Using zebrafish (Danio rerio) to assess short-term memory: the habituation and the homebase tests

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Environmental novelty is one of the most potent stressors in animals and is often used in behavioral neuroscience to study affective and cognitive impairments. However, in the process of studying an unfamiliar environment in experimental animals, there is a decrease in stress due to habituation (adaptation, habituation). In various behavioral tests in zebrafish, this manifests as swimming in areas that pose a potential danger to them: the upper part of the aquarium in the novel tank test and the central part in the open field test. When building an effective survival strategy, it is important to navigate in an unfamiliar environment from a home base — the safest area that serves as a starting point in exploring a novel arena. Both discussed here, habitation and establishing the home base, are important for assessing cognitive behavioral traits in zebrafish related to short-term spatial working memory.

Full Text

Restricted Access

About the authors

David S. Galstyan

Saint Petersburg State University; A.M. Granov Russian Research Center for Radiology and Surgical Technologies; Almazov National Medical Research Centre

Email: david_sam@mail.ru
ORCID iD: 0000-0002-6213-5117

Research Associate

Russian Federation, Saint Petersburg; Saint Petersburg; Saint Petersburg

Tatyana O. Kolesnikova

Sirius University of Science and Technology

Email: philimontani@yandex.ru
ORCID iD: 0000-0002-5561-8583
SPIN-code: 8558-7887

Research Associate

Russian Federation, Sochi

Yurii M. Kositsyn

Saint Petersburg State University

Email: ikosicin53@gmail.com
ORCID iD: 0000-0002-4266-808X

Research Associate

Russian Federation, Saint Petersburg

Konstantin N. Zabegalov

Sirius University of Science and Technology

Email: hatokiri@mail.ru
ORCID iD: 0000-0002-9748-0324
SPIN-code: 5993-6315

Research Associate

Russian Federation, Sochi

Mariya A. Gubaidullina

Sirius University of Science and Technology

Email: mariangub@gmail.com

Research Associate

Russian Federation, Sochi

Gleb O. Maslov

Sirius University of Science and Technology; Ural Federal University

Email: maslovog6@gmail.com

Research Associate

Russian Federation, Sochi; Yekaterinburg

Konstantin A. Demin

Saint Petersburg State University; Sirius University of Science and Technology; Almazov National Medical Research Centre

Email: deminkasci@gmail.com
SPIN-code: 3830-1853

Cand. Sci. (Biol.), Senior Research Associate

Russian Federation, Saint Petersburg; Sochi; Saint Petersburg

Allan V. Kalueff

Saint Petersburg State University; A.M. Granov Russian Research Center for Radiology and Surgical Technologies; Sirius University of Science and Technology; Almazov National Medical Research Centre; Ural Federal University; Novosibirsk State University; Research Institute of Neuroscience and Medicine; Moscow Institute of Physics and Technology

Author for correspondence.
Email: avkalueff@gmail.com
ORCID iD: 0000-0002-7525-1950
SPIN-code: 4134-0515

Dr. Sci. (Biol.), Professor

Russian Federation, Saint Petersburg; Saint Petersburg; Sochi; Saint Petersburg; Yekaterinburg; Novosibirsk; Novosibirsk; Moscow

References

  1. Wong K, Elegante M, Bartels B, et al. Analyzing habituation responses to novelty in zebrafish (Danio rerio). Behav Brain Res. 2010;208(2):450–457. doi: 10.1016/j.bbr.2009.12.023
  2. Maximino C, de Brito TM, da Silva Batista AW, et al. Measuring anxiety in zebrafish: a critical review. Behav Brain Res. 2010;214(20):157–171. doi: 10.1016/j.bbr.2010.05.031
  3. Chanin S, Fryar C, Varga D, et al. Assessing startle responses and their habituation in adult zebrafish. In: Kalueff AV, Stewart AM. Zebrafish protocols for neurobehavioral research. Springer: 2012. P. 287–300. doi: 10.1007/978-1-61779-597-8_22
  4. Clark KJ, Boczek NJ, Ekker SC. Stressing zebrafish for behavioral genetics. Rev Neurosci. 2011;22(1). doi: 10.1515/RNS.2011.007
  5. Zurn J, Falls W, Motai Y. Detecting startle responses in the zebrafish using novel digital imaging techniques. Neuroscience Meeting Planner. Society for Neuroscience. San Diego, CA. 2006.
  6. Burgess HA, Johnson SL, Granato M. Unidirectional startle responses and disrupted left–right coordination of motor behaviors in robo3 mutant zebrafish. Genes Brain Behav. 2009;8(5):500–511. doi: 10.1111/j.1601-183X.2009.00499.x
  7. Pelkowski SD, Kapoor M, Richendrfer HA, et al. A novel high-throughput imaging system for automated analyses of avoidance behavior in zebrafish larvae. Behav Brain Res. 2011;223(1):135–144. doi: 10.1016/j.bbr.2011.04.033
  8. Mann KD, Hoyt C, Feldman S, et al. Cardiac response to startle stimuli in larval zebrafish: sympathetic and parasympathetic components. Am J Physiol Regul Integr Comp Physiol. 2010;298(5): R1288–R1297. doi: 10.1152/ajpregu.00302.2009
  9. Roberts AC, Reichl J, Song MY, et al. Habituation of the C-start response in larval zebrafish exhibits several distinct phases and sensitivity to NMDA receptor blockade. PLOS one. 2011;6(12):e29132. doi: 10.1371/journal.pone.0029132
  10. Vorhees CV, Williams MT. Assessing spatial learning and memory in rodents. ILAR J. 2014;55(2):310–32. doi: 10.1093/ilar/ilu013
  11. Eilam D, Golani I. Home base behavior of rats (Rattus norvegicus) exploring a novel environment. Behav Brain Res. 1989;34(3): 199–211. doi: 10.1016/s0166-4328(89)80102-0
  12. Benjamini Y, Tchernichovski O, Golani I. Constraints and the emergence of ‘free’ exploratory behavior in rat ontogeny. Behaviour. 1996;133(7/8):519–539. doi: 10.1163/156853996X00198
  13. Magara S, Holst S, Lundberg S, et al. Altered explorative strategies and reactive coping style in the FSL rat model of depression. Front Behav Neurosci. 2015;9:89. doi: 10.3389/fnbeh.2015.00089
  14. Leke R, de Oliveira DL, Mussulini BHM, et al. Impairment of the organization of locomotor and exploratory behaviors in bile duct-ligated rats. PLOS ONE. 2012;7(5):e36322. doi: 10.1371/journal.pone.0036322
  15. Gorny JH, Gorny B, Wallace DG, Whishaw IQ. Fimbria-fornix lesions disrupt the dead reckoning (homing) component of exploratory behavior in mice. Learning and Memory. 2002;9(6):387–394. doi: 10.1101/lm.53002
  16. Stewart A, Cachat JM, Wong K, et al. Phenotyping of zebrafish homebase behaviors in novelty-based tests. In: Kalueff AV, Cachat JM, editors. Zebrafish Neurobehavioral Protocols. Totowa, NJ: Humana Press, 2011. P. 143–155. doi: 10.1007/978-1-60761-953-6_12
  17. Rosemberg DB, Rico EP, Mussulini BHM, et al. Differences in spatio-temporal behavior of zebrafish in the open tank paradigm after a short-period confinement into dark and bright environments. PLOS ONE. 2011;6(5): e19397. doi: 10.1371/journal.pone.0019397
  18. Stewart A, Cachat J, Wong K, et al. Homebase behavior of zebrafish in novelty-based paradigms. Behav Processes. 2010;85(2): 198–203. doi: 10.1016/j.beproc.2010.07.009

Copyright (c) 2022 Galstyan D.S., Kolesnikova T.O., Kositsyn Y.M., Zabegalov K.N., Gubaidullina M.A., Maslov G.O., Demin K.A., Kalueff A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies