Oxidative stress as a problem of psychopharmacology

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The review presents current literary information about the physiological and pathophysiological aspects of oxidative stress and its participation in the development of schizophrenia and mental depression. Experimental and clinical data about its involvement in the effect of antipsychotic and antidepressant drugs are also summarized.

Full Text

Restricted Access

About the authors

Eduard B. Arushanyan

Stavropol State Medical University

Author for correspondence.
Email: eduard.arush@mail.ru

Dr. Med. Sci. (Pharmacology), Professor and Head, Department of Pharmacology

Russian Federation, Stavropol

Stanislav S. Naumov

Stavropol State Medical University

Email: n_stanislav@mail.ru

PhD (Pharmacology), Assistant Professor, Department of Pharmacology

Russian Federation, Stavropol

References

  1. Меньщикова Е.Б., Ланкин В.З., Зенков Н.К. и др. Окислительный стресс: прооксиданты и антиоксиданты. – М.: Слово, 2006. [Men’shchikova EB, Lankin VZ, Zenkov NK, et al. Okislitel’nyy stress: prooksidanty i antioksidanty. Moscow: Slovo; 2006. (In Russ.)]
  2. Culter PG, Mons JF. Oxidative stress. Basel: Birkhauser Verlag; 1995.
  3. Fendri C, Mechri A, Khiari G, et al. Implication du stress oxydant dans la physiopathologie de la schizophrénie: revue de la literature. L’Encéphale. 2006;32(2):244-252. https://doi.org/10.1016/s0013-7006(06)76151-6.
  4. Fahmy Wahba MG, Shehata Messiha BA, Abo-Saif AA. Ramipril and haloperidol as promising approaches in managing rheumatoid arthritis in rats. Eur J Pharmacol. 2015;765:307-315. https://doi.org/10.1016/j.ejphar. 2015.08.026.
  5. Ji B, La Y, Gao L, et al. A comparative proteomics analysis of rat mitochondria from the cerebral cortex and hippocampus in response to antipsychotic medications. J Proteome Res. 2009;8(7):3633-3641. https://doi.org/10.1021/pr800876z.
  6. Shi J, Tan YL, Wang ZR, et al. Ginkgo biloba and vitamin E ameliorate haloperidol-induced vacuous chewingmovement and brain-derived neurotrophic factor expression in a rat tardive dyskinesia model. Pharmacol Biochem Behav. 2016;148:53-58. https://doi.org/10.1016/j.pbb. 2016.06.003.
  7. Vasconcelos GS, Ximenes NC, de Sousa CN, et al. Alpha-lipoic acid alone and combined with clozapine reverses schizophrenia-like symptoms induced by ketamine in mice: Participation of antioxidant, nitrergic and neurotrophic mechanisms. Schizophr Res. 2015;165(2-3):163-170. https://doi.org/10.1016/j.schres.2015.04.017.
  8. Kracmarova A, Polanka M. The impact of clozapine on regulation of inflammation in murine macrophage cells. Neuro Endocrinol Lett. 2014;35 Suppl 2:175-179.
  9. Mhillaj E, Morgese MG, Trabace L. Early life and oxidative stress in psychiatric disorders: what can we learn from animal models? Curr Pharm Des. 2015;21(11):1396-1403. https://doi.org/10.2174/1381612821666150105122422.
  10. Modabbernia A, Heidari P, Soleimani R, et al. Melatonin for prevention of metabolic side-effects of olanzapine in patients with first-episode schizophrenia: randomized double-blind placebo-controlled study. J Psychiatr Res. 2014;53:133-140. https://doi.org/10.1016/j.jpsychires.2014.02.013.
  11. Reiter RJ, Calvo JR, Karbownik M, et al. Melatonin and its relation to the immune system and inflammation. Ann NY Acad Sci. 2000;917:376-386. https://doi.org/10.1111/j.1749-6632.2000.tb05402.x.
  12. Uguz AC, Demirci K, Espino J. The Importance of Melatonin and Mitochondria Interaction in Mood Disorders and Schizophrenia: A Current Assessment. Curr Med Chem. 2016;23(20):2146-2158. https://doi.org/10.2174/0929867323666160428105849.
  13. Harman D. Free radical theory of aging: an update: increasing the functional life span. Ann N Y Acad Sci. 2006;1067:10-21. https://doi.org/10.1196/annals. 1354.003.
  14. Harman D. Free radical theory of aging: an update: increasing the functional life span. Ann NY Acad Sci. 2006;1067:10-21. https://doi.org/10.1196/annals. 1354.003.
  15. Morera-Fumero AL, Abreu-Gonzalez P. Role of melatonin in schizophrenia. Int J Mol Sci. 2013;14(5):9037-9050. https://doi.org/10.3390/ijms14059037.
  16. Padurariu M, Ciobica A, Dobrin I, Stefanescu C. Evaluation of antioxidant enzymes activities and lipid peroxidation in schizophrenic patients treated with typical and atypical antipsychotics. Neurosci Lett. 2010;479(3):317-320. https://doi.org/10.1016/j.neulet.2010.05.088.
  17. Zhang XY, Tan YL, Cao LY, et al. Antioxidant enzymes and lipid peroxidation in different forms of schizophrenia treated with typical and atypical antipsychotics. Schizophr Res. 2006;81(2-3):291-300. https://doi.org/10.1016/j.schres.2005.10.011.
  18. MacDowell KS, Garcia-Bueno B, Madrigal JL, et al. Risperidone normalizes increased inflammatory parameters and restores anti-inflammatory pathways in a model of neuroinflammation. Int J Neuropsychopharmacol. 2013;16(1):121-135. https://doi.org/10.1017/S1461145711001775.
  19. Wu JQ, Kosten TR, Zhang XY. Free radicals, antioxidant defense systems, and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2013;46:200-206. https://doi.org/10.1016/j.pnpbp.2013.02.015.
  20. Dakhale GN, Khanzode SD, Khanzode SS, Saoji A. Supplementation of vitamin C with atypical antipsychotics reduces oxidative stress and improves the outcome of schizophrenia. Psychopharmacology (Berl). 2005;182(4):494-498. https://doi.org/10.1007/s00213-005-0117-1.
  21. Maric NP, Jovicic MJ, Mihaljevic M, Miljevic C. Improving Current Treatments for Schizophrenia. Drug Dev Res. 2016;77(7):357-367. https://doi.org/10.1002/ddr.21337.
  22. Elmorsy E, Elzalabany LM, Elsheikha HM, Smith PA. Adverse effects of antipsychotics on micro-vascular endothelial cells of the human blood-brain barrier. Brain Res. 2014;1583:255-268. https://doi.org/10.1016/j.brainres.2014.08.011.
  23. Pandya CD, Kutiyanawalla A, Pillai A. BDNF-TrkB signaling and neuroprotection in schizophrenia. Asian J Psychiatr. 2013;6(1):22-28. https://doi.org/10.1016/j.ajp. 2012.08.010.
  24. Xuan Y, Yan G, Wu R, et al. The cuprizone-induced changes in (1)H-MRS metabolites and oxidative parameters in C57BL/6 mouse brain: Effects of quetiapine. Neurochem Int. 2015;90:185-192. https://doi.org/10.1016/j.neuint.2015.08.015.
  25. Yang MC, Chen KP, Lung FW. Generalized estimating equation model and long-term exposure effect of antipsychotics on SH-SY5Y cells against oxidative stressors. Eur J Pharmacol. 2014;740:697-702. https://doi.org/10.1016/j.ejphar.2014.06.007.
  26. Yang MC, Chen KP, Lung FW. Generalized estimating equation model and long-term exposure effect of antipsychotics on SH-SY5Y cells against oxidative stressors. Eur J Pharmacol. 2014;740:697-702. https://doi.org/10.1016/j.ejphar.2014.06.007.
  27. Brinholi FF, Farias CC, Bonifacio KL, et al. Clozapine and olanzapine are better antioxidants than haloperidol, quetiapine, risperidone and ziprasidone in in vitro models. Biomed Pharmacother. 2016;81:411-415. https://doi.org/10.1016/j.biopha.2016.02.047.
  28. Rossell SL, Francis PS, Galletly C, et al. N-acetylcysteine (NAC) in schizophrenia resistant to clozapine: a double blind randomised placebo controlled trial targeting negative symptoms. BMC Psychiatry. 2016;16(1):320. https://doi.org/10.1186/s12888-016-1030-3.
  29. Ji B, La Y, Gao L, et al. A comparative proteomics analysis of rat mitochondria from the cerebral cortex and hippocampus in response to antipsychotic medications. J Proteome Res. 2009;8(7):3633-3641. https://doi.org/10.1021/pr800876z.
  30. Reus GZ, Fries GR, Stertz L, et al. The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience. 2015;300:141-154. https://doi.org/10.1016/j.neuroscience.2015.05.018.
  31. Cheon Y, Park JY, Modi HR, et al. Chronic olanzapine treatment decreases arachidonic acid turnover and prostaglandin E(2) concentration in rat brain. J Neurochem. 2011;119(2):364-376. https://doi.org/10.1111/j.1471-4159.2011.07410.x.
  32. Hashimoto K. Targeting of NMDA receptors in new treatments for schizophrenia. Expert Opin Ther Targets. 2014;18(9):1049-1063. https://doi.org/10.1517/14728222.2014.934225.
  33. Lu LX, Guo SQ, Chen W, et al. Effect of clozapine and risperidone on serum cytokine levels in patients with first-episode paranoid schizophrenia. Di Yi Jun Yi Da Xue Xue Bao. 2004:24(11);1251-1254.
  34. Koga M, Serritella AV, Sawa A, Sedlak TW. Implications for reactive oxygen species in schizophrenia pathogenesis. Schizophr Res. 2016;176(1):52-71. https://doi.org/10.1016/j.schres.2015.06.022.
  35. Sobis J, Rykaczewska-Czerwinska M, Swietochowska E, Gorczyca P. Therapeutic effect of aripiprazole in chronic schizophrenia is accompanied by anti-inflammatory activity. Pharmacol Rep. 2015;67(2):353-359. https://doi.org/10.1016/j.pharep.2014.09.007.
  36. Leza JC, Garcia-Bueno B, Bioque M, et al. Inflammation in schizophrenia: A question of balance. Neurosci Biobehav Rev. 2015;55:612-626. https://doi.org/10.1016/j.neubiorev.2015.05.014.
  37. Muller N. Inflammation and the glutamate system in schizophrenia: implications for therapeutic targets and drug development. Expert Opin Ther Targets. 2008;12(12): 1497-1507. https://doi.org/10.1517/14728220802507852.
  38. Smaga I, Niedzielska E, Gawlik M, et al. Oxidative stress as an etiological factor and a potential treatment target of psychiatric disorders. Part 2. Depression, anxiety, schizophrenia and autism. Pharmacol Rep. 2015;67(3): 569-580. https://doi.org/10.1016/j.pharep.2014. 12.015.
  39. Deng C, Pan B, Hu CH, et al. Differential effects of short- and long-term antipsychotic treatment on the expression of neuregulin-1 and ErbB4 receptors in the rat brain. Psychiatry Res. 2015;225(3):347-354. https://doi.org/10.1016/j.psychres.2014.12.014.
  40. Pandya CD, Howell KR, Pillai A. Antioxidants as potential therapeutics for neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2013;46:214-223. https://doi.org/10.1016/j.pnpbp.2012.10.017.
  41. Akbar M, Essa MM, Daradkeh G, et al. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress. Brain Res. 2016;1637:34-55. https://doi.org/10.1016/j.brainres.2016.02.016.
  42. Anglin RE, Garside SL, Tarnopolsky MA, et al. The psychiatric manifestations of mitochondrial disorders: a case and review of the literature. J Clin Psychiatry. 2012;73(4): 506-512. https://doi.org/10.4088/JCP.11r07237.
  43. Stefanovic V, Mihajlovic G, Nenadovic M, et al. The effect of antipsychotic drugs on nonspecific inflammation markers in the first episode of schizophrenia. Vojnosanit Pregl. 2015;72(12):1085-1092. https://doi.org/10.2298/vsp140526016s.
  44. Eftekhari A, Azarmi Y, Parvizpur A, Eghbal MA. Involvement of oxidative stress and mitochondrial/lysosomal cross-talk in olanzapine cytotoxicity in freshly isolated rat hepatocytes. Xenobiotica. 2016;46(4):369-378. https://doi.org/10.3109/00498254.2015.1078522.
  45. Arroll MA, Wilder L, Neil J. Nutritional interventions for the adjunctive treatment of schizophrenia: a brief review. Nutr J. 2014;13:91. https://doi.org/10.1186/1475-2891-13-91.
  46. Ribeiro BM, do Carmo MR, Freire RS, et al. Evidences for a progressive microglial activation and increase in iNOS expression in rats submitted to a neurodevelopmental model of schizophrenia: reversal by clozapine. Schizophr Res. 2013;151(1-3):12-19. https://doi.org/10.1016/j.schres. 2013.10.040.
  47. Safhi MM. Neuromodulatory effects of thymoquinone in extenuating oxidative stress in chlorpromazine treated rats. Acta Pol Pharm. 2016;73(2):529-535.
  48. Sadowska-Bartosz I, Galiniak S, Bartosz G, et al. Antioxidant properties of atypical antipsychotic drugs used in the treatment of schizophrenia. Schizophr Res. 2016;176(2-3):245-251. https://doi.org/10.1016/j.schres.2016.07.010.
  49. Sun T, Zhao C, Hu G, Li M. Iptakalim: a potential antipsychotic drug with novel mechanisms? Eur J Pharmacol. 2010;634(1-3):68-76. https://doi.org/10.1016/j.ejphar.2010.02.024.
  50. Арушанян Э.Б. Ограничение окислительного стресса как основная причина универсальных защитных свойств мелатонина // Экспериментальная и клиническая фармакология. – 2012. – Т. 75. – № 5. – С. 44–49. [Arushanyan EB. Limitation of oxidative stress as the main factor of the universal protective properties of melatonin. Experimental and clinical pharmacology. 2012;75(5): 44-49. (In Russ.)]. https://doi.org/10.30906/0869-2092-2012-75-5-44-49.
  51. Qing H, Xu H, Wei Z, et al. The ability of atypical antipsychotic drugs vs. haloperidol to protect PC12 cells against MPP+-induced apoptosis. Eur J Neurosci. 2003;17(8):1563-1570. https://doi.org/10.1046/j.1460-9568.2003.02590.x.
  52. Vavakova M, Durackova Z, Trebaticka J. Markers of Oxidative Stress and Neuroprogression in Depression Disorder. Oxid Med Cell Longev. 2015;2015:898393. https://doi.org/10.1155/2015/898393.
  53. Арушанян Э.Б. Мелатонин — универсальный стабилизатор психической деятельности // Журнал высшей нервной деятельности им. И.П. Павлова. – 2011. – Т. 61. – С. 645–659. [Arushanyan EB. Melatonin – universal’nyy stabilizator psikhicheskoy deyatel’nosti. Zh Vyssh Nerv Deiat Im I P Pavlova. 2011;61(6):645-659. (In Russ.)]
  54. Afonso P, Figueira ML, Paiva T. Sleep-promoting action of the endogenous melatonin in schizophrenia compared to healthy controls. Int J Psychiatry Clin Pract. 2011;15(4):311-315. https://doi.org/10.3109/13651501. 2011.605954.
  55. Арушанян Э.Б., Бейер Э.В., Милосердова А.А. Нейролептические средства и мелатонин // Экспериментальная и клиническая фармакология. – 2016. – Т. 79. – № 8. – С. 38–44. [Arushanyan EB, Beyer EV, Miloserdova AA. Neuroleptic drugs and melatonin. Experimental and clinical pharmacology. 2016;79(8):38-44. (In Russ.)]
  56. Miller BJ, Culpepper N, Rapaport MH. C-reactive protein levels in schizophrenia: a review and meta-analysis. Clin Schizophr Relat Psychoses. 2014;7(4):223-230. https://doi.org/10.3371/CSRP.MICU.020813.
  57. Monji A, Kato TA, Mizoguchi Y, et al. Neuroinflammation in schizophrenia especially focused on the role of microglia. Prog Neuropsychopharmacol Biol Psychiatry. 2013;42:115-121. https://doi.org/10.1016/j.pnpbp.2011.12.002.
  58. Maes M, Fisar Z, Medina M, et al. New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates-Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology. 2012;20(3):127-150. https://doi.org/10.1007/s10787-011-0111-7.
  59. Anglin RE, Garside SL, Tarnopolsky MA, et al. The psychiatric manifestations of mitochondrial disorders: a case and review of the literature. J Clin Psychiatry. 2012;73(4): 506-512. https://doi.org/10.4088/JCP.11r07237.
  60. Chang CC, Jou SH, Lin TT, Liu CS. Mitochondrial DNA variation and increased oxidative damage in euthymic patients with bipolar disorder. Psychiatry Clin Neurosci. 2014;68(7):551-557. https://doi.org/10.1111/pcn.12163.
  61. Fattal O, Budur K, Vaughan AJ, Franco K. Review of the literature on major mental disorders in adult patients with mitochondrial diseases. Psychosomatics. 2006;47(1): 1-7. https://doi.org/10.1176/appi.psy.47.1.1.
  62. Jou SH, Chiu NY, Liu CS. Mitochondrial dysfunction and psychiatric disorders. Chang Gung Med J. 2009;32(4):370-379.
  63. Jiang B, Wang YJ, Wang H, et al. Antidepressant-like effects of fenofibrate in mice via the hippocampal brain-derived neurotrophic factor signalling pathway. Br J Pharmacol. 2017;174(2):177-194. https://doi.org/10.1111/bph.13668.
  64. Kim MY, Lee JW, Kang HC, et al. Leukocyte mitochondrial DNA (mtDNA) content is associated with depression in old women. Arch Gerontol Geriatr. 2011;53(2): e218-e221. https://doi.org/10.1016/j.archger.2010.11.019.
  65. Jaracz J, Rybakowski J. Studies of cerebral blood flow in metabolism in depression using position emission tomography (PET). Psychiatr Pol. 2002;36(4): 617-628.
  66. Videbech P. PET measurements of brain glucose metabolism and blood flow in major depressive disorder: a critical review. Acta Psychiatr Scand. 2000;101(1):11-20. https://doi.org/10.1034/j.1600-0447.2000.101001011.x.
  67. Bagot RC, Parise EM, Pena CJ, et al. Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. Nat Commun. 2015;6:7062. https://doi.org/10.1038/ncomms8062.
  68. Hong H, Kim BS, Im HI. Pathophysiological Role of Neuroinflammation in Neurodegenerative Diseases and Psychiatric Disorders. Int Neurourol J. 2016;20(Suppl 1):S2-7. https://doi.org/10.5213/inj.1632604.302.
  69. Leonard B, Maes M. Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev. 2012;36(2):764-785. https://doi.org/10.1016/j.neubiorev.2011.12.005.
  70. Maes M, Yirmyia R, Noraberg J, et al. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis. 2009;24(1):27-53. https://doi.org/10.1007/s11011-008-9118-1.
  71. Martin-Subero M, Anderson G, Kanchanatawan B, et al. Comorbidity between depression and inflammatory bowel disease explained by immune-inflammatory, oxidative, and nitrosative stress; tryptophan catabolite; and gut-brain pathways. CNS Spectr. 2016;21(2):184-198. https://doi.org/10.1017/S1092852915000449.
  72. Arora V, Chopra K. Possible involvement of oxido-nitrosative stress induced neuro-inflammatory cascade and monoaminergic pathway: underpinning the correlation between nociceptive and depressive behaviour in a rodent model. J Affect Disord. 2013;151(3):1041-1052. https://doi.org/10.1016/j.jad.2013.08.032.
  73. Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 2001;24: 677-736. https://doi.org/10.1146/annurev.neuro.24.1.677.
  74. Lewin GR, Barde YA. Physiology of the neurotrophins. Annu Rev Neurosci. 1996;19:289-317. https://doi.org/10.1146/annurev.ne.19.030196.001445.
  75. Skaper SD. The neurotrophin family of neurotrophic factors: an overview. Methods Mol Biol. 2012;846:1-12. https://doi.org/10.1007/978-1-61779-536-7_1.
  76. Lee BH, Kim YK. Reduced platelet BDNF level in patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(5):849-853. https://doi.org/10.1016/j.pnpbp.2009.04.002.
  77. Nuernberg GL, Aguiar B, Bristot G, et al. Brain-derived neurotrophic factor increase during treatment in severe mental illness inpatients. Transl Psychiatry. 2016;6(12): e985. https://doi.org/10.1038/tp.2016.227.
  78. Numakawa T, Richards M, Nakajima S, et al. The role of brain-derived neurotrophic factor in comorbid depression: possible linkage with steroid hormones, cytokines, and nutrition. Front Psychiatry. 2014;5:136. https://doi.org/10.3389/fpsyt.2014.00136.
  79. Pandya CD, Hoda N, Crider A, et al. Transglutaminase 2 overexpression induces depressive-like behavior and impaired TrkB signaling in mice. Mol Psychiatry. 2017;22(5): 745-753. https://doi.org/10.1038/mp.2016.145.
  80. Shirayama Y, Chen ACH, Nakagawa S, et al. Brain-Derived Neurotrophic Factor Produces Antidepressant Effects in Behavioral Models of Depression. J Neurosci. 2002;22(8):3251-3261. https://doi.org/10.1523/jneurosci.22-08-03251.2002.
  81. Chang CC, Jou SH, Lin TT, et al. Mitochondria DNA change and oxidative damage in clinically stable patients with major depressive disorder. PLoS One. 2015;10(5): e0125855. https://doi.org/10.1371/journal.pone.0125855.
  82. Herbet M, Izdebska M, Piatkowska-Chmiel I, et al. Estimation of oxidative stress parameters in rats after simultaneous administration of rosuvastatin with antidepressants. Pharmacol Rep. 2016;68(1):172-176. https://doi.org/10.1016/j.pharep.2015.08.004.
  83. Herken H, Gurel A, Selek S, et al. Adenosine deaminase, nitric oxide, superoxide dismutase, and xanthine oxidase in patients with major depression: impact of antidepressant treatment. Arch Med Res. 2007;38(2):247-252. https://doi.org/10.1016/j.arcmed.2006.10.005.
  84. Jimenez-Fernandez S, Gurpegui M, Diaz-Atienza F, et al. Oxidative stress and antioxidant parameters in patients with major depressive disorder compared to healthy controls before and after antidepressant treatment: results from a meta-analysis. J Clin Psychiatry. 2015;76(12):1658-1667. https://doi.org/10.4088/JCP.14r09179.
  85. Abdel-Wahab BA, Salama RH. Venlafaxine protects against stress-induced oxidative DNA damage in hippocampus during antidepressant testing in mice. Pharmacol Biochem Behav. 2011;100(1):59-65. https://doi.org/10.1016/j.pbb.2011.07.015.
  86. Callaly E, Walder K, Morris G, et al. Mitochondrial dysfunction in the pathophysiology of bipolar disorder: effects of pharmacotherapy. Mini Rev Med Chem. 2015;15(5): 355-365. https://doi.org/10.2174/1389557515666150324122026.
  87. Sun Y, Narayan VA, Wittenberg GM. Side effect profile similarities shared between antidepressants and immune-modulators reveal potential novel targets for treating major depressive disorders. BMC Pharmacol Toxicol. 2016;17(1):47. https://doi.org/10.1186/s40360-016-0090-9.
  88. Ajmone-Cat MA, Bernardo A, Greco A, Minghetti L. Non-Steroidal Anti-Inflammatory Drugs and Brain Inflammation: Effects on Microglial Functions. Pharmaceuticals (Basel). 2010;3(6):1949-1965. https://doi.org/10.3390/ph3061949.
  89. Raison CL. The Promise and Limitations of Anti-Inflammatory Agents for the Treatment of Major Depressive Disorder. In: Inflammation-Associated Depression: Evidence, Mechanisms and Implications. Current Topics in Behavioral Neurosciences. Vol. 31. Ed. By R. Dantzer, L. Capuron. Cham: Springer; 2016. P. 287-302. https://doi.org/10.1007/7854_2016_26.
  90. Kappelmann N, Lewis G, Dantzer R. et al. Antidepressant activity of anti-cytokine treatment: a systematic review and meta-analysis of clinical trials of chronic inflammatory conditions. Mol Psychiatry. 2018;23(2):335-343. https://doi.org/10.1038/mp.2016.167.
  91. Kohler O, Krogh J, Mors O, Benros ME. Inflammation in Depression and the Potential for Anti-Inflammatory Treatment. Curr Neuropharmacol. 2016;14(7):732-742. https://doi.org/10.2174/1570159x14666151208113700.
  92. Schmidt FM, Kirkby KC, Lichtblau N. Inflammation and Immune Regulation as Potential Drug Targets in Antidepressant Treatment. Curr Neuropharmacol. 2016;14(7):674-687. https://doi.org/10.2174/1570159x14666160115130414.
  93. Gonul AS, Akdeniz F, Taneli F, et al. Effect of treatment on serum brain-derived neurotrophic factor levels in depressed patients. Eur Arch Psychiatry Clin Neurosci. 2005;255(6): 381-386. https://doi.org/10.1007/s00406-005-0578-6.
  94. Gonul AS, Akdeniz F, Taneli F, et al. Effect of treatment on serum brain-derived neurotrophic factor levels in depressed patients. Eur Arch Psychiatry Clin Neurosci. 2005;255(6): 381-386. https://doi.org/10.1007/s00406-005-0578-6.
  95. Basterzi AD, Yazici K, Aslan E, et al. Effects of fluoxetine and venlafaxine on serum brain derived neurotrophic factor levels in depressed patients. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(2):281-285. https://doi.org/10.1016/j.pnpbp.2008.11.016.
  96. Yoshimura R, Mitoma M, Sugita A, et al. Effects of paroxetine or milnacipran on serum brain-derived neurotrophic factor in depressed patients. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(5):1034-1037. https://doi.org/10.1016/j.pnpbp.2007.03.001.
  97. Castren E, Rantamaki T. The role of BDNF and its receptors in depression and antidepressant drug action: Reactivation of developmental plasticity. Dev Neurobiol. 2010;70(5): 289-297. https://doi.org/10.1002/dneu.20758.
  98. Ma M, Ren Q, Yang C, et al. Antidepressant effects of combination of brexpiprazole and fluoxetine on depression-like behavior and dendritic changes in mice after inflammation. Psychopharmacology (Berl). 2017;234(4):525-533. https://doi.org/10.1007/s00213-016-4483-7.
  99. Shirayama Y, Yang C, Zhang JC, et al. Alterations in brain-derived neurotrophic factor (BDNF) and its precursor proBDNF in the brain regions of a learned helplessness rat model and the antidepressant effects of a TrkB agonist and antagonist. Eur Neuropsychopharmacol. 2015;25(12):2449-2458. https://doi.org/10.1016/j.euroneuro.2015.09.002.
  100. Pandya CD, Howell KR, Pillai A. Antioxidants as potential therapeutics for neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2013;46:214-223. https://doi.org/10.1016/j.pnpbp.2012.10.017.

Copyright (c) 2020 Arushanyan E.B., Naumov S.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies