Гипотермия как фактор, усиливающий действие антигипоксантов

Обложка


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Селективная гипотермия органов и тканей снижает интенсивность биологического горения в митохондриях независимо от того, связаны ли эти органы и ткани с организмом человека (в условиях in vivo) или полностью изолированы от него (в условиях in vitro). Поэтому локальное охлаждение выбранной части тела уменьшает ее потребность в кислороде и продлевает выживаемость в условиях гипоксии, то есть оказывает местное антигипоксическое действие. Общая гипотермия теплокровных животных и человека может как увеличить, так и уменьшить их выживаемость в условиях гипоксии. Это связано с тем, что в норме внешнее охлаждающее воздействие на организм теплокровного животного усиливает в нем кислород-зависимый термогенез. Поэтому в норме процесс общего охлаждения организма человека не способствует развитию в нем антигипоксического действия. Но кислород-зависимый термогенез может быть отключен в госпитальных условиях с помощью специальных лекарств-гибернаторов. Эффективное отключение термогенеза в организме пациента перед его общим охлаждением может обеспечить антигипоксическую активность общей гипотермии. Показано, что в начале XXI в. в России была открыта группа кислород-продуцирующих антигипоксантов, основным ингредиентом которых является перекись водорода. Приводится рецептура инъекционного раствора перекиси водорода, предназначенного для локального охлаждения тканей в месте инъекции и обеспечения их кислородом. Показано, что инъекция изобретенного холодного раствора перекиси водорода в мягкие ткани (миокард, головной мозг и др.) обеспечивает немедленное локальное антигипоксическое действие, которое развивается за счет локальной гипотермии ткани в месте инъекции с помощью ее физического охлаждения холодным раствором и генерации в ней газа кислорода с помощью каталазного расщепления перекиси водорода на воду и молекулярный кислород. Поскольку локальная гипотермия является непревзойденным способом сохранения митохондрий при кислородном голодании, а перекись водорода — лидером среди кислород-продуцирующих антигипоксантов, модернизация введения в мозг холодных растворов перекиси водорода может в будущем обеспечить мгновенное локальное охлаждение мозга с одновременной его локальной оксигенацией.

Полный текст

Доступ закрыт

Об авторах

Наталья Александровна Уракова

Институт экспериментальной медицины

Автор, ответственный за переписку.
Email: urakovanatal@mail.ru
ORCID iD: 0000-0002-4233-9550
SPIN-код: 4858-1896

канд. мед. наук

Россия, Санкт-Петербург

Александр Ливиевич Ураков

Ижевская государственная медицинская академия

Email: alurakov@bk.ru
ORCID iD: 0000-0002-9829-9463
SPIN-код: 1613-9660

д-р мед. наук, профессор

Россия, Ижевск

Алексей Петрович Решетников

Стоматологическая клиника «РеСто»

Email: areshetnikov@list.ru
ORCID iD: 0000-0002-8710-9724
SPIN-код: 4115-4167

канд. мед. наук

Россия, Ижевск

Любовь Владимировна Федосеева

Ижевская государственная медицинская академия

Email: lvlfedoseeva@yandex.ru
ORCID iD: 0009-0003-7472-2153
SPIN-код: 4961-3818

канд. мед. наук

Россия, Ижевск

Евгений Леонидович Фишер

Ижевская государственная медицинская академия

Email: ELFischer@mail.ru
ORCID iD: 0000-0001-7319-9872
SPIN-код: 6102-5539
Россия, Ижевск

Альбина Азатовна Щемелева

Ижевская государственная медицинская академия

Email: Redbild@mail.ru
ORCID iD: 0000-0001-7771-8772
SPIN-код: 2126-0259
Россия, Ижевск

Алексей Анатольевич Корепанов

Ижевская государственная медицинская академия

Email: iamkorepanov@gmail.com
ORCID iD: 0009-0009-3245-2750
SPIN-код: 8572-6925
Россия, Ижевск

Анастасия Aндреевна Буркова

Ижевская государственная медицинская академия

Email: anasteziamestnaya3000@gmail.com
ORCID iD: 0009-0004-0507-6335
Россия, Ижевск

София Андреевна Бондаренко

Ижевская государственная медицинская академия

Email: bondarenkosophia0606@gmail.com
ORCID iD: 0009-0000-4256-1680
Россия, Ижевск

Кристина Витальевна Микрюкова

Ижевская государственная медицинская академия

Email: mikryukovakristina98@gmail.com
ORCID iD: 0009-0003-1121-8806
Россия, Ижевск

Элина Aлмазовна Аслямова

Ижевская государственная медицинская академия

Email: alsuminullina57@gmail.com
ORCID iD: 0009-0001-2444-3047
Россия, Ижевск

Ильшат Ильдусович Хабибуллин

Ижевская государственная медицинская академия

Email: termovlad1997@yandex.ru
ORCID iD: 0009-0005-0845-8723
Россия, Ижевск

Маргарита Антоновна Лисовская

Ижевская государственная медицинская академия

Email: l1sOvska@mail.ru
ORCID iD: 0009-0001-8876-769X
Россия, Ижевск

Елизавета Юрьевна Матросова

Ижевская государственная медицинская академия

Email: eliza83245@gmail.com
ORCID iD: 0009-0000-5381-3812
SPIN-код: 8816-7795
Россия, Ижевск

Илья Петрович Колесников

Ижевская государственная медицинская академия

Email: ilyabatur@mail.ru
ORCID iD: 0009-0002-9432-0939
SPIN-код: 6917-4590
Россия, Ижевск

Эльвира Ильдаровна Назимова

Ижевская государственная медицинская академия

Email: Elvira-nizamova-2000@mail.ru
ORCID iD: 0009-0003-2527-8615
SPIN-код: 9821-4817
Россия, Ижевск

Петр Дмитриевич Шабанов

Институт экспериментальной медицины; Военно-медицинская академия им. С.М. Кирова

Email: pdshabanov@mail.ru
ORCID iD: 0000-0003-1464-1127
SPIN-код: 8974-7477

д-р мед. наук, профессор

Россия, Санкт-Петербург; Санкт-Петербург

Список литературы

  1. Reinberg A. Circadian changes in the temperature of human beings. Bibl Radiol. 1975;(6):128–139.
  2. Behringer W, Böttiger BW, Biasucci DG, et al. Temperature control after successful resuscitation from cardiac arrest in adults: A joint statement from the European Society for Emergency Medicine and the European Society of Anaesthesiology and Intensive Care. Eur J Emergency Med. 2024;31(2):86–89. doi: 10.1097/MEJ.0000000000001106
  3. Reshetnikov A, Urakov A, Muhutdinov N. Peculiarities of titanium implants in patients with long-term absence of teeth and significant atrophy of hard and soft tissues of the jaws. Med Cas. 2024;58(4):133–139. doi: 10.5937/mckg58-50325
  4. Tharakan S, Nomoto K, Miyashita S, Ishikawa K. Body temperature correlates with mortality in COVID-19 patients. Crit Care. 2020;24:298. doi: 10.1186/s13054-020-03045-8
  5. Penfold RS, Zazzara MB, Österdahl MF, et al. Individual factors including age, BMI, and heritable factors underlie temperature variation in sickness and in health: an observational, multi-cohort study. J Gerontol A Biol Sci Med Sci. 2022;77(9):1890–1897. doi: 10.1093/gerona/glab295
  6. Sund-Levander M, Grodzinsky E. Time for a change to assess and evaluate body temperature in clinical practice. Int J Nurs Pract. 2009;15(4):241–249. doi: 10.1111/j.1440-172X.2009.01756.x
  7. Urakov A, Urakova N. Targeted temperature management in obstetrics for prevention perinatal encephalopathy. Turk J Med Sci. 2024;54(4):876–877. doi: 10.55730/1300-0144.5859
  8. Melanie E, Kittrell EM, Satinoff E. Diurnal rhythms of body temperature, drinking and activity over reproductive cycles. Physiol Behav. 1988;42(5):477–484. doi: 10.1016/0031-9384(88)90180-1
  9. Refinetti R. Circadian rhythmicity of body temperature and metabolism. Temperature (Austin). 2020;7(4):321–362. doi: 10.1080/23328940.2020.1743605
  10. Absmeier E, Heyd F. Temperature-controlled molecular switches in mammalian cells. J Biol Chem. 2024;300(11):107865. doi: 10.1016/j.jbc.2024.107865
  11. Urakov AL. Why it is better to give birth between 4 and 6 a. m. than at other times of the day and night. Acta Scientific Women’s Health. 2024;6(7):1–2.
  12. Urakova N, Urakov A, Olaiya V, et al. Fetal movements during maternal apnea in the third trimester of pregnancy: An indicator of resistance to intrauterine hypoxia. Curr Women’s Health Rev. 2025; e15734048344660. doi: 10.2174/0115734048344660250220054204
  13. Peleg M, Normand MD, Corradini MG. The Arrhenius equation revisited. Crit Rev Food Sci Nutr. 2012;52(9):830–851. doi: 10.1080/10408398.2012.667460
  14. Logan SR. The origin and status of the Arrhenius equation. J Chem Educ. 1982;59(4):279–281. doi: 10.1021/ed059p279
  15. Laidler KJ. The development of the Arrhenius equation. J Chem Educ. 1984;61(6):494–498. doi: 10.1021/ed061p494
  16. Ashoor HE. Hyperthermia: clinical applications and theoretical models. J Biosci Med. 2022;10:56–71. doi: 10.4236/jbm.2022.103007
  17. Lee S-Y, Fiorentini G, Szasz AM, et al. Quo vadis oncological hyperthermia (2020)? Front Oncol. 2020;10:1690. doi: 10.3389/fonc.2020.01690
  18. Ginsberg MD, Busto R. Combating hyperthermia in acute stroke: a significant clinical concern. Stroke. 1998;29(2):529–534. doi: 10.1161/01.str.29.2.529
  19. Markota A, Kalamar Ž, Fluher J, Pirkmajer S. Therapeutic hyperthermia for the treatment of infection—a narrative review. Front Physiol. 2023;14:1215686. doi: 10.3389/fphys.2023.1215686
  20. Drewry AM, Mohr NM, Ablordeppey EA, et al. Therapeutic hyperthermia is associated with improved survival in afebrile critically ill patients with sepsis: a pilot randomized trial. Crit Care Med. 2022;50(6):924–934. doi: 10.1097/CCM.0000000000005470
  21. Gazel D, Akdoğan H, Büyüktaş Manay A, et al. The potential of therapeutic hyperthermia to eradicate Staphylococcus aureus bacteria; an in vitro study. J Therm Biol. 2024;120:103812. doi: 10.1016/j.jtherbio.2024.103812
  22. Kok HP, Cressman ENK, Ceelen W, et al. Heating technology for malignant tumors: a review. Int J Hyperthermia. 2020;37(1):711–741. doi: 10.1080/02656736.2020.1779357
  23. Wan S, Rodrigues DB, Kwiatkowski J, et al. Evaluation of a balloon implant for simultaneous magnetic nanoparticle hyperthermia and high-dose-rate brachytherapy of brain tumor resection cavities. Cancers. 2023;15(23):5683. doi: 10.3390/cancers15235683
  24. Urakov A, Urakova N, Fisher E, et al. Antiseptic pyolytics and warming wet compresses improve the prospect of healing chronic wounds. Explor Med. 2023;4:747–54. doi: 10.37349/emed.2023.00175
  25. Gocoł R, Hudziak D, Bis J, et al. The role of deep hypothermia in cardiac surgery. Int J Environ Res Public Health. 2021;18(13):7061. doi: 10.3390/ijerph18137061
  26. Wakusawa R, Shibata S, Okada K. Simple deep hypothermia for open heart surgery in infancy. Can Anaesth Soc J. 1977;24(4):491–504. doi: 10.1007/BF03005454
  27. Tsai JY, Pan W, LeMaire SA, et al. Moderate hypothermia during aortic arch surgery is associated with reduced risk of early mortality. J Thorac Cardiovasc Surg. 2013;146(3):662–667. doi: 10.1016/j.jtcvs.2013.03.004
  28. Peterson ME, Daniel RM, Danson MJ, Eisenthal R. The dependence of enzyme activity on temperature: determination and validation of parameters. Biochem J. 2007;402(2):331–337. doi: 10.1042/BJ20061143
  29. van der Ent F, Skagseth S, Lund BA, et al. Computational design of the temperature optimum of an enzyme reaction. Sci Adv. 2023;9(26):eadi0963. doi: 10.1126/sciadv.adi0963
  30. Daniel RM, Danson MJ. A new understanding of how temperature affects the catalytic activity of enzymes. Trends Biochem Sci. 2010;35(10):584–591. doi: 10.1016/j.tibs.2010.05.001.
  31. Wilking M, Ndiaye M, Mukhtar H, Ahmad N. Circadian rhythm connections to oxidative stress: implications for human health. Antioxid Redox Signal. 2013;19(2):192–208. doi: 10.1089/ars.2012.4889
  32. Urakov AL. The change of physical-chemical factors of the local interaction with the human body as the basis for the creation of materials with new properties. Epitőanyag—Journal of Silicate Based and Composite Materials. 2015;67(1):2–6. doi: 10.14382/epitoanyag-jsbcm.2015.1
  33. Urakov A, Gurevich K, Alies M, et al. The tissue temperature during injection of drug solution into it as an integral indicator of rheology. J Phys: Conf Ser. 2020;1527(1):012003. doi: 10.1088/1742-6596/1527/1/012003
  34. Urakova NA. Temperature, osmotic and acidic activity of infusion solutions as an integral part of their mechanism of action. Reviews on Clinical Pharmacology and Drug Therapy. 2021;19(2):175–182. doi: 10.17816/RCF192175-182 EDN: NFCTMP
  35. Guzelj D, Grubelnik A, Greif N, et al. The effect of body temperature changes on the course of treatment in patients with pneumonia and sepsis: results of an observational study. Interact J Med Res. 2024;13:e52590. doi: 10.2196/52590
  36. Cremer JE. Body temperature and drug. Chapter 11. In: Lajtha A, editor. Alterations of chemical equilibrium in the nervous system. Boston: Springer; 1971. P. 311–323. doi: 10.1007/978-1-4615-7175-9_11
  37. Urakov AL, Urakova NA. Time, temperature and life. Advances in Bioresearch. 2021;12(2):246–252. doi: 10.15515/abr.0976-4585.12.2.246252 EDN: NUEAAO
  38. Urakov AL, Fisher EL, Lebedev AА, Shabanov PD. Aquarium fish and temperature neuropharmacology. Update. Psychopharmacology and Biological Narcology. 2024;15(1):41–52. doi: 10.17816/phbn625545 EDN: QJVYFF
  39. Urakov A, Urakova N, Kasatkin A, Chernova L. Physical-chemical aggressiveness of solutions of medicines as a factor in the rheology of the blood inside veins and catheters. Journal of Chemistry and Chemical Engineering. 2014;8(01):61–65.
  40. Urakov AL. Development of new materials and structures based on managed physical-chemical factors of local interaction. IOP Conf Ser: Mater Sci Eng. 2016;123:012008. doi: 10.1088/1757-899X/123/1/012008
  41. Henig NR, Pierson DJ. Mechanisms of hypoxemia. Respir Care Clin N Am. 2000;6(4):501–521. doi: 10.1016/s1078-5337(05)70087-3
  42. Sarkar M, Niranjan N, Banyal PK. Mechanisms of hypoxemia. Lung India. 2017;34(1):47–60. doi: 10.4103/0970-2113.197116
  43. Karzai W, Schwarzkopf K. Hypoxemia during one-lung ventilation: prediction, prevention, and treatment. Anesthesiology. 2009;110(6):1402–1411. doi: 10.1097/ALN.0b013e31819fb15d
  44. Urakov A, Urakova N. COVID-19: Cause of death and medications. IP Int J Compr Adv Pharmacol. 2020;5(2):45–48. doi: 10.18231/j.ijcaap.2020.011
  45. Della Rocca Y, Fonticoli L, Rajan TS, et al. Hypoxia: molecular pathophysiological mechanisms in human diseases. J Physiol Biochem. 2022;78(4):739–752. doi: 10.1007/s13105-022-00912-6
  46. Urakov A, Muhutdinov N, Yagudin I, et al. Brain hypoxia caused by respiratory obstruction wich should not be forgotten in COVID-19 disease. Turk J Med Sci. 2022;52(5):1504–1505. doi: 10.55730/1300-0144.5489
  47. Urakova N, Urakov A, Shabanov P, Sokolova V. Aerobic brain metabolism, body temperature, oxygen, fetal oxygen supply and fetal movement dynamics as factors in stillbirth and neonatal encephalopathy. Invention review. Azerbaijan Pharm Pharmacother J. 2023;22(2):105–112. doi: 10.61336/appj/22-2-24
  48. Urakov AL, Urakova NA, Shabanov PD. Hypoxic irreversible brain cells damage, associated risk factors and antihypoxants. Reviews on Clinical Pharmacology and Drug Therapy. 2024;22(3):277–288. doi: 10.17816/RCF629408 EDN: FWRGAK
  49. Song N, Mei S, Wang X, et al. Focusing on mitochondria in the brain: from biology to therapeutics. Transl Neurodegener, 2024;13:23. doi: 10.1186/s40035-024-00409-w
  50. Shabanov PD, Zarubina IV. Hypoxia and antihypoxants, focus on brain injury. Reviews on Clinical Pharmacology and Drug Therapy. 2019;17(1):7–16. doi: 10.17816/RCF1717-16 EDN: NNOOGA
  51. Reijnen G, Buster MC, Vos PJE, Reijnders UJL. External foam and the post-mortem period in freshwater drowning; results from a retrospective study in Amsterdam, the Netherlands. J Forensic Leg Med. 2017;52:1–4. doi: 10.1016/j.jflm.2017.07.013
  52. Aflanie I, Suharto GM, Nurikhwan PW. Postmortem characteristics of drowning death in freshwater: a systematic review. Russian Journal of Forensic Medicine. 2024;10(2):220–228. doi: 10.17816/fm16113 EDN: GHGBAD
  53. Taif S, Menon VK, Alrawi A, et al. Imaging findings of flexion type of hangman’s fracture; an attempt for a more objective evaluation with newly introduced scoring system. Br J Radiol. 2017;90(1069):20160793. doi: 10.1259/bjr.20160793
  54. Rayes M, Mittal M, Rengachary SS, Mittal S. Hangman’s fracture: a historical and biomechanical perspective. J Neurosurg Spine. 2011;14(2):198–208. doi: 10.3171/2010.10.SPINE09805
  55. Allen KN, Vázquez-Medina JP. Natural tolerance to ischemia and hypoxemia in diving mammals: a review. Front Physiol. 2019;10:1199. doi: 10.3389/fphys.2019.01199
  56. Guo Z, Tian Y, Liu N, et al. Mitochondrial stress as a central player in the pathogenesis of hypoxia-related myocardial dysfunction: new insights. Int J Med Sci. 2024;21(13):2502–2509. doi: 10.7150/ijms.99359
  57. Ordys BB, Launay S, Deighton RF, et al. The role of mitochondria in glioma pathophysiology. Mol Neurobiol. 2010;42(1):64–75. doi: 10.1007/s12035-010-8133-5
  58. Guntuku L, Naidu VG, Yerra VG. Mitochondrial dysfunction in gliomas: pharmacotherapeutic potential of natural compounds. Curr Neuropharmacol. 2016;14(6):567–583. doi: 10.2174/1570159x14666160121115641
  59. Lukyanova LD, Kirova YI. Mitochondria-controlled signaling mechanisms of brain protection in hypoxia. Front Neurosci. 2015;9:320. doi: 10.3389/fnins.2015.00320
  60. Germanova E, Khmil N, Pavlik L, et al. The role of mitochondrial enzymes, succinate-coupled signaling pathways and mitochondrial ultrastructure in the formation of urgent adaptation to acute hypoxia in the myocardium. Int J Mol Sci. 2022;23(22):14248. doi: 10.3390/ijms232214248
  61. Wefers Bettink MA, Arbous MS, Raat NJH, Mik EG. Mind the mitochondria! J Emerg Crit Care Med. 2019;3:45. doi: 10.21037/jeccm.2019.08.08
  62. Hoiland RL, Bain AR, Rieger MG, et al. Hypoxemia, oxygen content, and the regulation of cerebral blood flow. Am J Physiol Regul Integr Comp Physiol. 2016;310(5):R398–413. doi: 10.1152/ajpregu.00270.2015
  63. Chan S-T, Evans KC, Song T-Y, et al. Cerebrovascular reactivity assessment with O2-CO2 exchange ratio under brief breath hold challenge. PLoS One. 2020;15(3):e0225915. doi: 10.1371/journal.pone.0225915
  64. Solis-Barquero SM, Echeverria-Chasco R, Calvo-Imirizaldu M, et al. Breath-hold induced cerebrovascular reactivity measurements using optimized pseudocontinuous arterial spin labeling. Front Physiol. 2021;12:621720. doi: 10.3389/fphys.2021.621720
  65. Turner R, Rasmussen P, Gatterer H, et al. Cerebral blood flow regulation in hypobaric hypoxia: role of haemoconcentration. J Physiol. 2024;602(21):5643–5657. doi: 10.1113/JP285169
  66. Ferdinand P, Roffe C. Hypoxia after stroke: a review of experimental and clinical evidence. Exp Transl Stroke Med. 2016;8:9. doi: 10.1186/s13231-016-0023-0
  67. Rybnikova E, Lukyanova L. Molecular mechanisms of adaptation to hypoxia. Int J Mol Sci. 2023;24(5):4563. doi: 10.3390/ijms24054563
  68. Rybnikova EA, Nalivaeva NN, Zenko MY, Baranova KA. Intermittent hypoxic training as an effective tool for increasing the adaptive potential, endurance and working capacity of the brain. Front Neurosci. 2022;16:941740. doi: 10.3389/fnins.2022.941740
  69. Shabanov PD, Urakov A, Urakova NA. Assessment of fetal resistance to hypoxia using the Stange test as an adjunct to Apgar scale assessment of neonatal health status. Medical Academic Journal. 2023;23(3):89–102. doi: 10.17816/MAJ568979 EDN: OFZNNV
  70. Shabanov P, Samorodov A, Urakova N, et al. Low fetal resistance to hypoxia as a cause of stillbirth and neonatal encephalopathy. Clin Exp Obstet Gynecol. 2024;51(2):33. doi: 10.31083/j.ceog5102033
  71. Michiels C. Physiological and pathological responses to hypoxia. Am J Pathol. 2004;164(6):1875–1882. doi: 10.1016/S0002-9440(10)63747-9
  72. Nakane M. Biological effects of the oxygen molecule in critically ill patients. J Intensive Care. 2020;8(1):95. doi: 10.1186/s40560-020-00505-9
  73. Peacock JH. The effect of changes in local temperature on the blood flows of the normal hand, primary Raynaud’s disease and primary acrocyanosis. Clin Sci. 1960;19:505–512.
  74. Ammer K. Temperature gradients in Raynaud´s phenomenon. Comparison by gender, age class and finger involvement. Thermology International. 2010;2010(3):100–109.
  75. Lim MJ, Kwon SR, Jung K-H, et al. Digital thermography of the fingers and toes in Raynaud’s phenomenon. J Korean Med Sci. 2014;29(4):502–506. doi: 10.3346/jkms.2014.29.4.502
  76. Kurklinsky AK, Miller VM, Rooke TW. Acrocyanosis: The flying dutchman. Vasc Med. 2011;16(4):288–301. doi: 10.1177/1358863X11398519
  77. Urakov AL, Urakova NA, Kasatkin AA. Dynamics of temperature and color in the infrared image fingertips hand as indicator of the life and death of a person. In: Nowakowski A, Mercer J, editors. Lecture notes of the ICB seminar “Advances of infra-red thermal imaging in medicine”; Warsaw, 2013; 30 June – 3 July. Warsaw; 2013. P. 99–101.
  78. Urakov AL, Kasatkin AA, Urakova NA, Ammer K. Infrared thermographic investigation of fingers and palms during and after application of cuff оcclusion test in patients with hemorrhagic shock. Thermology International. 2014;24(1):5–10.
  79. Urakov AL, Urakova NA, Kasatkin AA. Thermal imaging improves the accuracy hemorrhagic shock diagnostics: The concept and practical recommendations. LAP LAMBERT Academic Publishing; 2016.
  80. Urakov AL, Urakova TV, Kasatkin AA. Infrared thermography to assess the blood donors adaptation to blood loss. Thermology international. 2016;26(2S):13.
  81. Urakov A, Urakova N, Kasatkin A, Dementyev V. Temperature and blood rheology in fingertips as signs of adaptation to acute hypoxia. JOP Conf Ser: J Phys: Conf Ser. 2017;790:012034. doi: 10.1088/1742-6596/790/1/012034
  82. Kasatkin AA, Urakov AL. Correlation between arterial blood gases indices and the temperature of fingers after cuff occlusion test in patients with acute blood loss. Thermology international. 2018;28(2):123.
  83. Urakov AL, Kasatkin AA, Ammer K, Gurevich KG. The dynamics of fingertip temperature during voluntary breath holding and its relationship to transcutaneous oximetry. Thermology international. 2019;29(2):65–66.
  84. Urakov A, Urakova N, Kasatkin A, et al. Dynamics of local temperature in the fingertips after the cuff occlusion test: Infrared diagnosis of adaptation reserves to hypoxia and assessment of survivability of victims at massive blood loss. Rev Cardiovasc Med. 2022–23(5):174. doi: 10.31083/j.rcm2305174
  85. Zhang Z, Cao ZF, Deng F, et al. Infrared thermal imaging of patients with acute upper respiratory tract infection: mixed methods analysis. Interact J Med Res. 2021;10(3):e22524. doi: 10.2196/22524
  86. Patent RU2422090/27.06.2011. Urakov AL, Rudnov VA, Kasatkin AA, et al. Method for determining the stage of hypoxic injury and the probability of revival according to A.L. Urakov. (In Russ.)
  87. Patent RU2441592/10.02.2012. Urakov AL, Urakova NA, Urakova TV, et al. Method of delivery according to N.V. Sokolova. (In Russ.)
  88. Patent RU2511084/10.04.2014. Urakov AL, Urakova NA, Radzinskiy VE, et al. Method for assessing fetal resistance to hypoxia in labor. (In Russ.)
  89. Patent RU2531924/27.06. 2014. Urakov AL, Urakova NA, Kasatkin AA, et al. Method of assessing the compensatory response of the body to acute hypoxia. (In Russ.)
  90. Patent RU 2619789/18.05.2017. Urakov AL, Urakova TV, Urakova NA, et al. Method for infrared assessment of human resistance to blood loss. (In Russ.)
  91. Das S, Maiti A. Acrocyanosis: an overview. Indian J Dermatol. 2013;58(6):417–420. doi: 10.4103/0019-5154.119946
  92. Takeuchi Y, Tsukagoshi J. Primary acrocyanosis. J Gen Fam Med. 2021;22(3):156–157. doi: 10.1002/jgf2.416
  93. Middleton HT, Boswell CL, Houwink EJ, et al. Vincristine-induced acrocyanosis and erythema pernio. J Prim Care Community Health. 2023;14:21501319231181879. doi: 10.1177/21501319231181879
  94. Wollina U, Koch A, Langner D, et al. Acrocyanosis—a symptom with many facettes. Open Access Maced J Med Sci. 2018;6(1): 208–212. doi: 10.3889/oamjms.2018.035
  95. Kitamura W, Kobayashi H, Iseki A, et al. Cold agglutinin-induced acrocyanosis without hemolytic anemia. Ann Hematol. 2024;103(2):681–683. doi: 10.1007/s00277-023-05538-2
  96. Dhillon SK, Gunn ER, Lear BA, et al. Cerebral oxygenation and metabolism after hypoxia-ischemia. Front Pediatr. 2022;10:925951. doi: 10.3389/fped.2022.925951
  97. Hoiland RL, Robba C, Menon DK, et al. Clinical targeting of the cerebral oxygen cascade to improve brain oxygenation in patients with hypoxic–ischaemic brain injury after cardiac arrest. Intensive Care Med. 2023;49:1062–1078. doi: 10.1007/s00134-023-07165-x
  98. Urakov AL, Urakova NA, Chernova LV. The influence of temperature, atmospheric pressure, antihypoxant and chemical “battery oxygen” on the sustainability of fish in the water without air. International Journal of Applied and Fundamental Research. 2014; 8(2):48–52. (In Russ.)
  99. Urakov AL. Hydrogen peroxide can replace gaseous oxygen to keep fish in hypoxia. International Research Journal. 2017;5(59): 106–108. doi: 10.23670/IRJ.2017.59.109 EDN: YOSLTN
  100. Shabanov P, Urakov A, Fisher E. Hydrogen peroxide supports therapeutic hypothermia of aquarium fish in acute hypoxia. Azerbaijan Pharm Pharmacother J. 2024;23(2):36–40. doi: 10.61336/appj/23-2-8
  101. Urakova NA, Urakov AL. New generation antihypoxants: Alkaline hydrogen peroxide solutions as generators of medical gas oxygen. Psychopharmacology and biological narcology. 2025;16(1): 36–42. doi: 10.17816/phbn642337 EDN: QZSRNS
  102. Boerner E, Podbielska H. Application of thermal imaging to assess the superficial skin temperature distribution after local cryotherapy and ultrasound. J Therm Anal Calorim. 2018;131:2049–2055. doi: 10.1007/s10973-017-6772-8
  103. Sesma-Sánchez L, Ruiz-Castellano M, Romero-Roldán A, et al. Continuous temperature telemonitoring of patients with COVID-19 and other infectious diseases treated in hospital-at-home: viture system validation. Sensors. 2024;24(15):5027. doi: 10.3390/s24155027
  104. Stanley SA, Divall P, Thompson JP, Charlton M. Uses of infrared thermography in acute illness: a systematic review. Front Med (Lausanne). 2024;11:1412854. doi: 10.3389/fmed.2024.1412854
  105. Ammer K. Does thermology belong to complementary medicine? Thermology international. 2017;27(1):5–8.
  106. Urakov A. Thermology is the basis of medicine since ancient times. Thermology International. 2017;27(2):78–79.
  107. Bunonyo KW, Ebiwareme L, Awomi PZ. Temperature effect on drug diffusion in the stomach and bloodstream compartments. World J Biol Pharm Health Sci. 2023;13(02):178–188. doi: 10.30574/wjbphs.2023.13.2.0093
  108. Hao J, Ghosh P, Li SK, et al. Heat effects on drug delivery across human skin. Expert Opin Drug Deliv. 2016;13(5):755–768. doi: 10.1517/17425247.2016.1136286
  109. Ring FJ. Pioneering progress in infrared imaging in medicine. Quant Infrared Termogr J. 2014;11(1):57–65. doi: 10.1080/17686733.2014.892667
  110. Urakov AL. Infrared video recording of local skin temperature changes at the injection site as a prospective diagnostic document (in memory of Professor Edward Francis John Ring). Psychopharmacology and Biological Narcology. 2024;15(4):325–335. doi: 10.17816/phbn641856 EDN: UDDWZM
  111. Urakov A, Urakova N, Samorodov AV, et al. Thermal imaging of local skin temperature as part of quality and safety assessment of injectable drugs. Heliyon. 2024;10(1):e23417. doi: 10.1016/j.heliyon.2023.e23417
  112. Law J, Morris DE, Budge H, Symonds ME. Infrared thermography. In: Pfeifer A, Klingenspor M, Herzig S, editors. Brown adipose tissue. Handbook of experimental pharmacology. Vol. 251. Springer, Cham; 2019. P. 259–282. doi: 10.1007/164_2018_137
  113. Jimenez-Pavon D, Corral-Perez J, Sánchez-Infantes D, et al. Infrared thermography for estimating supraclavicular skin temperature and bat activity in humans: a systematic review. Obesity. 2019;27(12):1932–1949. doi: 10.1002/oby.22635
  114. Lahiri BB, Bagavathiappan S, Jayakumar T, Philip J. Medical applications of infrared thermography: A review. Infrared Phys Technol. 2012;55(4):221–235. doi: 10.1016/j.infrared.2012.03.007
  115. Nicolas-Rodriguez E, Pons-Fuster E, López-Jornet P. Diagnostic infrared thermography of the tongue and taste perception in patients with oral lichen planus: case-control study. J Clin Med. 2024;13(2):435. doi: 10.3390/jcm13020435
  116. Liu Q, Li M, Wang W, et al. Infrared thermography in clinical practice: a literature review. Eur J Med Res. 2025;30: 33. doi: 10.1186/s40001-025-02278-z
  117. Zhao Y, Bergmann JHM. Non-contact infrared thermometers and thermal scanners for human body temperature monitoring: a systematic review. Sensors. 2023;23(17):7439. doi: 10.3390/s23177439
  118. El-Radhi AS. Fever in common infectious diseases. In: El-Radhi A, editor. Clinical manual of fever in children. Springer, Cham; 2019. P. 85–140. doi: 10.1007/978-3-319-92336-9_5
  119. Chamkouri N, Absalan F, Koolivand Z, Yousefi M. Nonsteroidal anti-inflammatory drugs in viral infections disease, specially COVID-19. Adv Biomed Res. 2023;12(1):20. doi: 10.4103/abr.abr_148_21
  120. Bassetti M, Andreoni M, Santus P, Scaglione F. NSAIDs for early management of acute respiratory infections. Curr Opin Infect Dis. 2024;37(4):304–311. doi: 10.1097/QCO.0000000000001024
  121. Li H, Lu Q, Wang H, Li L. Preparation and application of cooling bag for heat stroke in wild field. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2017;29(5):479–480. (In Chinese). doi: 10.3760/cma.j.issn.2095-4352.2017.05.019
  122. Geneva II, Cuzzo B, Fazili T, Javaid W. Normal body temperature: a systematic review. Open Forum Infect Dis. 2019;6(4):ofz032. doi: 10.1093/ofid/ofz032
  123. Geneva II, Cuzzo B, Fazili T, Javaid W. Comprehensive analysis of temperature in hospitalized patients. Am J Med Sci. 2019;358(2):134–142. doi: 10.1016/j.amjms.2019.05.011
  124. Horn M, Diprose WK, Pichardo S, et al. Non-invasive brain temperature measurement in acute ischemic Stroke. Front Neurol. 2022;13:889214. doi: 10.3389/fneur.2022.889214
  125. Drewry A, Mohr NM. Temperature management in the ICU. Crit Care Med. 2022;50(7):1138–1147. doi: 10.1097/CCM.0000000000005556
  126. Newey C, Skaar JR, O’Hara M, et al. Systematic literature review of the association of fever and elevated temperature with outcomes in critically ill adult patients. Ther Hypothermia Temp Manag. 2024;14(1):10–23. doi: 10.1089/ther.2023.0004
  127. Lee BH, Inui D, Suh GY, et al. Fever and antipyretic in critically ill patients evaluation (face) study group. Association of body temperature and antipyretic treatments with mortality of critically ill patients with and without sepsis: multi-centered prospective observational study. Crit Care. 2012;16(1):R33. doi: 10.1186/cc11211
  128. Belur AD, Sedhai YR, Truesdell AG, et al. Targeted temperature management in cardiac arrest: an updated narrative review. Cardiol Ther. 2023;12(1):65–84. doi: 10.1007/s40119-022-00292-4
  129. Rasmussen TP, Bullis TC, Girotra S. Targeted temperature management for treatment of cardiac arrest. Curr Treat Options Cardiovasc Med. 2020;22(11):39. doi: 10.1007/s11936-020-00846-6
  130. Fernandez Hernandez S, Barlow B, Pertsovskaya V, Maciel CB. Temperature control after cardiac arrest: a narrative review. Adv Ther. 2023;40(5):2097–2115. doi: 10.1007/s12325-023-02494-1
  131. Beekman R, Khosla A, Buckley R, et al. Temperature control in the era of personalized medicine: knowledge gaps, research priorities, and future directions. J Intensive Care Med. 2024;39(7):611–622. doi: 10.1177/08850666231203596
  132. Meurer WJ, Schmitzberger FF, Yeatts S, et al. Influence of cooling duration on efficacy in cardiac arrest patients (ICECAP): study protocol for a multicenter, randomized, adaptive allocation clinical trial to identify the optimal duration of induced hypothermia for neuroprotection in comatose, adult survivors of after out-of-hospital cardiac arrest. Trials. 2024;25(1):502. doi: 10.1186/s13063-024-08280-w
  133. Shrestha DB, Sedhai YR, Budhathoki P, et al. Hypothermia versus normothermia after out-of-hospital cardiac arrest: A systematic review and meta-analysis of randomized controlled trials. Ann Med Surg (Lond). 2022 Jan 29;74:103327. doi: 10.1016/j.amsu.2022.103327
  134. Omairi AM, Pandey S. Targeted temperature management. In: StatPearls. Treasure Island: StatPearls Publishing; 2025.
  135. Lavinio A, Coles JP, Robba C, et al. Targeted temperature control following traumatic brain injury: ESICM/NACCS best practice consensus recommendations. Crit Care. 2024;28(1):170. doi: 10.1186/s13054-024-04951-x
  136. Gouvêa Bogossian E, Salvagno M, Fiore M, et al. Impact of fever on the outcome non-anoxic acute brain injury patients: a systematic review and meta-analysis. Crit Care. 2024;28(1):367. doi: 10.1186/s13054-024-05132-6
  137. Hebbar K, Fortenberry JD, Rogers K, et al. Comparison of temporal artery thermometer to standard temperature measurements in pediatric intensive care unit patients. Pediatr Crit Care Med. 2005;6(5):557–561. doi: 10.1097/01.pcc.0000163671.69197.16
  138. Hart D, Rischall M, Durgin K, et al. Non-invasive zero-heat-flux technology compared with traditional core temperature measurements in the emergency department. Am J Emerg Med. 2020;38(11):2383–2386. doi: 10.1016/j.ajem.2020.08.071
  139. Kim Y-J, Lee E, Lee J, et al. Feasibility and accuracy of pediatric core temperature measurement using an esophageal probe inserted through the gastric lumen of a second-generation supraglottic airway device: a prospective observational study. Anesth Pain Med (Seoul). 2024;19(S1):S105–S112. doi: 10.17085/apm.23150
  140. Sun S, Liu H, Liang Q, et al. Association between acetaminophen administration and clinical outcomes in patients with sepsis admitted to the ICU: a retrospective cohort study. Front Med. 2024;11:1346855. doi: 10.3389/fmed.2024.1346855
  141. Urakov AL. The history of the formation of thermopharmacology in Russia. Advances in Modern Natural Science. 2014;12:29–38.
  142. Urakov AL. Thermal pharmacology: history and definition. Reviews on Clinical Pharmacology and Drug Therapy. 2021;19(1):87–96. doi: 10.17816/RCF19187-96 EDN: YIGBEQ
  143. Sartelli M, Coccolini F, Kluger Y, et al. WSES/GAIS/WSIS/SIS-E/AAST global clinical pathways for patients with skin and soft tissue infections. World J Emerg Surg. 2022;17:3. doi: 10.1186/s13017-022-00406-2
  144. Sigg A-A, Zivkovic V, Bartussek J, et al. The physiological basis for individualized oxygenation targets in critically ill patients with circulatory shock. Intensive Care Med Exp. 2024;12(1):72. doi: 10.1186/s40635-024-00651-6
  145. Kim J-H, Kim J-G, Kang G-H, et al. Target temperature management effect on the clinical outcome of patients with out-of-hospital cardiac arrest treated with extracorporeal cardiopulmonary resuscitation: a nationwide observational study. J Pers Med. 2024;14(2):185. doi: 10.3390/jpm14020185
  146. Urakov A, Urakova N, Gurevich K, Muhutdinov N. Cardiology, respiratory failure, and tolerance of hypoxia in the context of COVID-19: a multidisciplinary perspective. Rev Cardiovasc Med. 2022;23(1):21. doi: 10.31083/j.rcm2301021
  147. Wong KC. Physiology and pharmacology of hypothermia. West J Med. 1983;138(2):227–232.
  148. Grazioso TP, Djouder N. The forgotten art of cold therapeutic properties in cancer: A comprehensive historical guide. iScience. 2023;26(7):107010. doi: 10.1016/j.isci.2023.107010
  149. Urakov AL. How temperature pharmacology was formed: history in personalities. J Drug Delivery Ther. 2020;10(4-S):226–231. doi: 10.22270/jddt.v10i4-s.4208
  150. Yuan X, Theruvath AJ, Ge X, et al. Machine perfusion or cold storage in organ transplantation: indication, mechanisms, and future perspectives. Transpl Int. 2010;23(6):561–570. doi: 10.1111/j.1432-2277.2009.01047.x
  151. Guibert EE, Petrenko AY, Balaban CL, et al. Organ preservation: current concepts and new strategies for the next decade. Transfus Med Hemother. 2011;38(2):125–142. doi: 10.1159/000327033
  152. Tripathy S, Das SK. Strategies for organ preservation: Current prospective and challenges. Cell Biol Int. 2023;47(3):520–538. doi: 10.1002/cbin.11984
  153. Geng Q, Xu Y, Hu Y, et al. Progress in the application of organoids-on-a-chip in diseases. Organogenesis. 2024;20(1):2386727. doi: 10.1080/15476278.2024.2386727
  154. Liao P-C, Bergamini C, Fato R, et al. Isolation of mitochondria from cells and tissues. Methods Cell Biol. 2020;155:3–31. doi: 10.1016/bs.mcb.2019.10.002
  155. Song K, Rampelt H. Isolation of yeast mitochondria by differential centrifugation. Methods Enzymol. 2024;706:3–18. doi: 10.1016/bs.mie.2024.07.024
  156. Chen Y, Shi J, Xia TC, et al. Preservation solutions for kidney transplantation: history, advances and mechanisms. Cell Transplant. 2019;28(12):1472–1489. doi: 10.1177/0963689719872699
  157. Iba T, Kondo Y, Maier CL, et al. Impact of hyper- and hypothermia on cellular and whole-body physiology. J Intensive Care. 2025;13(1):4. doi: 10.1186/s40560-024-00774-8
  158. González-Ibarra FP, Varon J, López-Meza EG. Therapeutic hypothermia: critical review of the molecular mechanisms of action. Front Neurol. 2011;2:4. doi: 10.3389/fneur.2011.00004
  159. Lechiancole A, Gliozzi G, Sponga S, et al. Donor heart preservation for heart transplantation: single-center experience with three different techniques. J Clin Med. 2025;14(4):1108. doi: 10.3390/jcm14041108
  160. Bala M, Catena F, Kashuk J, et al. Acute mesenteric ischemia: updated guidelines of the World Society of Emergency Surgery. World J Emerg Surg. 2022;17(1):54. doi: 10.1186/s13017-022-00443-x
  161. Hage AN, McDevitt JL, Chick JFB, Vadlamudi V. Acute limb ischemia therapies: when and how to treat endovascularly. Semin Intervent Radiol. 2018;35(5):453–460. doi: 10.1055/s-0038-1676321
  162. Ghoshal AG. Hypoxemia and oxygen therapy. J Assoc Chest Physicians. 2020;8(2):42–47. doi: 10.2147/IJGM.S172460
  163. Güneş UY, Zaybak A. Does the body temperature change in older people? J Clin Nurs. 2008;17(17):2284–2287. doi: 10.1111/j.1365-2702.2007.02272.x
  164. Urakov AL. Cold in protection of the heart. Advances in Current Natural Sciences. 2013;11:32–36.
  165. Skjeldal S, Torvik A, Nordsletten L, et al. Local hypothermia during ischemia or reperfusion in skeletal muscles. Res Exp Med. 1993;193:73–80. doi: 10.1007/BF02576213
  166. Skjeldal S, Grøgaard B, Nordsletten L, et al. Protective effect of low-grade hypothermia in experimental skeletal muscle ischemia. Eur Surg Res. 1992;24(4):197–203. doi: 10.1159/000129207
  167. Mowlavi A, Neumeister MW, Wilhelmi BJ, et al. Local hypothermia during early reperfusion protects skeletal muscle from ischemia-reperfusion injury. Plast Reconstr Surg. 2003;111(1):242–250. doi: 10.1097/01.PRS.0000034936.25458.98
  168. Forsell C, Aberg J, Szabó Z. Preoperative topical hypothermia used in prolonged severe lower limb ischemia to avoid ischemic damage—The first clinical experience. Int J Biomed Sci. 2013;9(3):181–184. doi: 10.59566/IJBS.2013.9181
  169. Kao E, Patel S, Wang X, et al. Effects of local hypothermia on limb viability in a swine model of acute limb ischemia during prolonged damage-control resuscitation. Shock. 2025;63(1):155–161. doi: 10.1097/SHK.0000000000002496
  170. Urakova NA, Urakov AL. Thermal imaging for increasing the diagnostic accuracy in fetal hypoxia: concept and practice suggestions. In: Ng E, Etehadtavakol M, editors. Application of infrared to biomedical sciences. Series in BioEngineering. Singapore: Springer; 2017. doi: 10.1007/978-981-10-3147-2_16
  171. Urakov A, Urakova N. Fetal hypoxia: Temperature value for oxygen exchange, resistance to hypoxic damage, and diagnostics using a thermal imager. Indian J Obstet Gynecol Res. 2020;7(2):232–238. doi: 10.18231/j.ijogr.2020.048
  172. Verduzco-Mendoza A, Mota-Rojas D, Olmos Hernández SA, et al. Traumatic brain injury extending to the striatum alters autonomic thermoregulation and hypothalamic monoamines in recovering rats. Front Neurosci. 2023;17:1304440. doi: 10.3389/fnins.2023.1304440
  173. Merlen JF. Acrocyanosis: certain paradoxes, its pathogenesis. Phlebologie. 1982;35(3):731–737. (In French).
  174. Ruiz-Rodríguez JF, Fernández-de Thomas RJ, De Jesus O. Secondary acrocyanosis in a paraplegic patient with spinal cord injury. Cureus. 2022;14(9):e29420. doi: 10.7759/cureus.29420
  175. Kent JT, Carr D. A visually striking case of primary acrocyanosis: A rare cause of the blue digit. Am J Emerg Med. 2021;40:227.e3–227.e4. doi: 10.1016/j.ajem.2020.07.064
  176. Kluger N. A case of acrocyanosis in a painting of the 17th century. J Eur Acad Dermatol Venereol. 2022;36(8):1169–1170. doi: 10.1111/jdv.18120
  177. Rathjen NA, Shahbodaghi SD, Brown JA. Hypothermia and cold weather injuries. Am Fam Physician. 2019;100(11):680–686.
  178. Zemzem M, Hallé S, Vinches L. Thermal insulation of protective clothing materials in extreme cold conditions. Saf Health Work. 2023;14(1):107–117. doi: 10.1016/j.shaw.2022.11.004
  179. Vogel K, Hulsopple C. Cold Weather injuries: initial evaluation and management. Curr Sports Med Rep. 2022;21(4):117–122. doi: 10.1249/JSR.0000000000000947
  180. Fudge J. Preventing and managing hypothermia and frostbite injury. Sports Health. 2016;8(2):133–139. doi: 10.1177/1941738116630542
  181. Long WB III, Edlich RF, Winters KL, Britt LD. Cold injuries. J Long Term Eff Med Implants. 2005;15(1):67–78. doi: 10.1615/jlongtermeffmedimplants.v15.i1.80
  182. Beker BM, Cervellera C, De Vito A, Musso CG. Human physiology in extreme heat and cold. Int Arch Clin Physiol. 2018;1:001. doi: 10.23937/IACPH-2017/1710001
  183. Lim CL. Fundamental concepts of human thermoregulation and adaptation to heat: a review in the context of global warming. Int J Environ Res Public Health. 2020;17(21):7795. doi: 10.3390/ijerph17217795
  184. van Marken Lichtenbelt WD, Daanen HA. Cold-induced metabolism. Curr Opin Clin Nutr Metab Care. 2003;6(4):469–475. doi: 10.1097/01.mco.0000078992.96795.5f
  185. Brychta RJ, Chen KY. Cold-induced thermogenesis in humans. Eur J Clin Nutr. 2017;71(3):345–352. doi: 10.1038/ejcn.2016.223
  186. Nahon KJ, Boon MR, Doornink F, et al. Lower critical temperature and cold-induced thermogenesis of lean and overweight humans are inversely related to body mass and basal metabolic rate. J Therm Biol. 2017;69:238–248. doi: 10.1016/j.jtherbio.2017.08.006
  187. Ramón A, Esteves A, Villadóniga C, et al. A general overview of the multifactorial adaptation to cold: biochemical mechanisms and strategies. Braz J Microbiol. 2023;54(3):2259–2287. doi: 10.1007/s42770-023-01057-4
  188. Bleakley CM, Davison GW. What is the biochemical and physiological rationale for using cold-water immersion in sports recovery? A systematic review. Br J Sports Med. 2010;44(3):179–187. doi: 10.1136/bjsm.2009.065565
  189. Mooventhan A, Nivethitha L. Scientific evidence-based effects of hydrotherapy on various systems of the body. N Am J Med Sci. 2014;6(5):199–209. doi: 10.4103/1947-2714.132935
  190. Jinka TR, Combs VM, Drew KL. Translating drug-induced hibernation to therapeutic hypothermia. ACS Chem Neurosci. 2015;6(6):899–904. doi: 10.1021/acschemneuro.5b00056
  191. Urakov AL, Ushnurtsev SA, Zamost’ianova GB. Effect of hypothermia and anti-angina preparations with malonate-like action on myocardial glycolysis and oxidative phosphorylation. Pharmacology and toxicology. 1983;46(1):51–54. (In Russ.) EDN: YUGTOW
  192. Urakov AL, Kravchuk AP. Effect of local hyper- and hypothermia on hemodynamics and viability of the ischemic intestine. Grekov’s bulletin of surgery. 1987;138(3):43–45. (In Russ.) EDN: YUGOBX
  193. Brininger C, Spradlin S, Cobani L, Evilia C. The more adaptive to change, the more likely you are to survive: Protein adaptation in extremophiles. Semin Cell Dev Biol. 2018;84:158–169. doi: 10.1016/j.semcdb.2017.12.016
  194. Jackson TC, Kochanek PM. A new vision for therapeutic hypothermia in the era of targeted temperature management: a speculative synthesis. Therapeutic Hypothermia and Temperature Management. 2019;9(1):13–47. doi: 10.1089/ther.2019.0001
  195. Hong JM, Choi ES, Park SY. Selective brain cooling: A new horizon of neuroprotection. Front Neurol. 2022;13:873165. doi: 10.3389/fneur.2022.873165
  196. Choi JH, Pile-Spellman J, Weinberger J, Poli S. Editorial: Selective brain and heart hypothermia—A path toward targeted organ resuscitation and protection. Front Neurol. 2023;14:1162865. doi: 10.3389/fneur.2023.1162865
  197. Munoz C, Acon-Chen C, Keith ZM, Shih TM. Hypothermia as potential therapeutic approach to attenuating soman-induced seizure, neuropathology, and mortality with an adenosine A1 receptor agonist and body cooling. Neuropharmacology. 2024;253:109966. doi: 10.1016/j.neuropharm.2024.109966
  198. Urakov AL. Prescription for temperature. Izhevsk; 1988. (In Russ.)
  199. Odiyankov EG. Comprehensive hypothermic protection in surgery of acute severe ischemia of the lower extremities [dissertation abstract]. Kuibyshev; 1990. (In Russ.)
  200. Urakov AL. Ways of pharmacological regulation of ischemic myocardial metabolism and vascular tone [dissertation abstract]. Kazan; 1992. (In Russ.)
  201. Patent SU1650103/23.05.1991. Urakov AL, Odiyankov EG, Odiyankov YG, Lyalin VE. A method for determining indications for reconstructive surgery and amputation in patients with limb ischemia. (In Russ.)
  202. Patent SU1797192/08.10.1992. Urakov AL, Baburkin EV. Drug for pharmaco–cold therapy of chronic ischemic lesions of the lower extremities. (In Russ.)
  203. Patent RU2563151/20.09.2015. Urakov AL, Urakova NA, Agarval RC, Reshetnikov AP, Chernova LV. Method of maintenance of live fish during transportation and storage. (In Russ.)
  204. Urakov A, Urakova N, Reshetnikov A. Oxygen alkaline dental’s cleaners from tooth plaque, food debris, stains of blood, and pus: A narrative review of the history of inventions. J Int Soc Prev Community Dent. 2019;9(5):427–433. doi: 10.4103/jispcd.JISPCD_296_19
  205. Urakov AL. Creation of “necessary” mixtures of baking soda, hydrogen peroxide and warm water as a strategy for modernization bleaching cleaners of ceramic. Epitőanyag — Journal of Silicate Based and Composite Materials. 2020;72(1):30–35. doi: 10.14382/epitoanyag-jsbcm.2020.6
  206. Fisher E, Urakov A, Svetova M, et al. COVID-19: intrapulmonary alkaline hydrogen peroxide can immediately increase blood oxygenation. Med Cas. 2021;55(4):135–138. doi: 10.5937/mskg55-3524
  207. Urakov A, Urakova N, Nikolenko V, et al. Current and emerging methods for treatment of hemoglobin related cutaneous discoloration: A literature review. Heliyon. 2021;7(1):e05954. doi: 10.1016/j.heliyon.2021.e05954
  208. Shabanov PD, Fisher EL, Urakov AL. Hydrogen peroxide formulations and methods of their use for blood oxygen saturation. J Med Pharm Allied Sci. 2022;11(6):5489–5493. doi: 10.55522/jmpas.V11I6.4604
  209. Fisher EL, Urakov AL, Samorodov AV, et al. Alkaline hydrogen peroxide solutions: expectorant, pyolytic, mucolytic, haemolytic, oxygen-releasing, and decolorizing effects. Reviews on Clinical Pharmacology and Drug Therapy. 2023;21(2):135–150. doi: 10.17816/RCF492316 EDN: UDPAZJ
  210. Urakov A, Urakova N, Shabanov P, et al. Suffocation in asthma and COVID-19: Supplementation of inhaled corticosteroids with alkaline hydrogen peroxide as an alternative to ECMO. Preprints. 2023;2023070627. doi: 10.20944/preprints202307.0627.v1
  211. Rastinfard A, Dalisson B, Barralet J. Aqueous decomposition behavior of solid peroxides: Effect of pH and buffer composition on oxygen and hydrogen peroxide formation. Acta Biomater. 2022;145:390–402. doi: 10.1016/j.actbio.2022.04.004
  212. Urakov A, Urakova N, Reshetnikov A, Rozov R. Local warm alkaline hydrogen peroxide solutions and targeted temperature management improve the treatment of chronic wounds. Azerbaijan Pharm Pharmacother J. 2024;23(1):65–69. doi: 10.61336/appj/23-1-12
  213. Urakov A, Urakova N, Reshetnikov A, et al. Catalase: A potential pharmacologic target for hydrogen peroxide in the treatment of COVID-19. Curr Top Med Chem. 2024;24(25):2191–2210. doi: 10.2174/0115680266322046240819053909
  214. Osipov AN, Urakova NA, Urakov AL, Shabanov PD. Warm alkaline hydrogen peroxide solution as an oxygen-releasing antihypoxic drug: potential benefits and applications. Med Gas Res. 2025;15(1):134–135. doi: 10.4103/mgr.MEDGASRES-D-24-00058
  215. Urakova N, Urakov A, Shabanov P. Pharmacological activities of warm alkaline hydrogen peroxide solution and therapeutic potential in medicine: physical-chemical reprofiling as a promising lead for drug discovery. Anti-Infective Agents. 2025;23(4):158–162. doi: 10.2174/0122113525351536241122063840
  216. Urakova NA, Urakov AL. Hydrogen peroxide: Potential for repurposing into an oxygen-producing antihypoxant by generating oxygen gas. Biointerface Res Appl Chem. 2025;15(1). doi: 10.33263/BRIAC151.003
  217. Urakov AL, Shabanov PD. Physical-chemical repurposing of drugs. History of its formation in Russia. Reviews on Clinical Pharmacology and Drug Therapy. 2023;21(3):231–242. doi: 10.17816/RCF567782 EDN: IJCHYZ
  218. Urakov AL, Urakova NA, Reshetnikov AP, et al. Pyolytics as a product of the physical–chemical repurposing of antiseptics and an alternative to larval therapy for chronic wounds. Reviews on Clinical Pharmacology and Drug Therapy. 2023;21(4):287–297. doi: 10.17816/RCF606648 EDN: XWUGVK
  219. Patent RU2807851C1/21.11.2023. Urakov AL, Urakova NA, Shabanov PD, et al. Warm alkaline solution of hydrogen peroxide for intrapulmonary injection. (In Russ.)
  220. Patent RU2831821C1/16.12.2024. Urakov AL, Urakova NA, Fisher EL. Oxygenated warm alkaline solution of hydrogen peroxide for intrapulmonary injection. (In Russ.)
  221. Assis FR, Narasimhan B, Ziai W, Tandri H. From systemic to selective brain cooling—Methods in review. Brain Circ. 2019;5(4): 179–186. doi: 10.4103/bc.bc_23_19
  222. Jastrzębski P, Snarska J, Adamiak Z, Miłowski T. The effect of hypothermia on the human body. Polish Annals of Medicine. 2022;29(2):262–266. doi: 10.29089/paom/147316
  223. Sahdo B, Evans AL, Arnemo JM, et al. Body temperature during hibernation is highly correlated with a decrease in circulating innate immune cells in the brown bear (Ursus arctos): a common feature among hibernators? Int J Med Sci. 2013;10(5):508–514. doi: 10.7150/ijms.4476
  224. Hutchison JS, Ward RE, Lacroix J, et al. Hypothermia therapy after traumatic brain injury in children. N Engl J Med. 2008;358(23):2447–2456. doi: 10.1056/NEJMoa0706930
  225. Lunze K, Bloom DE, Jamison DT, Hamer DH. The global burden of neonatal hypothermia: systematic review of a major challenge for newborn survival. BMC Med. 2013;11:24. doi: 10.1186/1741-7015-11-24
  226. Choi JH, Pile-Spellman J. Selective brain hypothermia. Handb Clin Neurol. 2018;157:839–852. doi: 10.1016/B978-0-444-64074-1.00052-5
  227. Chen K, Schenone AL, Gheyath B, et al. Impact of hypothermia on cardiac performance during targeted temperature management after cardiac arrest. Resuscitation. 2019;142:1–7. doi: 10.1016/j.resuscitation.2019.06.276
  228. Choi JH, Poli S, Chen M, et al. Selective brain hypothermia in acute ischemic stroke: reperfusion without reperfusion injury. Front Neurol. 2020;11:594289. doi: 10.3389/fneur.2020.594289
  229. Elbadawi A, Sedhom R, Baig B, et al. Targeted hypothermia vs targeted normothermia in survivors of cardiac arrest: A systematic review and meta-analysis of randomized trials. Am J Med. 2022;135(5):626–633.e4. doi: 10.1016/j.amjmed.2021.11.014
  230. You JS, Kim JY, Yenari MA. Therapeutic hypothermia for stroke: Unique challenges at the bedside. Front Neurol. 2022;13:951586. doi: 10.3389/fneur.2022.951586
  231. Arrich J, Schütz N, Oppenauer J, et al. Hypothermia for neuroprotection in adults after cardiac arrest. Cochrane Database Syst Rev. 2023;5(5):CD004128. doi: 10.1002/14651858.CD004128.pub5
  232. Maclaren R, Torian S, Kiser T, et al. Therapeutic hypothermia following cardiopulmonary arrest: A systematic review and meta-analysis with trial sequential analysis. J Crit Care Med. 2023;9(2): 64–72. doi: 10.2478/jccm-2023-0015
  233. Diprose WK, Rao A, Ghate K, et al. Penumbral cooling in ischemic stroke with intraarterial, intravenous or active conductive head cooling: A thermal modeling study. J Cereb Blood Flow Metab. 2024;44(1):66–76. doi: 10.1177/0271678X231203025
  234. Assis FR, Bigelow MEG, Chava R, et al. Efficacy and safety of transnasal coolstat cooling device to induce and maintain hypothermia. Ther Hypothermia Temp Manag. 2019;9(2):108–117. doi: 10.1089/ther.2018.0014
  235. Awad A, Dillenbeck E, Dankiewicz J, et al. Transnasal evaporative cooling in out-of-hospital cardiac arrest patients to initiate hypothermia—A substudy of the target temperature management 2 (TTM2) Randomized trial. J Clin Med. 2023;12(23):7288. doi: 10.3390/jcm12237288
  236. Koehler RC, Reyes M, Hopkins CD, et al. Rapid, selective and homogeneous brain cooling with transnasal flow of ambient air for pediatric resuscitation. J Cereb Blood Flow Metab. 2023;43(11): 1842–1856. doi: 10.1177/0271678X231189463
  237. Radzinsky VE, Urakova NA, Urakov AL, Nikityuk DB. Test Hausknecht as a predictor of Cesarean section and newborn resuscitation. V.F. Snegirev Archives of Obstetrics and Gynecology. 2014;1(2):14–18. doi: 10.17816/aog35256 EDN: SYSMHP
  238. Urakov A, Urakova N. A drowning fetus sends a distress signal, which is an indication for a Caesarean section. Indian J Obstet Gynecol Res. 2020;7(4):461–466. doi: 10.18231/j.ijogr.2020.100
  239. Urakov AL, Urakova NA. Modified Stange test gives new gynecological criteria and recommendations for choosing caesarean section childbirth. BioImpacts. 2022;12(5):477–478. doi: 10.34172/bi.2022.23995
  240. Bon LI, Fliuryk S, Dremza I, Bon E, Maksimovich N, et al. Hypoxia of the brain and mechanisms of its development. J Clin Res Rep. 2023;13(4):01–05. doi: 10.31579/2690-1919/311
  241. Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem. 1955;217(1):383–393. doi: 10.1016/S0021-9258(19)57189-7
  242. Chance B, Williams GR, Holmes WF, Higgins J. Respiratory enzymes in oxidative phosphorylation. V. A mechanism for oxidative phosphorylation. J Biol Chem. 1955;217(1):439–451.
  243. Chance B, Williams GR. The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem. 1956;17:65–134. doi: 10.1002/9780470122624.ch2
  244. Kondrashova MN, Gogvadze VG, Medvedev BI, Babsky AM. Succinic acid oxidation as the only energy support of intensive Ca2+ uptake by mitochondria. Biochem Biophys Res Commun. 1982;109(2):376–381. doi: 10.1016/0006-291x(82)91731-4
  245. Kondrashova MN. Structuro-kinetic organization of the tricarboxylic acid cycle in the active functioning of mitochondria. Biofizika. 1989;34(3):450–458. (In Russ.)
  246. Kondrashova MN, Doliba NM. Polarographic observation of substrate-level phosphorylation and its stimulation by acetylcholine. FEBS Lett. 1989 J;243(2):153–155. doi: 10.1016/0014-5793(89)80119-x
  247. Kondrashova MN, Volkova SP, Kuznetzov IV, et al. Succinic acid as a physiological signal molecule. In: Winlow W, Vinogradova OS, Sakharov DA, editors. Signal molecule and behavior. Manchester: Manchester University Press; 1991. P. 295–300.
  248. Kondrashova MN. The formation and utilization of succinate in mitochondria as a control mechanism of energization and energy state of tissue. In: Chance B, editor. Biological and biochemical oscillators. New York: Academic Press; 1993. P. 373–397.
  249. Patent RU2538662/01.10.2015. Urakov AL, Urakova NA, Reshetnikov AP, et al. Soikher’s hyperoxygenated agent for venous oxygen saturation. (In Russ.)
  250. Wang H, Olivero W, Lanzino G, et al. Rapid and selective cerebral hypothermia achieved using a cooling helmet. J Neurosurg. 2004;100(2):272–277. doi: 10.3171/jns.2004.100.2.0272
  251. Yin L, Jiang H, Zhao W, Li H. Inducing therapeutic hypothermia via selective brain cooling: a finite element modeling analysis. Med Biol Eng Comput. 2019;57(6):1313–1322. doi: 10.1007/s11517-019-01962-7
  252. Urakov AL, Urakova NA, Reshetnikov AP, et al. Dynamics of the local temperature of skin, inner surface of cheeks and buccal gingiva after the application of an standard instant ice pack to patient’s face. Thermology International. 2018;28(2):99–100.
  253. Patent RU2586292/10.06.2016. Urakov AL. Lympho-subsitute for local maintaining viability of organs and tissues in hypoxia and ischemia. (In Russ.)

© Эко-Вектор, 2025

Ссылка на описание лицензии: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.