the Microprocessor complex // Nature. 2004. Vol. 432. No. 7014. P. 231–235. doi: 10.1038/nature03049
  32. Du H., Li Y., Sun R., et al. CEACAM6 promotes cisplatin resistance in lung adenocarcinoma and is regulated by microRNA-146a and microRNA-26a // Thorac Cancer. 2020. Vol. 11. No. 9. P. 2473–2482. doi: 10.1111/1759-7714.13558
  33. Eulalio A., Behm-Ansmant I., Schweizer D., Izaurralde E. P-Body formation is a consequence, not the cause, of RNA-mediated gene silencing // Mol Cell Biol. 2007. Vol. 27. No. 11. P. 3970–3981. doi: 10.1128/MCB.00128-07
  34. Filipowicz W., Bhattacharyya S.N., Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? // Nat Rev Genet. 2008. Vol. 9. No. 2. P. 102–114. doi: 10.1038/nrg2290
  35. Forloni M., Dogra S.K., Dong Y., et al. miR-146a promotes the initiation and progression of melanoma by activating Notch signaling // eLife. 2014. Vol. 3. ID e01460. doi: 10.7554/eLife.01460
  36. Fu J., Rodova M., Nanta R., et al. NPV-LDE-225 (Erismodegib) inhibits epithelial mesenchymal transition and self-renewal of glioblastoma initiating cells by regulating miR-21, miR-128, and miR-200 // Neuro-oncology. 2013. Vol. 15. No. 6. P. 691–706. doi: 10.1093/neuonc/not011
  37. Garg M. Targeting microRNAs in epithelial-to-mesenchymal transition-induced cancer stem cells: therapeutic approaches in cancer // Expert Opin Ther Targets. 2015. Vol. 19. No. 2. P. 285–297. doi: 10.1517/14728222.2014.975794
  38. Garzon R., Marcucci G., Targeting C.C.M. MicroRNAs in cancer: rationale, strategies and challenges // Nat Rev Drug Discov. 2010. Vol. 9. No. 10. P. 775–789. doi: 10.1038/nrd3179
  39. Ghany S., Riemke P., Schonheit J., et al. Macrophage development from HSCs requires PU.1-coordinated microRNA expression // Blood. 2011. Vol. 118. No. 8. P. 2275–2284. doi: 10.1182/blood-2011-02-335141
  40. Ghuwalewala S., Ghatak D., Das S., et al. MiR-146a-dependent regulation of CD24/AKT/β-catenin axis drives cancer stem cell phenotype in oral squamous cell carcinoma // bioRxiv. 2019. ID429068. doi: 10.1101/429068
  41. Gibbons D.L., Lin W., Creighton C.J., et al. Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression // Genes Dev. 2009. Vol. 23. No. 18. P. 2140–2151. doi: 10.1101/gad.1820209
  42. Gilad S., Lithwick-Yanai G., Barshack I., et al. Classification of the four main types of lung cancer using a microRNA-based diagnostic assay // J Mol Diagn. 2012. Vol. 14. No. 5. P. 510–517. doi: 10.1016/j.jmoldx.2012.03.004
  43. Gregory R.I., Yan K.-P., Amuthan G., et al. The Microprocessor complex mediates the genesis of microRNAs // Nature. 2004. Vol. 432. No. 7014. P. 235–240. doi: 10.1038/nature03120
  44. Gomes M., Teixeira A.L., Coelho A., et al. The role of inflammation in lung cancer. In: B.B. Aggarwal, B. Sung, S.C. Gupta, editors. Advances in experimental medicine and biology. Switzerland, Basel: Springer Basel, 2014. P. 1–23. doi: 10.1007/978-3-0348-0837-8_1
  45. Hagemann T., Wilson J., Kulbe H., et al. Macrophages Induce Invasiveness of Epithelial Cancer Cells Via NF-κB and JNK // J Immunol. 2005. Vol. 175. No. 2. P. 1197–1205. doi: 10.4049/jimmunol.175.2.1197
  46. Han J., Lee Y., Yeom K.-H., et al. Molecular Basis for the Recognition of Primary microRNAs by the Drosha-DGCR8 Complex // Cell. 2006. Vol. 125. No. 5. P. 887–901. doi: 10.1016/j.cell.2006.03.043
  47. Han J. The Drosha-DGCR8 complex in primary microRNA processing // Genes Dev. 2004. Vol. 18. No. 24. P. 3016–3027. doi: 10.1101/gad.1262504
  48. Han W., Du X., Liu M., et al. Increased expression of long non-coding RNA SNHG16 correlates with tumor progression and poor prognosis in non-small cell lung cancer // Int J Biol Macromol. 2019. Vol. 121. P. 270–278. doi: 10.1016/j.ijbiomac.2018.10.004
  49. Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation // Cell. 2011. Vol. 144. No. 5. P. 646–674. doi: 10.1016/j.cell.2011.02.013
  50. Hata A., Kashima R. Dysregulation of microRNA biogenesis machinery in cancer // Crit Rev Biochem Mol Biol. 2016. Vol. 51. No. 3. P. 121–134. doi: 10.3109/10409238.2015.1117054
  51. Hay E.D., Zuk A. Transformations between epithelium and mesenchyme: normal, pathological, and experimentally induced // Am J Kidney Dis. 1995. Vol. 26. No. 4. P. 678–690. doi: 10.1016/0272-6386(95)90610-x
  52. He H., Xu C., Zheng L., et al. Polyphyllin VII induces apoptotic cell death via inhibition of the PI3K/Akt and NF-κB pathways in A549 human lung cancer cells // Mol Med Rep. 2020. Vol. 21. No. 2. P. 597–606. doi: 10.3892/mmr.2019.10879
  53. Heuberger J., Birchmeier W. Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling // Cold Spring Harb Perspect Biol. 2010. Vol. 2. No. 2. ID a002915. doi: 10.1101/cshperspect.a002915
  54. Huang W.T., He R.Q., Li X.J., et al. miR-146a-5p targets TCSF and influences cell growth and apoptosis to repress NSCLC progression // Oncol Rep. 2019. Vol. 41. No. 4. P. 2226–2240. doi: 10.3892/or.2019.7030
  55. Jiang P., Jia W., Wei X., et al. MicroRNA-146a regulates cisplatin-resistance of non-small cell lung cancer cells by targeting NF-kappaB pathway // Int J Clin Exp Pathol. 2017. Vol. 10. No. 12. P. 11545–11553.eCollection 2017.
  56. Jiang W.G., Sanders A.J., Katoh M., et al. Tissue invasion and metastasis: Molecular, biological and clinical perspectives // Semin Cancer Biol. 2015. Vol. 35. Suppl. P. S244–S275. doi: 10.1016/j.semcancer.2015.03.008
  57. Jung Y.Y., Shanmugam M.K., Narula A.S., et al. Oxymatrine Attenuates Tumor Growth and Deactivates STAT5 Signaling in a Lung Cancer Xenograft Model // Cancers. 2019. Vol. 11. No. 1. P. 49. doi: 10.3390/cancers11010049
  58. Iacona J.R., Monteleone N.J., Lutz C.S. miR-146a suppresses 5-lipoxygenase activating protein (FLAP) expression and Leukotriene B4 production in lung cancer cells // Oncotarget. 2018. Vol. 9. No. 42. P. 26751–26769. doi: 10.18632/oncotarget.25482
  59. Kim J., Yao F., Xiao Z., et al. MicroRNAs and metastasis: Small RNAs play big roles // Cancer Metastasis Rev. 2018. Vol. 37. No. 1. P. 5–15. doi: 10.1007/s10555-017-9712-y
  60. Kim Y.K., Kim B., Kim V.N. Re-evaluation of the roles of DROSHA, Export in 5, and DICER in microRNA biogenesis // Proc Natl Acad Sci USA. 2016. Vol. 113. No. 13. P. E1881–Е1889. doi: 10.1073/pnas.1602532113
  61. Kola I., Landis J. Can the pharmaceutical industry reduce attrition rates? // Nat Rev Drug Discov. 2004. Vol. 3. No. 8. P. 711–716. doi: 10.1038/nrd1470
  62. Ko J.-H., Nam D., Um J.-Y., et al. Bergamottin Suppresses Metastasis of Lung Cancer Cells through Abrogation of Diverse Oncogenic Signaling Cascades and Epithelial-to-Mesenchymal Transition // Моlecules. 2018. Vol. 23. No. 7. ID1601. doi: 10.3390/молекулы 23071601
  63. Kong W., Yang H., He L., et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA // Mol Cell Biol. 2008. Vol. 28. No. 22. P. 6773–6784. doi: 10.1128/MCB.00941-08
  64. Kotha N.V., Cherry D.R., Bryant A.K., et al. Prognostic utility of pretreatment neutrophil-lymphocyte ratio in survival outcomes in localized non-small cell lung cancer patients treated with stereotactic body radiotherapy: Selection of an ideal clinical cutoff point // Clin Transl Radiat Oncol. 2021. Vol. 28. P. 133–140. doi: 10.1016/j.ctro.2021.03.010
  65. Kulis M., Esteller M. 2-DNA Methylation and Cancer // Advances and Genetics. 2010. Vol. 70. P. 27–56. doi: 10.1016/B978-0-12-380866-0.60002-2
  66. Kumaraswamy E., Wendt K.L., Augustine L.A., et al. BRCA1 regulation of epidermal growth factor receptor (EGFR) expression in human breast cancer cells involves microRNA-146a and is critical for its tumor suppressor function // Oncogene. 2014. Vol. 34. No. 33. P. 4333–4346. doi: 10.1038/onc.2014.363
  67. Kumarswamy R., Mudduluru G., Ceppi P., et al. MicroRNA-30a inhibits epithelial-to-mesenchymal transition by targeting Snai1 and is downregulated in non-small cell lung cancer // Int J Cancer. 2012. Vol. 130. No. 9. P. 2044–2053. doi: 10.1002/ijc.26218
  68. Labbaye C., Spinello I., Quaranta M.T., et al. A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis // Nat Cell Biol. 2008. Vol. 10. No. 7. P. 788–800. doi: 10.1038/ncb1741
  69. Lagos-Quintana M., Rauhut R., Yalcin A., et al. Identification of Tissue-Specific microRNAs from Mouse // Curr Biol. 2002. Vol. 12. No. 9. P. 735–739. doi: 10.1016/S0960-9822(02)00809-6
  70. Lamar J.M., Xiao Y., Norton E., et al. SRC-tyrosine kinase activates the YAP/TAZ axis and thereby drives tumor growth and metastasis // J Biol Chem. 2019. Vol. 294. No. 7. P. 2302–2317. doi: 10.1074/jbc.RA118.004364
  71. Lambert K.A., Roff A.N., Panganiban R.P., et al. MicroRNA-146a is induced by inflammatory stimuli in airway epithelial cells and augments the anti-inflammatory effects of glucocorticoids // PLoS ONE. 2018. Vol. 13. No. 10. ID e0205434. doi: 10.1371/journal.pone.0205434
  72. Landi M.T., Zhao Y., Rotunno M., et al. MicroRNA Expression Differentiates Histology and Predicts Survival of Lung Cancer // Clin Cancer Res. 2010. Vol. 16. No. 2. P. 430–441. doi: 10.1158/1078-0432.CCR-09-1736
  73. Larner-Svensson H.M., Williams A.E., Tsitsiou E., et al. Pharmacological studies of the mechanism and function of interleukin-1β-induced miRNA-146a expression in primary human airway smooth muscle // Respir Res. 2010. Vol. 11. No. 1. P. 1–13. doi: 10.1186/1465-9921-11-68
  74. Lebanony D., Benjamin H., Gilad S., et al. Diagnostic Assay Based on hsa-miR-205 Expression Distinguishes Squamous From Nonsquamous Non-Small-Cell Lung Carcinoma // J Clin Oncol. 2009. Vol. 27. No. 12. P. 2030–2037. doi: 10.1200/JCO.2008.19.4134
  75. Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 // Cell. 1993. Vol. 75. No. 5. P. 843–854. doi: 10.1016/0092-8674(93)90529-Y
  76. Lee Y., Ahn C., Han J., et al. The nuclear RNase III Drosha initiates microRNA processing // Nature. 2003. Vol. 425. No. 6956. P. 415–419. doi: 10.1038/nature01957
  77. Li B., Ren S., Li X., et al. MiR-21 overexpression is associated with acquired resistance of EGFR-TKI in non-small cell lung cancer // Lung Cancer. 2014. Vol. 83. No. 2. P. 146–153. doi: 10.1016/j.lungcan.2013.11.003
  78. Li J., Zhang J., Xie F., et al. Macrophage migration inhibitory factor promotes Warburg effect via activation of the NF-κB/HIF-1α pathway in lung cancer // Int J Mol Med. 2017. Vol. 41. No. 2. P. 1062–1068. doi: 10.3892/ijmm.2017.3277
  79. Li M.-W., Gao L., Dang Y.-W., et al. Protective potential of miR-146a-5p and its underlying molecular mechanism in diverse cancers: A comprehensive meta-analysis and bioinformatics analysis // Cancer Cell Int. 2019. Vol. 19. P. 1–21. doi: 10.1186/s12935-019-0886-y
  80. Li Y.-L., Wang J., Zhang C.-Y., et al. MiR-146a-5p inhibits cell proliferation and cell cycle progression in NSCLC cell lines by targeting CCND1 and CCND2 // Oncotarget. 2016. Vol. 7. No. 37. P. 59287–59298. doi: 10.18632/oncotarget.1104
  81. Liu J., Valencia-Sanchez M.A., Hannon G.J., Parker R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies // Nat Cell Biol. 2005. Vol. 7. No. 7. P. 719–723. doi: 10.1038/ncb1274
  82. Liu L., Wan C., Zhang W., et al. MiR-146a regulates PM1-induced inflammation via NF-kappaB signaling pathway in BEAS-2B cells // Environ Toxicol. 2018. Vol. 33. No. 7. P. 743–751. doi: 10.1002/tox.22561
  83. Liu R., Liu C., Chen D., et al. FOXP3 Controls an miR-146/NF-κB Negative Feedback Loop That Inhibits Apoptosis in Breast Cancer Cells // Cancer Res. 2015. Vol. 75. No. 8. P. 1703–1713. doi: 10.1158/0008-5472.CAN-14-2108
  84. Lorenz D.A., Garner A.L. Approaches for the Discovery of Small Molecule Ligands Targeting microRNAs. In: Bernstein P.R., Garner A.L., Georg G.I., et al. editors. Topics in Medicinal Chemistry. USA, NY: Springer International Publishing, 2017. 79–110 pp. doi: 10.1007/7355_2017_3
  85. Madhavan D., Cuk K., Burwinkel B., Yang R. Cancer diagnosis and prognosis decoded by blood-based circulating microRNA signatures // Front Genet. 2013. Vol. 4. P. 116. doi: 10.3389/fgene.2013.00116
  86. Mani S.A., Guo W., Liao M.J., et al. The epithelial-mesenchymal transition generates cells with properties of stem cells // Cell. 2008. Vol. 133. No. 4. P. 704–715. doi: 10.1016/j.cell.2008.03.027
  87. McClure J.J., Li X., Chou C.J. Advances and Challenges of HDAC Inhibitors in Cancer Therapeutics // Adv Cancer Res. 2018. Vol. 138. P. 183–211. doi: 10.1016/bs.acr.2018.02.006
  88. Mehta M., Tewari D., Gupta G., et al. Oligonucleotide therapy: An emerging focus area for drug delivery in chronic inflammatory respiratory diseases // Chem Biol Interact. 2019. Vol. 308. P. 206–215. doi: 10.1016/j.cbi.2019.05.028
  89. Mohamed R.H., Pasha H.F., Gad D.M., Toam M.M. miR-146a and miR-196a-2 genes polymorphisms and its circulating levels in lung cancer patients // J Biochem. 2019. Vol. 166. No. 4. P. 323–329. doi: 10.1093/jb/mvz044
  90. Molina J.R., Yang P., Cassivi S.D., et al. Non-Small Cell Lung Cancer: Epidemiology, Risk Factors, Treatment, and Survivorship // Mayo Clin Proc. 2008. Vol. 83. No. 5. P. 584–594. doi: 10.1016/S0025-6196(11)60735-0
  91. Mongroo P.S., Rustgi A.K. The role of the miR-200 family in epithelial-mesenchymal transition // Cancer Biol Ther. 2010. Vol. 10. No. 3. P. 219–222. doi: 10.4161/cbt.10.3.12548
  92. Oft M., Peli J., Rudaz C., et al. TGF-beta1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells // Genes Dev. 1996. Vol. 10. No. 19. P. 2462–2477. doi: 10.1101/gad.10.19.2462
  93. Opalinska J.B., Bersenev A., Zhang Z., et al. MicroRNA expression in maturing megakaryocytes // Blood. 2010. Vol. 116. No. 23. P. e128–e138. doi: 10.1182/blood-2010-06-292920
  94. Pang L., Lu J., Huang J., et al. Upregulation of miR-146a increases cisplatin sensitivity of the non-small cell lung cancer A549 cell line by targeting JNK-2 // Oncol Lett. 2017. Vol. 14. No. 6. P. 7745–7752. doi: 10.3892/ol.2017.7242
  95. Park D.H., Jeon H.S., Lee S.Y., et al. MicroRNA-146a inhibits epithelial mesenchymal transition in non-small cell lung cancer by targeting insulin receptor substrate 2 // Int J Oncol. 2015. Vol. 47. No. 4. P. 1545–1553. doi: 10.3892/ijo.2015.3111
  96. Pavel A.B., Campbell J.D., Liu G., et al. Alterations in Bronchial Airway miRNA Expression for Lung Cancer Detection // Cancer Prev Res. 2017. Vol. 10. No. 11. P. 651–659. doi: 10.1158/1940-6207.CAPR-17-0098.
  97. Pérez-García E.I., Meza-Sosa K.F., López-Sevilla Y., et al. Merlin negative regulation by miR-146a promotes cell transformation // Biochem Biophys Res Commun. 2015. Vol. 468. No. 4. P. 594–600. doi: 10.1016/j.bbrc.2015.10.156
  98. Perry M.M., Moschos S.A., Williams A.E., et al. Rapid Changes in microRNA-146a Expression Negatively Regulate the IL-1β-Induced Inflammatory Response in Human Lung Alveolar Epithelial Cells // J Immunol. 2008. Vol. 180. No. 8. P. 5689–5698. doi: 10.4049/jimmunol.180.8.5689
  99. Pritchard C.C., Cheng H.H., Tewari M. MicroRNA profiling: Approaches and considerations // Nat Rev Genet. 2012. Vol. 13. No. 5. P. 358–369. doi: 10.1038/nrg3198
  100. Ren Y.-G., Zhou X.-M., Cui Z.-G., Hou G. Effects of common polymorphisms in miR-146a and miR-196a2 on lung cancer susceptibility: A meta-analysis // J Thorac Dis. 2016. Vol. 8. No. 6. P. 1297–1305. doi: 10.21037/jtd.2016.05.02
  101. Richardson C.M., Sharma R.A., Cox G., O’Byrne K.J. Epidermal growth factor receptors and cyclooxygenase-2 in the pathogenesis of non-small cell lung cancer: Potential targets for chemoprevention and systemic therapy // Lung Cancer. 2003. Vol. 39. No. 1. P. 1–13. doi: 10.1016/S0169-5002(02)00382-3
  102. Rieber M., Strasberg Rieber M. DN-R175H p53 mutation is more effective than p53 interference in inducing epithelial disorganization and activation of proliferation signals in human carcinoma cells: role of E-cadherin // Int J Cancer. 2009. Vol. 125. No. 7. P. 1604–1612. doi: 10.1002/ijc.24512
  103. Rosenfeld N., Aharonov R., Meiri E., et al. MicroRNAs accurately identify cancer tissue origin // Nat Biotechnol. 2008. Vol. 26. P. 462–469. doi: 10.1038/nbt1392
  104. Ryasen G.W., Starczynowski D.T. Deregulation of microRNA in myelodysplastic syndrome // Leukemia. 2012. Vol. 26. No. 1. P. 13–22. doi: 10.1038/leu.2011.221
  105. Qiu H., Xie Z., Tang W., et al. Association between microRNA-146a, -499a and -196a-2 SNPs and non-small cell lung cancer: a case-control study involving 2249 subjects // Biosci Rep. 2021. Vol. 41. No. 2. ID BSR20201158. doi: 10.1042/BSR20201158
  106. Qi P., Li Y., Liu X., et al. Cryptotanshinone Suppresses Non-Small Cell Lung Cancer via microRNA-146a-5p/EGFR Axis // Int J Biol Sci. 2019. Vol. 15. No. 5. P. 1072–1079. doi: 10.7150/ijbs.31277
  107. Qu J., Chen X., Sun Y.-Z., et al. In Silico Prediction of Small Molecule-miRNA Associations Based on the HeteSim Algorithm // Mol Ther Nucleic Acids. 2019. Vol. 14. P. 274–286. doi: 10.1016/j.omtn.2018.12.002
  108. Saba R., Sorensen D.L., Booth S.A. MicroRNA-146a: A Dominant, Negative Regulator of the Innate Immune Response // Front Immunol. 2014. Vol. 5. P. 578. doi: 10.3389/fimmu.2014.00578
  109. Said N.A., Williams E.D. Growth factors in induction of epithelial-mesenchymal transition and metastasis // Cells Tissues Organs. 2011. Vol. 193. No. 1–2. P. 85–97. doi: 10.1159/000320360
  110. Saito R.A., Watabe T., Horiguchi K., et al. Thyroid transcription factor-1 inhibits transforming growth factor-beta-mediated epithelial-to-mesenchymal transition in lung adenocarcinoma cells // Cancer Res. 2009. Vol. 69. No. 7. P. 2783–2791. doi: 10.1158/0008-5472.CAN-08-3490
  111. Sanchez N.C., Medrano-Jimenez E., Aguilar-Leon D., et al. Tumor Necrosis Factor-Induced miR-146a Upregulation Promotes Human Lung Adenocarcinoma Metastasis by Targeting Merlin // DNA Cell Biol. 2020. Vol. 39. No. 3. P. 484–497. doi: 10.1089/dna.2019.4620
  112. Samec M., Liskova A., Koklesova L., et al. Flavonoids against the Warburg phenotype – Concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism // EPMA J. 2020. Vol. 11. No. 3. P. 377–398. doi: 10.1007/s13167-020-00217-y
  113. Sato M., Shames D.S., Hasagawa Y. Emerging evidence of epithelial-to-mesenchymal transition in lung cancinogenesis // Respirology. 2012. Vol. 17. No. 7. P. 1048–1059. doi: 10.1111/j.1440-1843.2012.02173.x
  114. Shahriar A., Ghaleh-Aziz Shiva G., Ghader B., et al. The dual role of miR-146a in metastasis and disease progression // Biomed Pharm. 2020. Vol. 126. ID110099. doi: 10.1016/j.biopha.2020.110099
  115. Saunders N.A., Simpson F., Thompson E.W., et al. Role of intratumoural heterogeneity in cancer drug resistance: Molecular and clinical perspectives // Embo Mol Med. 2012. Vol. 4. No. 8. P. 675–684. doi: 10.1002/emmm.201101131
  116. Sharma S.V., Bell D.W., Settleman J., Haber D.A. Epidermal growth factor receptor mutations in lung cancer // Nat Rev Cancer. 2007. Vol. 7. No. 3. P. 169–181. doi: 10.1038/nrc2088
  117. Shi L., Xu Z., Wu G., et al. Up-regulation of miR-146a increases the sensitivity of non-small cell lung cancer to DDP by downregulating cyclin // J BMC Cancer. 2017. Vol. 17. No. 1. P. 1–14. doi: 10.1186/s12885-017-3132-9
  118. Shen K.-H., Hung J.-H., Chang C.-W., et al. Solasodine inhibits invasion of human lung cancer cell through downregulation of miR-21 and MMPs expression // Chem Biol Interact. 2017. Vol. 268. P. 129–135. doi: 10.1016/j.cbi.2017.03.005
  119. Singh A., Settleman J. EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer // Oncogene. 2010. Vol. 29. No. 34. P. 4741–4751. doi: 10.1038/onc.2010.215
  120. Sodhi K.K., Bahl C., Singh N., et al. Functional genetic variants in pre-miR-146a and 196a2 genes are associated with risk of lung cancer in North Indians // Future Oncol. 2015. Vol. 11. No. 15. P. 2159–2173. doi: 10.2217/fon.15.143
  121. Stahlhut C., Slack F.J. Combinatorial Action of MicroRNAs let-7 and miR-34 Effectively Synergizes with Erlotinib to Suppress Non-small Cell Lung Cancer Cell Proliferation // Cell Cycle. 2015. Vol. 14. No. 13. P. 2171–2180. doi: 10.1080/15384101.2014.1003008
  122. Starczynowski D.T., Kuchenbauer F., Wegrzyn J., et al. MicroRNA-146a disrupts hematopoietic differentiation and survival // Exp Hematol. 2011. Vol. 39. No. 2. P. 167–178. doi: 10.1016/j.exphem.2010.09.011
  123. Starczynowski D.T., Kukenbauer F., Arigiropoulos B., et al. Identification of miR-145 and miR-146a as mediators of the 5q-syndrome phenotype // Nature Med. 2010. Vol. 16. No. 1. P. 49–58. doi: 10.1038/nm.2054
  124. Stenvang J., Petri A., Lindow M., et al. Inhibition of microRNA function by antimiR oligonucleotides // Silence. 2012. Vol. 3. No. 1. P. 1–17. doi: 10.1186/1758-907X-3-1
  125. Stuckrath I., Rack B., Janni W., et al. Aberrant plasma levels of circulating miR-16, miR-107, miR-130a and miR-146a are associated with lymph node metastasis and receptor status of breast cancer patients // Oncotarget. 2015. Vol. 6. No. 15. P. 13387–13401. doi: 10.18632/oncotarget.3874
  126. Sun M., Fang S., Li W., et al. Associations of miR-146a and miR-146b expression and clinical characteristics in papillary thyroid carcinoma // Cancer Biomark. 2015. Vol. 15. No. 1. P. 33–40. doi: 10.3233/CBM-140431
  127. Taganov K.D., Boldin M.P., Chang K.J., Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses // Proc Natl Acad Sci USA. 2006. Vol. 103. No. 33. P. 12481–12486. doi: 10.1073/pnas.0605298103
  128. Tan W., Liao Y., Qiu Y., et al. miRNA 146a promotes chemotherapy resistance in lung cancer cells by targeting DNA damage inducible transcript 3 (CHOP) // Cancer Lett. 2018. Vol. 428. P. 55–68. doi: 10.1016/j.canlet.2018.04.028
  129. Treiber T., Treiber N., Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways // Nat Rev Mol Cell Biol. 2019. Vol. 20. P. 5–20. doi: 10.1038/s41580-018-0059-1
  130. Turchinovich A., Weiz L., Langheinz A., Burwinkel B. Characterization of extracellular circulating microRNA // Nucleic Acids Res. 2011. Vol. 39. No. 16. P. 7223–7233. doi: 10.1093/nar/gkr254
  131. Vang S., Wu H.T., Fischer A., et al. Identification of ovarian cancer metastatic miRNAs // PLoS ONE. 2013. Vol. 8. No. 3. ID e58226. doi: 10.1371/journal.pone.0058226
  132. Velagapudi S.P., Vummidi B.R., Disney M.D. Small molecule chemical probes of microRNA function // Curr Opin Chem Biol. 2015. Vol. 24. P. 97–103. doi: 10.1016/j.cbpa.2014.10.024
  133. Viswanathan S.R., Daley G.Q. Lin28: A MicroRNA Regulator with a Macro Role // Cell. 2010. Vol. 140. No. 4. P. 445–449. doi: 10.1016/j.cell.2010.02.007
  134. Wani J.A., Majid S.M., Khan A., et al. Clinico-Pathological Importance of miR-146a in Lung Cancer // Diagnostics (Basel). 2021. Vol. 11. No. 2. ID274. doi: 10.3390/diagnostics11020274
  135. Wang C.-C., Chen X., Qu J., et al. RFSMMA: A New Computational Model to Identify and Prioritize Potential Small Molecule–miRNA Associations // J Chem Inf Model. 2019. Vol. 59. No. 4. P. 1668–1679. doi: 10.1021/acs.jcim.9b00129
  136. Wang R.J., Zheng Y.H., Wang P., Zhang J.Z. Serum miR-125a-5p, miR-145 and miR-146a as diagnostic biomarkers in non-small cell lung cancer // Int J Clin Exp Pathol. 2015. Vol. 8. No. 1. P. 765–771.
  137. Wang X., Gao H., Ren L., et al. Demethylation of the miR-146a promoter by 5-Aza-2'-deoxycytidine correlates with delayed progression of castration-resistant prostate cancer // BMC Cancer. 2014. Vol. 14. P. 1–11. doi: 10.1186/1471-2407-14-308
  138. Wang W.-M., Liu J.-C. Effect and molecular mechanism of mir-146a on proliferation of lung cancer cells by targeting and regulating MIF gene // Asian Pac J Trop Med. 2016. Vol. 9. No. 8. P. 806–811. doi: 10.1016/j.apjtm.2016.06.001
  139. Watashi K., Yeung M.L., Starost M.F., et al. Identification of Small Molecules That Suppress MicroRNA Function and Reverse Tumorigenesis // J Biol Chem. 2010. Vol. 285. No. 32. P. 24707–24716. doi: 10.1074/jbc.M109.062976
  140. Wei Y., Zou Z., Becker N., et al. EGFR-Mediated Beclin 1 Phosphorylation in Autophagy Suppression, Tumor Progression, and Tumor Chemoresistance // Cell. 2013. Vol. 154. No. 6. P. 1269–1284. doi: 10.1016/j.cell.2013.08.015
  141. Wiggins J.F., Ruffino L., Kelnar K., et al. Development of a Lung Cancer Therapeutic Based on the Tumor Suppressor MicroRNA-34 // Cancer Res. 2010. Vol. 70. No. 14. P. 5923–5930. doi: 10.1158/0008-5472.CAN-10-0655
  142. Woodhouse E.C., Chuaqui R.F., Liotta L.A. General mechanisms of metastasis // Cancer. 1997. Vol. 80. No. 8. P. 1529–1537. doi: 10.1002/(sici)1097-0142(19971015)80:8+<1529::aid-cncr2>3.3.co;2-#
  143. Wu C., Cao Y., He Z., et al. Serum Levels of miR-19b and miR-146a as Prognostic Biomarkers for Non-Small Cell Lung Cancer // Tohoku J Exp Med. 2014. Vol. 232. No. 2. P. 85–95. doi: 10.1620/tjem.232.85
  144. Wu K., He J., Pu W., Peng Y. The Role of Exportin-5 in MicroRNA Biogenesis and Cancer // Genomics Proteomics Bioinformatics. 2018. Vol. 16. No. 2. P. 120–126. doi: 10.1016/j.gpb.2017.09.004
  145. Xiao W., Zhong Y., Wu L., et al. Prognostic value of microRNAs in lung cancer: A systematic review and meta-analysis // Mol Clin Oncol. 2018. Vol. 10. No. 1. P. 67–77. doi: 10.3892/mco.2018.1763
  146. Yang H., Sun B., Xu K., et al. Pharmaco-transcriptomic correlation analysis reveals novel responsive signatures to HDAC inhibitors and identifies Dasatinib as a synergistic interactor in small-cell lung cancer // EBioМеdicine. 2021. Vol. 69. ID103457. doi: 10.1016/j.ebiom.2021.103457
  147. Yin J., Zhao J., Hu W., et al. Disturbance of the let-7/LIN28 double-negative feedback loop is associated with radio- and chemo-resistance in non-small cell lung cancer // PLoS ONE. 2017. Vol. 12. No. 2. ID e0172787. doi: 10.1371/journal.pone.0172787
  148. Yoon K.-A., Yoon H., Park S., et al. The prognostic impact of microRNA sequence polymorphisms on the recurrence of patients with completely resected non-small cell lung cancer // J Thorac Cardiovasc Surg. 2012. Vol. 144. No. 4. P. 794–807. doi: 10.1016/j.jtcvs.2012.06.030
  149. Yuwen D.L., Sheng B.B., Liu J., et al. MiR-146a-5p level in serum exosomes predicts therapeutic effect of cisplatin in non-small cell lung cancer // Eur Rev Med Pharm Sci. 2017. Vol. 21. No. 11. P. 2650–2658.
  150. Zaman M.S., Chen Y., Deng G., et al. The functional significance of microRNA-145 in prostate cancer // Br J Cancer. 2010. Vol. 103. No. 2. P. 256–264. doi: 10.1038/sj.bjc.6605742
  151. Zhang Y., Du H., Li Y., et al. Elevated TRIM23 expression predicts cisplatin resistance in lung adenocarcinoma // Cancer Sci. 2020. Vol. 111. No. 2. P. 637–646. doi: 10.1111/cas.14226
  152. Zhang Z., Zhang Y., Sun X.X., et al. microRNA-146a inhibits cancer metastasis by downregulating VEGF through dual pathways in hepatocellular carcinoma // Mol Cancer. 2015. Vol. 14. P. 1–15. doi: 10.1186/1476-4598-14-5
  153. Zhao J.L., Rao D.S., Boldin M.P., et al. NF-κB dysregulation in microRNAa-deficient mice drives the development of myeloid malignancies // Proc Natl Acad Sci USA. 2011. Vol. 108. No. 22. P. 9184–9189. doi: 10.1073/pnas.1105398108
  154. Zheng D., Haddadin S., Wang Y., et al. Plasma microRNAs as novel biomarkers for early detection of lung cancer // Int J Clin Exp Pathol. 2011. Vol. 4. No. 6. P. 575–586.
  155. Zeng Y., Yi R., Cullen B.R. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha // Embo J. 2004. Vol. 24. No. 1. P. 138–148. doi: 10.1038/sj.emboj.7600491
  156. Zhong H., Lu J., Jing S., et al. Low-dose rituximab lowers serum Exosomal miR-150-5p in AChR-positive refractory myasthenia gravis patients // J Neuroimmunol. 2020. Vol. 348. ID577383. doi: 10.1016/j.jneuroim.2020.577383
  157. Zhong M., Ma X., Sun C., Chen L. MicroRNAs reduce tumor growth and contribute to enhance cytotoxicity induced by gefitinib in non-small cell lung cancer // Chem Biol Interact. 2010. Vol. 184. No. 3. P. 431–438. doi: 10.1016/j.cbi.2010.01.025
  158. Zhou Y.-X., Zhao W., Mao L.-W., et al. Long non-coding RNA NIFK-AS1 inhibits M2 polarization of macrophages in endometrial cancer through targeting miR-146a // Int J Biochem Cell Biol. 2018. Vol. 104. P. 25–33. doi: 10.1016/j.biocel.2018.08.017
  159. Zhu X., Li Y., Xie C., et al. miR-145 sensitizes ovarian cancer cells to paclitaxel by targeting Sp1 and Cdk6 // Int J Cancer. 2014. Vol. 135. No. 6. P. 1286–1296. doi: 10.1002/ijc.28774
  160. Zucker S., Hymowitz M., Rollo E.E., et al. Tumorigenic Potential of Extracellular Matrix Metalloproteinase Inducer // Am J Pathol. 2001. Vol. 158. No. 6. P. 1921–1928. doi: 10.1016/S0002-9440(10)64660-3

© Ващенко В.И., Ромашова Ю.Е., Шабанов П.Д., 2021

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах