Роль окислительного стресса в патогенезе расстройств аутистического спектра

Обложка


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

В обзоре отражены сведения о роли окислительного стресса в патогенезе расстройств аутистического спектра. Представлены данные о значении генетической предрасположенности, воздействий факторов внешней среды, эпигенетических влияний в развитии окислительного стресса, который в критические периоды раннего развития мозга оказывает влияние на индукцию и прогрессирование заболевания. Показана роль митохондриальной дисфункции, иммунологических нарушений, повышения проницаемости гематоэнцефалического барьера, гипоперфузии мозга, вызывающих или усугубляющих окислительно-восстановительный дисбаланс у пациентов с расстройствами аутистического спектра. Анализ данных литературы свидетельствует, что повышение в крови и мозге пациентов с расстройствами аутистического спектра содержания супероксиддисмутазы, каталазы, глутатионпероксидазы, глутатионредуктазы, глутатиона, церулоплазмина и трансферрина отражает активацию компенсаторных механизмов. Увеличение в различных биологических средах уровней малонового диальдегида, ксантиноксидазы, оксида азота указывает на недостаточность системы антиоксидантной защиты. Учитывая роль окислительного стресса в патогенезе расстройств аутистического спектра для коррекции метаболических нарушений, показана терапия, включающая препараты антиоксидантной направленности.

Полный текст

Доступ закрыт

Об авторах

Светлана Георгиевна Белокоскова

Институт экспериментальной медицины

Email: belokoskova.sg@iemspb.ru
ORCID iD: 0000-0002-0552-4810
SPIN-код: 4317-6620
Scopus Author ID: 6507716078

д-р мед. наук, ст. научн. сотр. Физиологического отдела им. И.П. Павлова

Россия, Санкт-Петербург

Сергей Георгиевич Цикунов

Институт экспериментальной медицины

Автор, ответственный за переписку.
Email: secikunov@yandex.ru
ORCID iD: 0000-0002-7097-1940
SPIN-код: 7771-1940
Scopus Author ID: 6506948997

д-р мед. наук, профессор, заведующий лабораторией психофизиологии эмоций Физиологического отдела им. И.П. Павлова

Россия, Санкт-Петербург

Список литературы

  1. Арушанян Э.Б., Наумов С.С. Оксидативный стресс, как проблема психофармакологии // Обзоры по клинической фармакологии и лекарственной терапии. 2020. Т. 18, № 4. С. 297–311. doi: 10.17816/RCF184297-311
  2. Белокоскова С.Г., Мальсагова Э.М., Цикунов С.Г. Динамика возрастных структурно-функциональных изменений мозга больных расстройствами аутистического спектра // Медицинский академический журнал. 2019. Т. 19, № 3. С. 21–26. doi: 10.17816/MAJ19321-26
  3. Белокоскова С.Г., Цикунов С.Г. Антиоксидантная и прооксидантная система у больных ишемическим инсультом // Обзоры по клинической фармакологии и лекарственной терапии. 2021. Т. 19, № 3. С. 281–290. doi: 10.17816/RCF193281-290
  4. Болдырев А.А., Арзуманян Е.С., Кулебякин К.Ю., Березов Т.Т. Новые механизмы регуляции пластичности мозга // Нейрохимия. 2011. Т. 28, № 4. С. 340–344.
  5. Мальцева Н.В., Волчегорский И.А., Шемяков С.Е. Возрастные изменения морфометрических характеристик нейронов, клеток микроглии и активность ферментов антиоксидантной защиты в коре головного мозга человека на начальных этапах онтогенеза // Морфологические ведомости. 2016. Т. 24, № 1. С. 112–115. doi: 10.20340/mv-mn.2016.24(1):112-115
  6. Новиков В.Е., Левченкова О.С., Иванцова Е.Н., Воробьева В.В. Митохондриальные дисфункции и антигипоксанты // Обзоры по клинической фармакологии и лекарственной терапии. 2019. Т. 17, № 4. С. 31–42. doi: 10.17816/RCF17431-42
  7. Пороховник Л.Н., Пасеков В.П., Еголина Н.А., и др. Окислительный стресс, гены РРНК и антиоксидантные ферменты в патогенезе шизофрении и аутизма: моделирование и клинические рекомендации // Журнал общей биологии. 2013. Т. 74, № 5. С. 340–353.
  8. Российское общество психиатров. Расстройства аутистического спектра в детском возрасте: диагностика, терапия, профилактика, реабилитация. Клинические рекомендации. Москва, 2020. 125 с.
  9. Расстройства аутистического спектра: диагностика, лечение, наблюдение. Клинические рекомендации (протокол лечения) / под ред. Н.В. Симашковой, Е.В. Макушкина. Москва, 2015. 50 с.
  10. Afrazeh M., Saedisar S., Khakzad M.R., Hojati M. Measurement of serum superoxide dismutase and its relevance to disease intensity autistic children // Maedica (Buchar). 2015. Vol. 10, No. 4. P. 315–318.
  11. Akhondzadeh S., Fallah J., Mohammadi M.R., et al. Double-blind placebo-controlled trial of pentoxifylline added to risperidone: effects on aberrant behavior in children with autism // Prog Neuropsychopharmacol Biol Psychiatry. 2010. Vol. 34, No. 1. P. 32–36. doi: 10.1016/j.pnpbp.2009.09.012
  12. Al-Ayadhi L.Y., Mostafa G.A. A lack of association between elevated serum levels of S100B protein and autoimmunity in autistic children // J Neuroinflammation. 2012. Vol. 9. ID 54. doi: 10.1186/1742-2094-9-54
  13. Al-Gadani Y., El-Ansary A., Attas O., Al-Ayadhi L. Metabolic biomarkers related to oxidative stress and antioxidant status in Saudi autistic children // Clin Biochem. 2009. Vol. 42, No. 10–11. P. 1032–1040. doi: 10.1016/j.clinbiochem.2009.03.011
  14. Allen C.L., Bayraktutan U. Oxidative stress and its role in the pathogenesis of ischaemic stroke // Int J Stroke. 2009. Vol. 4, No. 6. P. 461–470. doi: 10.1111/j.1747-4949.2009.00387.x
  15. Al-Yafee Y.A., Al-Ayadhi L.Y., Haq S.H., El-Ansary A.K. Novel metabolic biomarkers related to sulfur-dependent detoxification pathways in autistic patients of Saudi Arabia // BMC Neurol. 2011. Vol. 11. ID 139. doi: 10.1186/1471-2377-11-139
  16. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. American Psychiatric Association, 2013. doi: 10.1176/appi. books.9780890425596
  17. Aoyama K., Nakaki T. Impaired glutathione synthesis in neurodegeneration // Int J Mol Sci. 2013. Vol. 14, No. 10. P. 21021–21044. doi: 10.3390/ijms141021021
  18. Armogida M., Nisticò R., Mercuri N.B. Therapeutic potential of targeting hydrogen peroxide metabolism in the treatment of brain ischemia // Br J Pharmacol. 2012. Vol. 166, No. 4. P. 1211–1224. doi: 10.1111/j.1476-5381.2012.01912.x
  19. Asadabadi M., Mohammadi M.-R., Ghanizadeh A., et al. Celecoxib as adjunctive treatment to risperidone in children with autistic disorder: a randomized, double-blind, placebo-controlled trial // Psychopharmacology (Berl). 2013. Vol. 225, No. 1. P. 51–59. doi: 10.1007/s00213-012-2796-8
  20. Asanuma M., Miyazaki I., Diaz-Corrales F.J., et al. Neuroprotective effects of zonisamide target astrocyte // Ann Neurol. 2010. Vol. 67, No. 2. P. 239–249. doi: 10.1002/ana.21885
  21. Bai J., Cederbaum A.I. Mitochondrial catalase and oxidative injury // Biol Signals Recept. 2001. Vol. 10, No. 3–4. P. 189–199. doi: 10.1159/000046887
  22. Bauman M.L. Medical comorbidities in autism: challenges to diagnosis and treatment // Neurotherapeutics. 2010. Vol. 7, No. 3. P. 320–327. doi: 10.1016/j.nurt.2010.06.001
  23. Berk M., Ng F., Dean O., et al. Glutathione: a novel treatment target in psychiatry // Trends Pharmacol Sci. 2008. Vol. 29, No. 7. P. 346–351. doi: 10.1016/j.tips.2008.05.001
  24. Bertoglio K., James J.S., Deprey L., et al. Pilot study of the effect of methyl B12 treatment on behavioral and biomarker measures in children with autism // J Altern Complement Med. 2010. Vol. 16, No. 5. P. 555–560. doi: 10.1089/acm.2009.0177
  25. Bjørklund G., Kern J.K., Urbina M.A., et al. Cerebral hypoperfusion in autism spectrum disorder // Acta Neurobiol Exp (Wars). 2018. Vol. 78, No. 1. P. 21–29. doi: 10.21307/ane-2018-005
  26. Bjørklund G., Meguid N.A., El-Ansary A., et al. Diagnostic and severity-tracking biomarkers for autism spectrum disorder // J Mol Neurosci. 2018. Vol. 66, No. 4. P. 492–511. doi: 10.1007/s12031-018-1192-1
  27. Bjørklund G., Tinkov A.A., Hosnedlová B., et al. The role of glutathione redox imbalance in autism spectrum disorder: A review // Free Radic Biol Med. 2020. Vol. 160. P. 149–162. doi: 10.1016/j.freeradbiomed.2020.07.017
  28. Bolotta A., Battistelli M., Falcieri E., et al. Oxidative stress in autistic children alters erythrocyte shape in the absence of quantitative protein alterations and of loss of membrane phospholipid asymmetry // Oxid Med Cell Longev. 2018. Vol. 2018. ID 6430601. doi: 10.1155/2018/6430601
  29. Bordet T., Berna P., Abitbol J.-L., Pruss R.M. Olesoxime (TRO19622): A novel mitochondrial-targeted neuroprotective compound // Pharmaceuticals (Basel). 2010. Vol. 3, No. 2. P. 345–368. doi: 10.3390/ph3020345
  30. Chauhan A., Audhya T., Chauhan V. Brain region-specific glutathione redox imbalance in autism // Neurochem Res. 2012. Vol. 37, No. 8. P. 1681–1689. doi: 10.1007/s11064-012-0775-4
  31. Chauhan A., Chauhan V., Brown W.T., Cohen I. Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin — the antioxidant proteins // Life Sci. 2004. Vol. 75, No. 21. P. 2539–2549. doi: 10.1016/j.lfs.2004.04.038
  32. Chauhan A., Gu F., Essa M.M., et al. Brain region-specific deficit in mitochondrial electron transport chain complexes in children with autism // J Neurochem. 2011. Vol. 117, No. 2. P. 209–220. doi: 10.1111/j.1471-4159.2011.07189.x
  33. Chauhan A., Chauhan V. Oxidative stress in autism // Pathophysiology. 2006. Vol. 13, No. 3. P. 171–181. doi: 10.1016/j.pathophys.2006.05.007
  34. Connolly A.M., Chez M.G., Pestronk A., et al. Serum autoantibodies to brain in Landau–Kleffner variant, autism, and other neurologic disorders // J Pediatr. 1999. Vol. 134, No. 5. P. 607–613. doi: 10.1016/s0022-3476(99)70248-9
  35. Courchesne E., Pramparo T., Gazestani V.H., et al. The ASD Living Biology: from cell proliferation to clinical phenotype // Mol Psychiatry. 2019. Vol. 24, No. 1. P. 88–107. doi: 10.1038/s41380-018-0056-y
  36. Cyr A.R., Domann F.E. The redox basis of epigenetic modifications: from mechanisms to functional consequences // Antioxid Redox Signal. 2011. Vol. 15, No. 2. P. 551–589. doi: 10.1089/ars.2010.3492
  37. Damodaran L.P.M., Arumugam G. Urinary oxidative stress markers in children with autism // Redox Rep. 2011. Vol. 16, No. 5. P. 216–222. doi: 10.1179/1351000211Y.0000000012
  38. Deth R., Muratore C., Benzecry J., et al. How environmental and genetic factors combine to cause autism: a redox/methylation hypothesis // Neurotoxicology. 2008. Vol. 29, No. 1. P. 190–201. doi: 10.1016/j.neuro.2007.09.010
  39. Dodd S., Dean O., Copolov D.L., et al. N-acetylcysteine for antioxidant therapy: Pharmacology and clinical utility // Expert Opin Biol Ther. 2008. Vol. 8, No. 12. P. 1955–1962. doi: 10.1517/14728220802517901
  40. Esnafoglu E., Nur Ayyıldız S., Cırrık S., et al. Evaluation of serum Neuron-specific enolase, S100B, myelin basic protein and glial fibrilliary acidic protein as brain specific proteins in children with autism spectrum disorder // Int J Dev Neurosci. 2017. Vol. 61, No. 1. P. 86–91. doi: 10.1016/j.ijdevneu.2017.06.011
  41. Essa M.M., Qoronfleh M.W., editors. Personalized food intervention and therapy for autism spectrum disorder management. Advances in Neurobiology. Vol. 24 / ed. by A. Schousboe. Springer Cham, 2020. doi: 10.1007/978-3-030-30402-7
  42. Essa M.M., Guillemin G.J., Waly M.I., et al. Increased markers of oxidative stress in autistic children of the Sultanate of Oman // Biol Trace Elem Res. 2012. Vol. 147, No. 1–3. P. 25–27. doi: 10.1007/s12011-011-9280-x
  43. Fatemi S.H., Aldinger K.A., Ashwood P., et al. Consensus paper: pathological role of the cerebellum in autism // Cerebellum. 2012. Vol. 11, No. 3. P. 777–807. doi: 10.1007/s12311-012-0355-9
  44. Feil R. Environmental and nutritional effects on the epigenetic regulation of genes // Mutat Res. 2006. Vol. 600, No. 1–2. P. 46–57. doi: 10.1016/j.mrfmmm.2006.05.029
  45. Fiorentino M., Sapone A., Senger S., et al. Blood-brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders // Mol Autism. 2016. Vol. 7. ID 49. doi: 10.1186/s13229-016-0110-z
  46. Förstermann U., Sessa W.C. Nitric oxide synthases: regulation and function // Eur Heart J. 2012. Vol. 33, No. 7. P. 829–837. doi: 10.1093/eurheartj/ehr304
  47. Franco R., Panayiotidis M.I., Cidlowski J.A. Glutathione depletion is necessary for apoptosis in lymphoid cells independent of reactive oxygen species formation // J Biol Chem. 2007. Vol. 282, No. 42. P. 30452–30465. doi: 10.1074/jbc.M703091200
  48. Froehlich-Santino W., Londono Tobon A., Cleveland S., et al. Prenatal and perinatal risk factors in a twin study of autism spectrum disorders // J Psychiatr Res. 2014. Vol. 54. P. 100–108. doi: 10.1016/j.jpsychires.2014.03.019
  49. Frustaci A., Neri M., Cesario A., et al. Oxidative stress-related biomarkers in autism: systematic review and meta-analyses // Free Radic Biol Med. 2012. Vol. 52, No. 10. P. 2128–2141. doi: 10.1016/j.freeradbiomed.2012.03.011
  50. Frye R.E., Delatorre R., Taylor H., et al. Redox metabolism abnormalities in autistic children associated with mitochondrial disease // Transl Psychiatry. 2013. Vol. 3, No. 6. ID e273. doi: 10.1038/tp.2013.51
  51. Gantner B.N., LaFond K.M., Bonini M.G. Nitric oxide in cellular adaptation and disease // Redox Biol. 2020. Vol. 34. ID 101550. doi: 10.1016/j.redox.2020.101550
  52. Gardener H., Spiegelman D., Buka S.L. Perinatal and neonatal risk factors for autism: a comprehensive meta-analysis // Pediatrics. 2011. Vol. 128, No. 2. P. 344–355. doi: 10.1542/peds.2010-1036
  53. Gebicka L., Krych-Madej J. The role of catalases in the prevention/promotion of oxidative stress // J Inorg Biochem. 2019. Vol. 197. ID 110699. doi: 10.1016/j.jinorgbio.2019.110699
  54. Ghaleiha A., Rasa S.M., Nikoo M., et al. A pilot double-blind placebo-controlled trial of pioglitazone as adjunctive treatment to risperidone: Effects on aberrant behavior in children with autism // Psychiatry Res. 2015. Vol. 229, No. 1–2. P. 181–187. doi: 10.1016/j.psychres.2015.07.043
  55. Ghanizadeh A. A novel hypothesized clinical implication of zonisamide for autism // Ann Neurol. 2011. Vol. 69, No. 2. P. 426–426. doi: 10.1002/ana.22153
  56. Ghanizadeh A. Methionine sulfoximine may improve inflammation in autism, a novel hypothesized treatment for autism // Arch Med Res. 2010. Vol. 41, No. 8. P. 651–652. doi: 10.1016/j.arcmed.2010.10.012
  57. Ghanizadeh A., Akhondzadeh S., Hormozi M., et al. Glutathione-related factors and oxidative stress in autism: A review // Curr Med Chem. 2012. Vol. 19, No. 23. P. 4000–4005. doi: 10.2174/092986712802002572
  58. Goh S., Dong Z., Zhang Y., et al. Mitochondrial dysfunction as a neurobiological subtype of autism spectrum disorder: evidence from brain imaging // JAMA Psychiatry. 2014. Vol. 71, No. 6. P. 665–671. doi: 10.1001/jamapsychiatry.2014.179
  59. Gu F., Chauhan V., Kaur K., et al. Alterations in mitochondrial DNA copy number and the activities of electron transport chain complexes and pyruvate dehydrogenase in the frontal cortex from subjects with autism // Transl Psychiatry. 2013. Vol. 3, No. 9. ID e299. doi: 10.1038/tp.2013.68
  60. Hafizi S., Tabatabaei D., Lai M.-C. Review of clinical studies targeting inflammatory pathways for individuals with autism // Front Psychiatry. 2019. Vol. 10. ID849. doi: 10.3389/fpsyt.2019.00849
  61. Heck D.E. •NO, RSNO, ONOO–, NO+, •NOO, NOx — dynamic regulation of oxidant scavenging, nitric oxide stores, and cyclic GMP-independent cell signaling // Antioxid Redox Signal. 2001. Vol. 3, No. 2. P. 249–260. doi: 10.1089/152308601300185205
  62. Hendren R.L., James S.J., Widjaja F., et al. Randomized, placebo-controlled trial of methyl B12 for children with autism // J Child Adolesc Psychopharmacol. 2016. Vol. 26, No. 9. P. 774–783. doi: 10.1089/cap.2015.0159
  63. Heo J.H., Han S.W., Lee S.K. Free radicals as triggers of brain edema formation after stroke // Free Radic Biol Med. 2005. Vol. 39, No. 1. P. 151–170. doi: 10.1016/j.freeradbiomed.2005.03.035
  64. Hu C.-C., Xu X., Xiong G.-L., et al. Alterations in plasma cytokine levels in Chinese children with autism spectrum disorder // Autism Res. 2018. Vol. 11, No. 7. P. 989–999. doi: 10.1002/aur.1940.
  65. Hu V.W. The expanding genomic landscape of autism: discovering the ‘forest’ beyond the ‘trees’ // Future Neurol. 2013. Vol. 8, No. 1. P. 29–42. doi: 10.2217/fnl.12.83
  66. Ivanov H.Y., Stoyanova V.K., Popov N.T., et al. Autism spectrum disorder — a complex genetic disorder // folia med (Plovdiv). 2015. Vol. 57, No. 1. P. 19–28. doi: 10.1515/folmed-2015-0015
  67. Jamain S., Betancur C., Giros B., et al. La génétique de l’autisme // Med Sci (Paris). 2003. Vol. 19, No. 11. P. 1081–1090. doi: 10.1051/medsci/200319111081
  68. James S.J., Cutler P., Melnyk S., et al. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism // Am J Clin Nutr. 2004. Vol. 80, No. 6. P. 1611–1617. doi: 10.1093/ajcn/80.6.1611
  69. James S.J., Melnyk S., Fuchs G., et al. Efficacy of methylcobalamin and folinic acid treatment on glutathione redox status in children with autism // Am J Clin Nutr. 2009. Vol. 89, No. 1. P. 425–430. doi: 10.3945/ajcn.2008.26615
  70. James S.J., Melnyk S., Jernigan S., et al. Abnormal transmethylation/transsulfuration metabolism and DNA hypomethylation among parents of children with autism // J Autism Dev Disord. 2008. Vol. 38, No. 10. P. 1966–1975. doi: 10.1007/s10803-008-0591-5
  71. James S.J., Melnyk S., Jernigan S., et al. Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism // Am J Med Genet B Neuropsychiatr Genet. 2006. Vol. 141B, No. 8. P. 947–956. doi: 10.1002/ajmg.b.30366
  72. Kealy J., Greene C., Campbell M. Blood-brain barrier regulation in psychiatric disorders // Neurosci Lett. 2020. Vol. 726. ID 133664. doi: 10.1016/j.neulet.2018.06.033
  73. Kondolot M., Ozmert E.N., Ascı A., et al. Plasma phthalate and bisphenol a levels and oxidant-antioxidant status in autistic children // Environ Toxicol Pharmacol. 2016. Vol. 43. P. 149–158. doi: 10.1016/j.etap.2016.03.006
  74. Kontos H.A. Oxygen radicals in cerebral ischemia: the 2001 Willis lecture // Stroke. 2001. Vol. 32, No. 11. P. 2712–2716. doi: 10.1161/hs1101.098653
  75. Ladd-Acosta C., Hansen K.D., Briem E., et al. Common DNA methylation alterations in multiple brain regions in autism // Mol Psychiatry. 2014. Vol. 19, No. 8. P. 862–871. doi: 10.1038/mp.2013.114
  76. László A., Novák Z., Szőllősi-Varga I., et al. Blood lipid peroxidation, antioxidant enzyme activities and hemorheological changes in autistic children // Ideggyogy Sz. 2013. Vol. 66, No. 1–2. P. 23–28.
  77. Li H., Horke S., Förstermann U. Oxidative stress in vascular disease and its pharmacological prevention // Trends Pharmacol Sci. 2013. Vol. 34, No. 6. P. 313–319. doi: 10.1016/j.tips.2013.03.007
  78. Li W., Busu C., Circu M.L., Aw T.Y. Glutathione in cerebral microvascular endothelial biology and pathobiology: implications for brain homeostasis // Int J Cell Biol. 2012. Vol. 2012. ID 434971. doi: 10.1155/2012/434971
  79. Mahadik S.P., Scheffer R.E. Oxidative injury and potential use of antioxidants in schizophrenia // Prostaglandins Leukot Essent Fatty Acids. 1996. Vol. 55, No. 1–2. P. 45–54. doi: 10.1016/s0952-3278(96)90144-1
  80. Main P.A.E., Angley M.T., O’Doherty C.E., et al. The potential role of the antioxidant and detoxification properties of glutathione in autism spectrum disorders: a systematic review and meta-analysis // Nutr Metab (Lond). 2012. Vol. 9. ID 35. doi: 10.1186/1743-7075-9-35
  81. Masini E., Loi E., Vega-Benedetti A.F., et al. An overview of the main genetic, epigenetic and environmental factors involved in autism spectrum disorder focusing on synaptic activity // Int J Mol Sci. 2020. Vol. 21, No. 21. ID 8290. doi: 10.3390/ijms21218290
  82. Meguid N.A., Ghozlan S.A.S., Mohamed M.F., et al. Expression of reactive oxygen species-related transcripts in Egyptian children with autism // Biomark Insights. 2017. Vol. 12. ID 1177271917691035. doi: 10.1177/1177271917691035
  83. Melnyk S., Fuchs G.J., Schulz E., et al. Metabolic imbalance associated with methylation dysregulation and oxidative damage in children with autism // J Autism Dev Disord. 2012. Vol. 42, No. 3. P. 367–377. doi: 10.1007/s10803-011-1260-7
  84. Menezo Y.J., Silvestris E., Dale B., Elder K. Oxidative stress and alterations in DNA methylation: two sides of the same coin in reproduction // Reprod BioMed Online. 2016. Vol. 33, No. 6. P. 668–683. doi: 10.1016/j.rbmo.2016.09.006
  85. Ming X., Stein T.P., Brimacombe M., et al. Increased excretion of a lipid peroxidation biomarker in autism // Prostaglandins Leukot Essent Fatty Acids. 2005. Vol. 73, No. 5. P. 379–384. DOI: 10.1016/j. plefa.2005.06.002
  86. Morris G., Anderson G., Dean O., et al. The glutathione system: a new drug target in neuroimmune disorders // Mol Neurobiol. 2014. Vol. 50, No. 3. P. 1059–1084. doi: 10.1007/s12035-014-8705-x
  87. Nadeem A., Ahmad S.F., Attia S.M., et al. Dysregulated enzymatic antioxidant network in peripheral neutrophils and monocytes in children with autism // Prog Neuropsychopharmacol Biol Psychiatry. 2019. Vol. 88. P. 352–359. doi: 10.1016/j.pnpbp.2018.08.020
  88. Nagarajan R.P., Patzel K.A., Martin M., et al. MECP2 promoter methylation and X chromosome inactivation in autism // Autism Res. 2008. Vol. 1, No. 3. P. 169–178. doi: 10.1002/aur.24
  89. Nardone S., Sams D.S., Reuveni E., et al. DNA methylation analysis of the autistic brain reveals multiple dysregulated biological pathways // Transl Psychiatry. 2014. Vol. 4, No. 9. ID e433. doi: 10.1038/tp.2014.70
  90. Newschaffer C.J., Croen L.A., Daniels J., et al. The epidemiology of autism spectrum disorders // Annu Rev Public Health. 2007. Vol. 28. P. 235–258. doi: 10.1146/annurev.publhealth.28.021406.144007
  91. Nguyen A., Rauch T.A., Pfeifer G.P., Hu V.W. Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain // FASEB J. 2010. Vol. 24, No. 8. P. 3036–3051. doi: 10.1096/fj.10-154484
  92. Pangrazzi L., Balasco L., Bozzi Y. Oxidative stress and immune system dysfunction in autism spectrum disorders // Int J Mol Sci. 2020. Vol. 21, No. 9. ID 3293. doi: 10.3390/ijms21093293
  93. Paşca S.P., Nemeş B., Vlase L., et al. High levels of homocysteine and low serum paraoxonase 1 arylesterase activity in children with autism // Life Sci. 2006. Vol. 78, No. 19. P. 2244–2248. doi: 10.1016/j.lfs.2005.09.040
  94. Ray P.D., Huang B.-W., Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling // Cell Signal. 2012. Vol. 24, No. 5. P. 981–990. doi: 10.1016/j.cellsig.2012.01.008
  95. Rose S., Melnyk S., Pavliv O., et al. Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain // Transl Psychiatry. 2012. Vol. 2, No. 7. ID e134. doi: 10.1038/tp.2012.61
  96. Rossignol D.A., Frye R.E. Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis // Mol Psychiatry. 2012. Vol. 17, No. 3. P. 290–314. doi: 10.1038/mp.2010.136
  97. Schanen N.C. Epigenetics of autism spectrum disorders // Hum Mol Genet. 2006. Vol. 15, No. S2. P. R138–R150. doi: 10.1093/hmg/ddl213
  98. Schulz J.B., Lindenau J., Seyfried J., Dichgans J. Glutathione, oxidative stress and neurodegeneration // Eur J Biochem. 2000. Vol. 267, No. 16. P. 4904–4911. doi: 10.1046/j.1432-1327.2000.01595.x
  99. Shichiri M. The role of lipid peroxidation in neurological disorders // J Clin Biochem Nutr. 2014. Vol. 54, No. 3. P. 151–160. doi: 10.3164/jcbn.14-10
  100. Siddiqui M.F., Elwell C., Johnson M.H. Mitochondrial dysfunction in autism spectrum disorders // Autism Open Access. 2016. Vol. 6, No. 5. ID 1000190. doi: 10.4172/2165-7890.10001900
  101. Söğüt S., Zoroğlu S.S., Ozyurt H., et al. Changes in nitric oxide levels and antioxidant enzyme activities may have a role in the pathophysiological mechanisms involved in autism // Clin Chim Acta. 2003. Vol. 331, No. 1–2. P. 111–117. doi: 10.1016/s0009-8981(03)00119-0
  102. Srikantha P., Mohajeri M.H. The possible role of the microbiota-gut-brain-axis in autism spectrum disorder // Int J Mol Sci. 2019. Vol. 20, No. 9. ID2115. doi: 10.3390/ijms20092115
  103. Tostes M.H.F.S., Teixeira H.C., Gattaz W.F., et al. Altered neurotrophin, neuropeptide, cytokines and nitric oxide levels in autism // Pharmacopsychiatry. 2012. Vol. 45, No. 6. P. 241–243. doi: 10.1055/s-0032-1301914
  104. Valiente-Pallejà A., Torrell H., Muntané G., et al. Genetic and clinical evidence of mitochondrial dysfunction in autism spectrum disorder and intellectual disability // Hum Mol Genet. 2018. Vol. 27, No. 5. P. 891–900. doi: 10.1093/hmg/ddy009
  105. Valko M., Leibfritz D., Moncol J., et al. Free radicals and antioxidants in normal physiological functions and human disease // Int J Biochem Cell Biol. 2007. Vol. 39, No. 1. P. 44–84. doi: 10.1016/j.biocel.2006.07.001
  106. Wang Q., Fan W., Cai Y., et al. Protective effects of taurine in traumatic brain injury via mitochondria and cerebral blood flow // Amino Acids. 2016. Vol. 48, No. 9. P. 2169–2177. doi: 10.1007/s00726-016-2244-x
  107. Weissman J.R., Kelley R.I., Bauman M.L., et al. Mitochondrial disease in autism spectrum disorder patients: a cohort analysis // PLoS One. 2008. Vol. 3, No. 11. ID e3815. doi: 10.1371/journal.pone.0003815
  108. Xu N., Li X., Zhong Y. Inflammatory cytokines: potential biomarkers of immunologic dysfunction in autism spectrum disorders // Mediators Inflamm. 2015. Vol. 2015. ID 531518. doi: 10.1155/2015/531518
  109. Yabuki M., Kariya S., Ishisaka R., et al. Resistance to nitric oxide-mediated apoptosis in HL-60 variant cells is associated with increased activities of Cu, Zn-superoxide dismutase and catalase // Free Radic Biol Med. 1999. Vol. 26, No. 3–4. P. 325–332. doi: 10.1016/S0891-5849(98)00203-2
  110. Yenkoyan K., Harutyunyan H., Harutyunyan A. A certain role of SOD/CAT imbalance in pathogenesis of autism spectrum disorders // Free Radic Biol Med. 2018. Vol. 123. P. 85–95. doi: 10.1016/j.freeradbiomed.2018.05.070
  111. Yorbik O., Sayal A., Akay C., et al. Investigation of antioxidant enzymes in children with autistic disorder // Prostaglandins Leukot Essent Fatty Acids. 2002. Vol. 67, No. 5. P. 341–343. doi: 10.1054/plef.2002.0439
  112. Yui K., Kawasaki Y., Yamada H., Ogawa S. oxidative stress and nitric oxide in autism spectrum disorder and other neuropsychiatric disorders // CNS Neurol Disord Drug Targets. 2016. Vol. 15, No. 5. P. 587–596. doi: 10.2174/1871527315666160413121751
  113. Zilbovicius M., Meresse I., Chabane N., et al. Autism, the superior temporal sulcus and social perception // Trends Neurosci. 2006. Vol. 29, No. 7. P. 359–366. doi: 10.1016/j.tins.2006.06.004
  114. Zoroglu S.S., Armutcu F., Ozen S., et al. Increased oxidative stress and altered activities of erythrocyte free radical scavenging enzymes in autism // Eur Arch Psychiatry Clin Neurosci. 2004. Vol. 254, No. 3. P. 143–147. doi: 10.1007/s00406-004-0456-7

© Эко-Вектор, 2023



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах