Оксидативный стресс, как проблема психофармакологии

Обложка


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

В обзоре представлены современные литературные сведения о физиологических и патофизиологических аспектах оксидативного стресса и его участие в развитии шизофрении и психической депрессии. Обобщаются также экспериментальные и клинические данные о вовлечении оксидативного стресса в эффект антипсихотических и антидепрессивных средств.

Полный текст

Доступ закрыт

Об авторах

Эдуард Бениаминович Арушанян

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ставропольский государственный медицинский университет»

Автор, ответственный за переписку.
Email: eduard.arush@mail.ru

д-р мед. наук, профессор, заведующий кафедрой фармакологии

Россия, Ставрополь

Станислав Сергеевич Наумов

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ставропольский государственный медицинский университет»

Email: n_stanislav@mail.ru

канд. мед. наук, доцент кафедры фармакологии

Россия, Ставрополь

Список литературы

  1. Меньщикова Е.Б., Ланкин В.З., Зенков Н.К. и др. Окислительный стресс: прооксиданты и антиоксиданты. – М.: Слово, 2006. [Men’shchikova EB, Lankin VZ, Zenkov NK, et al. Okislitel’nyy stress: prooksidanty i antioksidanty. Moscow: Slovo; 2006. (In Russ.)]
  2. Culter PG, Mons JF. Oxidative stress. Basel: Birkhauser Verlag; 1995.
  3. Fendri C, Mechri A, Khiari G, et al. Implication du stress oxydant dans la physiopathologie de la schizophrénie: revue de la literature. L’Encéphale. 2006;32(2):244-252. https://doi.org/10.1016/s0013-7006(06)76151-6.
  4. Fahmy Wahba MG, Shehata Messiha BA, Abo-Saif AA. Ramipril and haloperidol as promising approaches in managing rheumatoid arthritis in rats. Eur J Pharmacol. 2015;765:307-315. https://doi.org/10.1016/j.ejphar. 2015.08.026.
  5. Ji B, La Y, Gao L, et al. A comparative proteomics analysis of rat mitochondria from the cerebral cortex and hippocampus in response to antipsychotic medications. J Proteome Res. 2009;8(7):3633-3641. https://doi.org/10.1021/pr800876z.
  6. Shi J, Tan YL, Wang ZR, et al. Ginkgo biloba and vitamin E ameliorate haloperidol-induced vacuous chewingmovement and brain-derived neurotrophic factor expression in a rat tardive dyskinesia model. Pharmacol Biochem Behav. 2016;148:53-58. https://doi.org/10.1016/j.pbb. 2016.06.003.
  7. Vasconcelos GS, Ximenes NC, de Sousa CN, et al. Alpha-lipoic acid alone and combined with clozapine reverses schizophrenia-like symptoms induced by ketamine in mice: Participation of antioxidant, nitrergic and neurotrophic mechanisms. Schizophr Res. 2015;165(2-3):163-170. https://doi.org/10.1016/j.schres.2015.04.017.
  8. Kracmarova A, Polanka M. The impact of clozapine on regulation of inflammation in murine macrophage cells. Neuro Endocrinol Lett. 2014;35 Suppl 2:175-179.
  9. Mhillaj E, Morgese MG, Trabace L. Early life and oxidative stress in psychiatric disorders: what can we learn from animal models? Curr Pharm Des. 2015;21(11):1396-1403. https://doi.org/10.2174/1381612821666150105122422.
  10. Modabbernia A, Heidari P, Soleimani R, et al. Melatonin for prevention of metabolic side-effects of olanzapine in patients with first-episode schizophrenia: randomized double-blind placebo-controlled study. J Psychiatr Res. 2014;53:133-140. https://doi.org/10.1016/j.jpsychires.2014.02.013.
  11. Reiter RJ, Calvo JR, Karbownik M, et al. Melatonin and its relation to the immune system and inflammation. Ann NY Acad Sci. 2000;917:376-386. https://doi.org/10.1111/j.1749-6632.2000.tb05402.x.
  12. Uguz AC, Demirci K, Espino J. The Importance of Melatonin and Mitochondria Interaction in Mood Disorders and Schizophrenia: A Current Assessment. Curr Med Chem. 2016;23(20):2146-2158. https://doi.org/10.2174/0929867323666160428105849.
  13. Harman D. Free radical theory of aging: an update: increasing the functional life span. Ann N Y Acad Sci. 2006;1067:10-21. https://doi.org/10.1196/annals. 1354.003.
  14. Harman D. Free radical theory of aging: an update: increasing the functional life span. Ann NY Acad Sci. 2006;1067:10-21. https://doi.org/10.1196/annals. 1354.003.
  15. Morera-Fumero AL, Abreu-Gonzalez P. Role of melatonin in schizophrenia. Int J Mol Sci. 2013;14(5):9037-9050. https://doi.org/10.3390/ijms14059037.
  16. Padurariu M, Ciobica A, Dobrin I, Stefanescu C. Evaluation of antioxidant enzymes activities and lipid peroxidation in schizophrenic patients treated with typical and atypical antipsychotics. Neurosci Lett. 2010;479(3):317-320. https://doi.org/10.1016/j.neulet.2010.05.088.
  17. Zhang XY, Tan YL, Cao LY, et al. Antioxidant enzymes and lipid peroxidation in different forms of schizophrenia treated with typical and atypical antipsychotics. Schizophr Res. 2006;81(2-3):291-300. https://doi.org/10.1016/j.schres.2005.10.011.
  18. MacDowell KS, Garcia-Bueno B, Madrigal JL, et al. Risperidone normalizes increased inflammatory parameters and restores anti-inflammatory pathways in a model of neuroinflammation. Int J Neuropsychopharmacol. 2013;16(1):121-135. https://doi.org/10.1017/S1461145711001775.
  19. Wu JQ, Kosten TR, Zhang XY. Free radicals, antioxidant defense systems, and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2013;46:200-206. https://doi.org/10.1016/j.pnpbp.2013.02.015.
  20. Dakhale GN, Khanzode SD, Khanzode SS, Saoji A. Supplementation of vitamin C with atypical antipsychotics reduces oxidative stress and improves the outcome of schizophrenia. Psychopharmacology (Berl). 2005;182(4):494-498. https://doi.org/10.1007/s00213-005-0117-1.
  21. Maric NP, Jovicic MJ, Mihaljevic M, Miljevic C. Improving Current Treatments for Schizophrenia. Drug Dev Res. 2016;77(7):357-367. https://doi.org/10.1002/ddr.21337.
  22. Elmorsy E, Elzalabany LM, Elsheikha HM, Smith PA. Adverse effects of antipsychotics on micro-vascular endothelial cells of the human blood-brain barrier. Brain Res. 2014;1583:255-268. https://doi.org/10.1016/j.brainres.2014.08.011.
  23. Pandya CD, Kutiyanawalla A, Pillai A. BDNF-TrkB signaling and neuroprotection in schizophrenia. Asian J Psychiatr. 2013;6(1):22-28. https://doi.org/10.1016/j.ajp. 2012.08.010.
  24. Xuan Y, Yan G, Wu R, et al. The cuprizone-induced changes in (1)H-MRS metabolites and oxidative parameters in C57BL/6 mouse brain: Effects of quetiapine. Neurochem Int. 2015;90:185-192. https://doi.org/10.1016/j.neuint.2015.08.015.
  25. Yang MC, Chen KP, Lung FW. Generalized estimating equation model and long-term exposure effect of antipsychotics on SH-SY5Y cells against oxidative stressors. Eur J Pharmacol. 2014;740:697-702. https://doi.org/10.1016/j.ejphar.2014.06.007.
  26. Yang MC, Chen KP, Lung FW. Generalized estimating equation model and long-term exposure effect of antipsychotics on SH-SY5Y cells against oxidative stressors. Eur J Pharmacol. 2014;740:697-702. https://doi.org/10.1016/j.ejphar.2014.06.007.
  27. Brinholi FF, Farias CC, Bonifacio KL, et al. Clozapine and olanzapine are better antioxidants than haloperidol, quetiapine, risperidone and ziprasidone in in vitro models. Biomed Pharmacother. 2016;81:411-415. https://doi.org/10.1016/j.biopha.2016.02.047.
  28. Rossell SL, Francis PS, Galletly C, et al. N-acetylcysteine (NAC) in schizophrenia resistant to clozapine: a double blind randomised placebo controlled trial targeting negative symptoms. BMC Psychiatry. 2016;16(1):320. https://doi.org/10.1186/s12888-016-1030-3.
  29. Ji B, La Y, Gao L, et al. A comparative proteomics analysis of rat mitochondria from the cerebral cortex and hippocampus in response to antipsychotic medications. J Proteome Res. 2009;8(7):3633-3641. https://doi.org/10.1021/pr800876z.
  30. Reus GZ, Fries GR, Stertz L, et al. The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience. 2015;300:141-154. https://doi.org/10.1016/j.neuroscience.2015.05.018.
  31. Cheon Y, Park JY, Modi HR, et al. Chronic olanzapine treatment decreases arachidonic acid turnover and prostaglandin E(2) concentration in rat brain. J Neurochem. 2011;119(2):364-376. https://doi.org/10.1111/j.1471-4159.2011.07410.x.
  32. Hashimoto K. Targeting of NMDA receptors in new treatments for schizophrenia. Expert Opin Ther Targets. 2014;18(9):1049-1063. https://doi.org/10.1517/14728222.2014.934225.
  33. Lu LX, Guo SQ, Chen W, et al. Effect of clozapine and risperidone on serum cytokine levels in patients with first-episode paranoid schizophrenia. Di Yi Jun Yi Da Xue Xue Bao. 2004:24(11);1251-1254.
  34. Koga M, Serritella AV, Sawa A, Sedlak TW. Implications for reactive oxygen species in schizophrenia pathogenesis. Schizophr Res. 2016;176(1):52-71. https://doi.org/10.1016/j.schres.2015.06.022.
  35. Sobis J, Rykaczewska-Czerwinska M, Swietochowska E, Gorczyca P. Therapeutic effect of aripiprazole in chronic schizophrenia is accompanied by anti-inflammatory activity. Pharmacol Rep. 2015;67(2):353-359. https://doi.org/10.1016/j.pharep.2014.09.007.
  36. Leza JC, Garcia-Bueno B, Bioque M, et al. Inflammation in schizophrenia: A question of balance. Neurosci Biobehav Rev. 2015;55:612-626. https://doi.org/10.1016/j.neubiorev.2015.05.014.
  37. Muller N. Inflammation and the glutamate system in schizophrenia: implications for therapeutic targets and drug development. Expert Opin Ther Targets. 2008;12(12): 1497-1507. https://doi.org/10.1517/14728220802507852.
  38. Smaga I, Niedzielska E, Gawlik M, et al. Oxidative stress as an etiological factor and a potential treatment target of psychiatric disorders. Part 2. Depression, anxiety, schizophrenia and autism. Pharmacol Rep. 2015;67(3): 569-580. https://doi.org/10.1016/j.pharep.2014. 12.015.
  39. Deng C, Pan B, Hu CH, et al. Differential effects of short- and long-term antipsychotic treatment on the expression of neuregulin-1 and ErbB4 receptors in the rat brain. Psychiatry Res. 2015;225(3):347-354. https://doi.org/10.1016/j.psychres.2014.12.014.
  40. Pandya CD, Howell KR, Pillai A. Antioxidants as potential therapeutics for neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2013;46:214-223. https://doi.org/10.1016/j.pnpbp.2012.10.017.
  41. Akbar M, Essa MM, Daradkeh G, et al. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress. Brain Res. 2016;1637:34-55. https://doi.org/10.1016/j.brainres.2016.02.016.
  42. Anglin RE, Garside SL, Tarnopolsky MA, et al. The psychiatric manifestations of mitochondrial disorders: a case and review of the literature. J Clin Psychiatry. 2012;73(4): 506-512. https://doi.org/10.4088/JCP.11r07237.
  43. Stefanovic V, Mihajlovic G, Nenadovic M, et al. The effect of antipsychotic drugs on nonspecific inflammation markers in the first episode of schizophrenia. Vojnosanit Pregl. 2015;72(12):1085-1092. https://doi.org/10.2298/vsp140526016s.
  44. Eftekhari A, Azarmi Y, Parvizpur A, Eghbal MA. Involvement of oxidative stress and mitochondrial/lysosomal cross-talk in olanzapine cytotoxicity in freshly isolated rat hepatocytes. Xenobiotica. 2016;46(4):369-378. https://doi.org/10.3109/00498254.2015.1078522.
  45. Arroll MA, Wilder L, Neil J. Nutritional interventions for the adjunctive treatment of schizophrenia: a brief review. Nutr J. 2014;13:91. https://doi.org/10.1186/1475-2891-13-91.
  46. Ribeiro BM, do Carmo MR, Freire RS, et al. Evidences for a progressive microglial activation and increase in iNOS expression in rats submitted to a neurodevelopmental model of schizophrenia: reversal by clozapine. Schizophr Res. 2013;151(1-3):12-19. https://doi.org/10.1016/j.schres. 2013.10.040.
  47. Safhi MM. Neuromodulatory effects of thymoquinone in extenuating oxidative stress in chlorpromazine treated rats. Acta Pol Pharm. 2016;73(2):529-535.
  48. Sadowska-Bartosz I, Galiniak S, Bartosz G, et al. Antioxidant properties of atypical antipsychotic drugs used in the treatment of schizophrenia. Schizophr Res. 2016;176(2-3):245-251. https://doi.org/10.1016/j.schres.2016.07.010.
  49. Sun T, Zhao C, Hu G, Li M. Iptakalim: a potential antipsychotic drug with novel mechanisms? Eur J Pharmacol. 2010;634(1-3):68-76. https://doi.org/10.1016/j.ejphar.2010.02.024.
  50. Арушанян Э.Б. Ограничение окислительного стресса как основная причина универсальных защитных свойств мелатонина // Экспериментальная и клиническая фармакология. – 2012. – Т. 75. – № 5. – С. 44–49. [Arushanyan EB. Limitation of oxidative stress as the main factor of the universal protective properties of melatonin. Experimental and clinical pharmacology. 2012;75(5): 44-49. (In Russ.)]. https://doi.org/10.30906/0869-2092-2012-75-5-44-49.
  51. Qing H, Xu H, Wei Z, et al. The ability of atypical antipsychotic drugs vs. haloperidol to protect PC12 cells against MPP+-induced apoptosis. Eur J Neurosci. 2003;17(8):1563-1570. https://doi.org/10.1046/j.1460-9568.2003.02590.x.
  52. Vavakova M, Durackova Z, Trebaticka J. Markers of Oxidative Stress and Neuroprogression in Depression Disorder. Oxid Med Cell Longev. 2015;2015:898393. https://doi.org/10.1155/2015/898393.
  53. Арушанян Э.Б. Мелатонин — универсальный стабилизатор психической деятельности // Журнал высшей нервной деятельности им. И.П. Павлова. – 2011. – Т. 61. – С. 645–659. [Arushanyan EB. Melatonin – universal’nyy stabilizator psikhicheskoy deyatel’nosti. Zh Vyssh Nerv Deiat Im I P Pavlova. 2011;61(6):645-659. (In Russ.)]
  54. Afonso P, Figueira ML, Paiva T. Sleep-promoting action of the endogenous melatonin in schizophrenia compared to healthy controls. Int J Psychiatry Clin Pract. 2011;15(4):311-315. https://doi.org/10.3109/13651501. 2011.605954.
  55. Арушанян Э.Б., Бейер Э.В., Милосердова А.А. Нейролептические средства и мелатонин // Экспериментальная и клиническая фармакология. – 2016. – Т. 79. – № 8. – С. 38–44. [Arushanyan EB, Beyer EV, Miloserdova AA. Neuroleptic drugs and melatonin. Experimental and clinical pharmacology. 2016;79(8):38-44. (In Russ.)]
  56. Miller BJ, Culpepper N, Rapaport MH. C-reactive protein levels in schizophrenia: a review and meta-analysis. Clin Schizophr Relat Psychoses. 2014;7(4):223-230. https://doi.org/10.3371/CSRP.MICU.020813.
  57. Monji A, Kato TA, Mizoguchi Y, et al. Neuroinflammation in schizophrenia especially focused on the role of microglia. Prog Neuropsychopharmacol Biol Psychiatry. 2013;42:115-121. https://doi.org/10.1016/j.pnpbp.2011.12.002.
  58. Maes M, Fisar Z, Medina M, et al. New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates-Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology. 2012;20(3):127-150. https://doi.org/10.1007/s10787-011-0111-7.
  59. Anglin RE, Garside SL, Tarnopolsky MA, et al. The psychiatric manifestations of mitochondrial disorders: a case and review of the literature. J Clin Psychiatry. 2012;73(4): 506-512. https://doi.org/10.4088/JCP.11r07237.
  60. Chang CC, Jou SH, Lin TT, Liu CS. Mitochondrial DNA variation and increased oxidative damage in euthymic patients with bipolar disorder. Psychiatry Clin Neurosci. 2014;68(7):551-557. https://doi.org/10.1111/pcn.12163.
  61. Fattal O, Budur K, Vaughan AJ, Franco K. Review of the literature on major mental disorders in adult patients with mitochondrial diseases. Psychosomatics. 2006;47(1): 1-7. https://doi.org/10.1176/appi.psy.47.1.1.
  62. Jou SH, Chiu NY, Liu CS. Mitochondrial dysfunction and psychiatric disorders. Chang Gung Med J. 2009;32(4):370-379.
  63. Jiang B, Wang YJ, Wang H, et al. Antidepressant-like effects of fenofibrate in mice via the hippocampal brain-derived neurotrophic factor signalling pathway. Br J Pharmacol. 2017;174(2):177-194. https://doi.org/10.1111/bph.13668.
  64. Kim MY, Lee JW, Kang HC, et al. Leukocyte mitochondrial DNA (mtDNA) content is associated with depression in old women. Arch Gerontol Geriatr. 2011;53(2): e218-e221. https://doi.org/10.1016/j.archger.2010.11.019.
  65. Jaracz J, Rybakowski J. Studies of cerebral blood flow in metabolism in depression using position emission tomography (PET). Psychiatr Pol. 2002;36(4): 617-628.
  66. Videbech P. PET measurements of brain glucose metabolism and blood flow in major depressive disorder: a critical review. Acta Psychiatr Scand. 2000;101(1):11-20. https://doi.org/10.1034/j.1600-0447.2000.101001011.x.
  67. Bagot RC, Parise EM, Pena CJ, et al. Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. Nat Commun. 2015;6:7062. https://doi.org/10.1038/ncomms8062.
  68. Hong H, Kim BS, Im HI. Pathophysiological Role of Neuroinflammation in Neurodegenerative Diseases and Psychiatric Disorders. Int Neurourol J. 2016;20(Suppl 1):S2-7. https://doi.org/10.5213/inj.1632604.302.
  69. Leonard B, Maes M. Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev. 2012;36(2):764-785. https://doi.org/10.1016/j.neubiorev.2011.12.005.
  70. Maes M, Yirmyia R, Noraberg J, et al. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis. 2009;24(1):27-53. https://doi.org/10.1007/s11011-008-9118-1.
  71. Martin-Subero M, Anderson G, Kanchanatawan B, et al. Comorbidity between depression and inflammatory bowel disease explained by immune-inflammatory, oxidative, and nitrosative stress; tryptophan catabolite; and gut-brain pathways. CNS Spectr. 2016;21(2):184-198. https://doi.org/10.1017/S1092852915000449.
  72. Arora V, Chopra K. Possible involvement of oxido-nitrosative stress induced neuro-inflammatory cascade and monoaminergic pathway: underpinning the correlation between nociceptive and depressive behaviour in a rodent model. J Affect Disord. 2013;151(3):1041-1052. https://doi.org/10.1016/j.jad.2013.08.032.
  73. Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 2001;24: 677-736. https://doi.org/10.1146/annurev.neuro.24.1.677.
  74. Lewin GR, Barde YA. Physiology of the neurotrophins. Annu Rev Neurosci. 1996;19:289-317. https://doi.org/10.1146/annurev.ne.19.030196.001445.
  75. Skaper SD. The neurotrophin family of neurotrophic factors: an overview. Methods Mol Biol. 2012;846:1-12. https://doi.org/10.1007/978-1-61779-536-7_1.
  76. Lee BH, Kim YK. Reduced platelet BDNF level in patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(5):849-853. https://doi.org/10.1016/j.pnpbp.2009.04.002.
  77. Nuernberg GL, Aguiar B, Bristot G, et al. Brain-derived neurotrophic factor increase during treatment in severe mental illness inpatients. Transl Psychiatry. 2016;6(12): e985. https://doi.org/10.1038/tp.2016.227.
  78. Numakawa T, Richards M, Nakajima S, et al. The role of brain-derived neurotrophic factor in comorbid depression: possible linkage with steroid hormones, cytokines, and nutrition. Front Psychiatry. 2014;5:136. https://doi.org/10.3389/fpsyt.2014.00136.
  79. Pandya CD, Hoda N, Crider A, et al. Transglutaminase 2 overexpression induces depressive-like behavior and impaired TrkB signaling in mice. Mol Psychiatry. 2017;22(5): 745-753. https://doi.org/10.1038/mp.2016.145.
  80. Shirayama Y, Chen ACH, Nakagawa S, et al. Brain-Derived Neurotrophic Factor Produces Antidepressant Effects in Behavioral Models of Depression. J Neurosci. 2002;22(8):3251-3261. https://doi.org/10.1523/jneurosci.22-08-03251.2002.
  81. Chang CC, Jou SH, Lin TT, et al. Mitochondria DNA change and oxidative damage in clinically stable patients with major depressive disorder. PLoS One. 2015;10(5): e0125855. https://doi.org/10.1371/journal.pone.0125855.
  82. Herbet M, Izdebska M, Piatkowska-Chmiel I, et al. Estimation of oxidative stress parameters in rats after simultaneous administration of rosuvastatin with antidepressants. Pharmacol Rep. 2016;68(1):172-176. https://doi.org/10.1016/j.pharep.2015.08.004.
  83. Herken H, Gurel A, Selek S, et al. Adenosine deaminase, nitric oxide, superoxide dismutase, and xanthine oxidase in patients with major depression: impact of antidepressant treatment. Arch Med Res. 2007;38(2):247-252. https://doi.org/10.1016/j.arcmed.2006.10.005.
  84. Jimenez-Fernandez S, Gurpegui M, Diaz-Atienza F, et al. Oxidative stress and antioxidant parameters in patients with major depressive disorder compared to healthy controls before and after antidepressant treatment: results from a meta-analysis. J Clin Psychiatry. 2015;76(12):1658-1667. https://doi.org/10.4088/JCP.14r09179.
  85. Abdel-Wahab BA, Salama RH. Venlafaxine protects against stress-induced oxidative DNA damage in hippocampus during antidepressant testing in mice. Pharmacol Biochem Behav. 2011;100(1):59-65. https://doi.org/10.1016/j.pbb.2011.07.015.
  86. Callaly E, Walder K, Morris G, et al. Mitochondrial dysfunction in the pathophysiology of bipolar disorder: effects of pharmacotherapy. Mini Rev Med Chem. 2015;15(5): 355-365. https://doi.org/10.2174/1389557515666150324122026.
  87. Sun Y, Narayan VA, Wittenberg GM. Side effect profile similarities shared between antidepressants and immune-modulators reveal potential novel targets for treating major depressive disorders. BMC Pharmacol Toxicol. 2016;17(1):47. https://doi.org/10.1186/s40360-016-0090-9.
  88. Ajmone-Cat MA, Bernardo A, Greco A, Minghetti L. Non-Steroidal Anti-Inflammatory Drugs and Brain Inflammation: Effects on Microglial Functions. Pharmaceuticals (Basel). 2010;3(6):1949-1965. https://doi.org/10.3390/ph3061949.
  89. Raison CL. The Promise and Limitations of Anti-Inflammatory Agents for the Treatment of Major Depressive Disorder. In: Inflammation-Associated Depression: Evidence, Mechanisms and Implications. Current Topics in Behavioral Neurosciences. Vol. 31. Ed. By R. Dantzer, L. Capuron. Cham: Springer; 2016. P. 287-302. https://doi.org/10.1007/7854_2016_26.
  90. Kappelmann N, Lewis G, Dantzer R. et al. Antidepressant activity of anti-cytokine treatment: a systematic review and meta-analysis of clinical trials of chronic inflammatory conditions. Mol Psychiatry. 2018;23(2):335-343. https://doi.org/10.1038/mp.2016.167.
  91. Kohler O, Krogh J, Mors O, Benros ME. Inflammation in Depression and the Potential for Anti-Inflammatory Treatment. Curr Neuropharmacol. 2016;14(7):732-742. https://doi.org/10.2174/1570159x14666151208113700.
  92. Schmidt FM, Kirkby KC, Lichtblau N. Inflammation and Immune Regulation as Potential Drug Targets in Antidepressant Treatment. Curr Neuropharmacol. 2016;14(7):674-687. https://doi.org/10.2174/1570159x14666160115130414.
  93. Gonul AS, Akdeniz F, Taneli F, et al. Effect of treatment on serum brain-derived neurotrophic factor levels in depressed patients. Eur Arch Psychiatry Clin Neurosci. 2005;255(6): 381-386. https://doi.org/10.1007/s00406-005-0578-6.
  94. Gonul AS, Akdeniz F, Taneli F, et al. Effect of treatment on serum brain-derived neurotrophic factor levels in depressed patients. Eur Arch Psychiatry Clin Neurosci. 2005;255(6): 381-386. https://doi.org/10.1007/s00406-005-0578-6.
  95. Basterzi AD, Yazici K, Aslan E, et al. Effects of fluoxetine and venlafaxine on serum brain derived neurotrophic factor levels in depressed patients. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(2):281-285. https://doi.org/10.1016/j.pnpbp.2008.11.016.
  96. Yoshimura R, Mitoma M, Sugita A, et al. Effects of paroxetine or milnacipran on serum brain-derived neurotrophic factor in depressed patients. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(5):1034-1037. https://doi.org/10.1016/j.pnpbp.2007.03.001.
  97. Castren E, Rantamaki T. The role of BDNF and its receptors in depression and antidepressant drug action: Reactivation of developmental plasticity. Dev Neurobiol. 2010;70(5): 289-297. https://doi.org/10.1002/dneu.20758.
  98. Ma M, Ren Q, Yang C, et al. Antidepressant effects of combination of brexpiprazole and fluoxetine on depression-like behavior and dendritic changes in mice after inflammation. Psychopharmacology (Berl). 2017;234(4):525-533. https://doi.org/10.1007/s00213-016-4483-7.
  99. Shirayama Y, Yang C, Zhang JC, et al. Alterations in brain-derived neurotrophic factor (BDNF) and its precursor proBDNF in the brain regions of a learned helplessness rat model and the antidepressant effects of a TrkB agonist and antagonist. Eur Neuropsychopharmacol. 2015;25(12):2449-2458. https://doi.org/10.1016/j.euroneuro.2015.09.002.
  100. Pandya CD, Howell KR, Pillai A. Antioxidants as potential therapeutics for neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2013;46:214-223. https://doi.org/10.1016/j.pnpbp.2012.10.017.

© Арушанян Э.Б., Наумов С.С., 2020

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах