Влияние окситоцина на уровень и обмен моноаминов в мозге изолированных мышей высоко- и низкоагрессивных линий

Обложка


Цитировать

Полный текст

Аннотация

Целью исследования было сравнение действия окситоцина на поведение и уровень моноаминов головного мозга у агрессивных самцов-изолянтов исходно низкоагрессивной линии C57Bl/6 с аналогичными показателями высокоагрессивных белых беспородных мышей.

Методика. В опытах на изолированных самцах мышей низкоагрессивной линии C57Bl/6 и высокоагрессивных белых беспородных мышей исследовали влияние окситоцина на агрессивное поведение и активность моноаминергических систем левого и правого полушарий головного мозга. После длительной социальной изоляции для дальнейшего исследования отбирали самцов мышей, проявлявших агрессию в тесте резидент – интрудер. Окситоцин (5 МЕ/мл, 20 мкл) вводили интраназально. Контрольные животные получали эквивалентное количество физиологического раствора. Методом высокоэффективной жидкостной хроматографии (ВЭЖХ) в коре больших полушарий, гиппокампе, обонятельном бугорке и стриатуме левой и правой сторон мозга определяли концентрации дофамина, норадреналина, серотонина и их метаболитов диоксифенил уксусной, гомованилиновой и 5-оксииндолуксусной кислот.

Результаты. Среди самцов-изолянтов линии C57Bl/6 доля агрессивных особей составила 56,5 %, а среди белых беспородных мышей — 87,5 %. Исследованные линии также различались по латентному периоду первой атаки: агрессивные мыши C57Bl/6 атаковали в среднем через 113,1 ± 23,5 с, в то время как у белых беспородных мышей атака следовала через 35,3 ± 14,7 с (p <0,01). У агрессивных самцов-изолянтов линии C57Bl/6, получавших интраназально физиологический раствор, содержание серотонина и 5-оксииндолуксусной кислоты в гиппокампе было достоверно выше справа. У C57Bl/6 окситоцин снижал проявление агрессии, вызванной длительной социальной изоляцией (p < 0,05), но абсолютной способностью купировать данный вид поведения не обладал. Под его влиянием снижался уровень дофамина в левой коре (p = 0,054), а также содержание серотонина в правом гиппокампе (p < 0,05) и в левом стриатуме (p < 0,05). Кроме того, применение окситоцина у C57Bl/6 нивелировало выявленную асимметрию уровня серотонина и 5-оксииндолуксусной кислот в гиппокампе. В то же время возникала асимметрия содержания дофамина в коре головного мозга с преобладанием этого медиатора в правом полушарии (p < 0,05). У самцов-изолянтов высокоагрессивных белых беспородных мышей влияние окситоцина на поведение не проявлялось. Однако и у этих животных окситоцин вызывал определенные изменения моноаминергических систем головного мозга. Под действием окситоцина исчезала исходная правосторонняя асимметрия уровня метаболитов дофамина в стриатуме и левосторонняя асимметрия по уровню серотонина в коре. Окси тоцин вызывал повышение содержания 5-гидроксиуксусной кислоты в правом стриатуме (p < 0,05) и норадреналина — в левом гиппокампе (p < 0,05). Кроме того, у белых беспородных мышей под влиянием окситоцина возникала acимметрия c преобладанием норадреналина в правом обонятельном бугорке (p < 0,05).

Заключение. Можно предположить, что относительно слабые изменения состояния серотонинергической и дофаминергической систем на фоне высокой реактивности норадренергической системы являются особенностью реакции головного мозга высокоагрессивных животных на окситоцин. Полученные данные обсуждаются в плане латерализации нейромедиаторных систем, отвечающих за внут ривидовую агрессию, вызванную длительной социальной изоляцией.

Полный текст

Введение

Окситоцин — один из двух основных нейропептидов, выделяющихся в нейрогипофизе [3]. Известны такие его свойства, как уменьшение половой активности и снижение проявлений агрессии по отношению к особям своего вида [10]. Литературные данные об участии окситоцина в регуляции поведения не столько говорят об изменении под влиянием этого вещества какой-то конкретной функции организма, сколько свидетельствуют о способности окситоцина модулировать целостные поведенческие акты [3].

Показано, что окситоцин способствует снижению агрессивности, причем эти эффекты обусловлены влиянием нейропептида на дофаминергическую и серотонинергическую системы мозга. Так, факт, что окситоцин способствует формированию моногамных пар у грызунов, обусловлен взаимодействием окситоцина с дофаминергической системой мозга [10], а его антиагрессивный эффект опосредован участием данного полипептида в модуляции системы серотонина [8]. Исследования эффектов интраназального введения раствора окситоцина показали, что и у человека окситоцин способствует снижению агрессивности и проявлению доверия [6]. Неожиданными результатами действия окситоцина на активность головного мозга человека являются односторонние проявления эффектов. Так, окситоцин достоверно ослабляет активность левой миндалины во время предъявления изображений лиц с отрицательными эмоциями или изображений социально-негативных сцен [11]. В аналогичном исследовании показано, что при идентификации эмоционального состояния других людей у здоровых женщин окситоцин повышает активацию правой миндалины и правого стриатума, в то время как у пациенток с депрессией окситоцин активирует исключительно правую среднюю фронтальную извилину и правую островковую кору [11].

В наших предыдущих исследованиях мы показали, что интраназальное введение окситоцина изолированным мышам низкоагрессивной линии C57Bl/6 [2, 5] и высокооагрессивным белым беспородным мышам [1] приводит к различным изменениям моноаминергических систем головного мозга. Обращает на себя внимание, что в обоих случаях полученные эффекты препарата были асимметричны. Возникает вопрос, каким образом эффекты окситоцина связаны с базовым уровнем агрессивности животных.

Задачей исследования было сравнительное изучение действия окситоцина на поведение и уровень моноаминов головного мозга у агрессивных самцов-изолянтов исходно низкоагрессивной линии C57Bl/6 с аналогичными показателями высокоагрессивных белых беспородных мышей.

Материалы и методы

Опыты проведены на 65 самцах лабораторных мышей: на 32 половозрелых самцах мышей линии C57Bl/6 и на 33 половозрелых самцах беспородных белых мышей. Животные были получены из питомника Рапполово (Ленинградская область, Россия), в начале исследования масса животных составляла 18–22 г. Для повышения уровня агрессивности 23 мышей линии C57Bl/6 и 24 беспородных мышей помещали в индивидуальные клетки размером 10 × 10 × 12 см3. Остальных животных (9 линии C57Bl/6 и 9 беспородных мышей) содержали в общих клетках до окончания эксперимента.

Через 2,5 месяца содержания в изоляции проводили отбор агрессивных животных, для чего в индивидуальную клетку к изолированному самцу (резиденту) подсаживали самца той же линии, содержавшегося в группе (интрудера). Если в течение четырех минут после ссаживания резидент атаковал интрудера, подсаженную мышь немедленно изымали, регистрировали латентный период атаки, а данный изолянт считался агрессивным. Если в течение четырех минут атаки не происходило, изолянт считался неагрессивным. В результате данной процедуры было отобрано 13 агрессивных изолянтов линии C57Bl/6 и 21 агрессивный изолянт из числа беспородных мышей.

Эксперимент по изучению действия окситоцина на поведение и содержание моноаминов в мозге агрессивных изолированных мышей проводили через неделю после процедуры отбора животных. Для этого резидентам, по результатам отборочного теста признанных агрессивными (7 мышей линии C57Bl/6 и 13 беспородных мышей), с помощью пипеточного дозатора в каждую ноздрю вводили по 10 мкл ампулированного окситоцина (ООО «Элла ра», Россия), содержащего 5 МЕ в 1 мл. Остальным особям (6 агрессивным мышам-изолянтам линии C57Bl/6, а также 8 беспородным агрессивным мышам и 3 беспородным мышам, по результатам отборочного теста признанным неагрессивными) интраназально вводили аналогичный объем физиологического раствора. Поскольку в основном эксперименте все беспородные мыши, получавшие физраствор, проявляли агрессию (включая тех, которые по результатам отборочного теста были признаны неагрессивными), все они были объединены в общую группу контрольных животных. Таким образом, объем контрольной выборки беспородных изолированных мышей составил 11 особей. После процедуры закапывания препарата резидента возвращали в домашнюю клетку, а через 5 минут к нему подсаживали мышь той же линии, содержавшуюся в группе. Сразу после проявления атаки резидента изымали из клетки и декапитировали.

Из правой и левой половин мозга на льду выделяли определенные морфологические структуры, взвешивали и помещали в 0,01 М раствор соляной кислоты: стриатум — в 50 мкл, гиппокамп и обонятельный бугорок — в 100 мкл, кору больших полушарий — в 150 мкл. Пробы гомогенизировали с по мощью прибора УЗДН-2Т, центрифугировали в течение 10 мин при 15 000 g. Надосадочную жидкость собирали в пробирки и хранили до анализа при –90 °С. Концентрации норадреналина (НА), дофамина (ДА), серотонина (5-ОТ) и их метаболитов — диоксифенилуксусной (ДОФУК), гомованилиновой (ГВК) и 5-гидроксииндолуксусной (5-ГИУК) кислот определяли методом обращенной фазной высокоэффективной жидкостной хроматографии с электрохимической детекцией на хроматографе Beckman Coulter (США). Хроматографическая система включала инжектор Rheodyne 7125 с петлей на 20 мкл для нанесения образцов, колонку Phenomenex (250,0 × 4,6 мм) с сорбентом Sphere Clone 5 u ODS(2) и амперометрический детектор LC-4С BAS. Определение концентраций исследуемых веществ проводили при потенциале +0,70 В. Подвижная фаза включала 5,5 мМ цитратно-фосфат ный буфер с 0,7 мМ октансульфоновой кислотой, 0,5 мМ ЭДТА и 8 % ацетонитрилом (рН 3,0). Скорость элюции подвижной фазы составляла 1 мл/мин, время анализа одной пробы — около 20 минут.

Полученные результаты обрабатывали с применением стандартного статистического пакета GraphPad PRISM 5.0. Достоверность различий между группами оценивали по t-критерию Стьюдента.

Результаты исследования и их обсуждение

Исследованные линии животных существенно различались по способности социальной изоляции вызывать агрессию. Так, среди самцов-изолянтов линии C57Bl/6 доля агрессивных особей составила 56,5 %, а среди белых беспородных мышей — 87,5 %. Исследованные линии также различались по латентному периоду первой атаки: агрессивные мыши C57Bl/6 атаковали в среднем через 113,1 ± 23,5 с, в то время как у белых беспородных мышей атака следовала через 35,3 ± 14,7 с  (p < 0,01).

У самцов мышей линии C57Bl/6 в тесте резидент – интрудер длительная социальная изоляция вызывала агрессию с латентным периодом первой атаки 113,1 ± 23,5 с. После интраназального введения физиологического раствора средний латентный период атаки контрольных особей составил 97,5 ± 46,0 с, достоверно не изменившись по сравнению с результатом отборочного теста на агрессивность. Применение окситоцина достоверно увеличивало латентный период первой атаки до 208,6 ± 20,3 с (p < 0,05). Таким образом, у мышей-изолянтов низкоагрессивной линии C57Bl/6 окситоцин снижал проявления агрессии, но не обладал абсолютной способностью купировать данный вид поведения.

В отборочном тесте после подсаживания интрудера в клетку к агрессивному беспородному резиденту атака следовала в среднем через 35,3 ± 14,7 с. Под действием окситоцина латентный период атаки резидента на интрудера достоверно не отличался от значений контрольной группы (35,0 ± 23,1 с) и составил 20,1 ± 9,8 с.

Исследование уровня моноаминов в симметричных структурах мозга мышей-изолянтов высоко- и низкоагрессивной линий выявило существенные различия как по базовому проявлению асимметрии, вызванной изоляцией (без влияния препаратов), так и по способности окситоцина влиять на функционирование моноаминергических систем мозга.

В мозге контрольных особей линии C57Bl/6 после контакта с интрудером были зафиксированы два случая функциональной межполушарной асимметрии: в правом гиппокампе количество 5-ОТ и 5-ГИУК было достоверно больше, чем в контралатеральной структуре (рис. 1 и 2). Во всех остальных исследованных структурах ни по одному показателю достоверных межполушарных различий выявлено не было.

 

Рис. 1. Содержание серотонина в гиппокампе мышей линии C57Bl/6 (нг/мг ткани). Здесь и далее в рисунках 2, 6, 8, 11: Л — левая сторона мозга, П — правая сторона мозга; физраствор — после введения физраствора, окситоцин — после введения окситоцина. * p < 0,01 между левым и правым гиппокампом у мышей, получавших физраствор

 

Рис. 2. Содержание 5-гидроксииндолуксусной кислоты в гиппокампе мышей линии C57Bl/6 (нг/мг ткани). Обозначения как на рис. 1. * p < 0,01 между левым и правым гиппокампом у мышей, получавших физраствор

 

У мышей линии C٥٧Bl/٦ окситоцин достоверно снижал содержание ДА в левой коре (рис. 3) и уровень 5-ОТ в левом стриатуме (рис. 4) и правом гиппокампе (рис. 5). В результате этих изменений исчезала правосторонняя асимметрия по 5-ОТ и 5-ГИУК в гиппокампе, но возникала правосторонняя асимметрия по ДА в коре головного мозга (рис. 6).

 

Рис. 3. Содержание дофамина (ДА) в коре больших полушарий у мышей линии C57Bl/6 (нг/мг ткани). Здесь и далее на рис. 4, 5, 7, 9, 10: левая сторона — левая сторона мозга, правая сторона — правая сторона мозга; Ф — после введения физраствора, О — после введения окситоцина; p = 0,054 по содержанию ДА в левой коре между мышами контрольной (получавшие физраствор) и опытной (получавшие окситоцин) группы

 

Рис. 4. Содержание серотонина в стриатуме мышей линии C57Bl/6 (нг/мг ткани). Обозначения как на рис. 3; * p < 0,05 между мышами контрольной (получавшие физраствор) и опыт ной (получавшие окситоцин) группы в левом стриатуме

 

Рис. 5. Содержание серотонина в гиппокампе мышей линии C57Bl/6 (нг/мг ткани). Обозначения как на рис. 3; * p < 0,01 между мышами контрольной (получавшие физраствор) и опытной (получавшие окситоцин) группы в правом гиппокампе

 

Рис. 6. Содержание дофамина в коре больших полушарий мышей линии C57Bl/6 (нг/мг ткани). Обозначения как на рис. 1; * p < 0,05 между левой и правой корой мозга у мышей, получавших окситоцин

 

У белых беспородных мышей контрольной группы (изолянтов, получавших физраствор) обнаружено два случая асимметричного распределения моноаминов в мозге: повышенное содержание 5-ОТ в левой коре (рис. 7) и более низкое содержание метаболитов ДА (ГВК и ДОФУК) в левом стриатуме (рис. 8). Под влиянием окситоцина у беспородных мышей уровень указанных веществ достоверно не изменялся, однако их содержание становилось симметричным.

 

Рис. 7. Содержание серотонина в коре больших полушарий головного мозга белых беспородных мышей (нг/мг ткани). Обозначения как на рис. 3; * p < 0,05 между левой и правой корой мозга у мышей, получавших физраствор

 

Рис. 8. Содержание гомованилиновой (а) и диоксифенилуксусной (б) кислот в стриатуме белых беспородных мышей (нг/мг ткани). Обозначения как на рис. 1; * p < 0,05 между левым и правым стриатумом у мышей контрольной группы

 

У беспородных мышей при исследовании эффектов окситоцина в отношении структур мозга с изначально симметричным содержанием моноаминов были обнаружены однонаправленные изменения, хотя статистически значимые воздействия отмечались только с одной стороны. Так, под влиянием окситоцина содержание 5-ГИУК в стриатуме достоверно повышалось только в правом стриатуме (рис. 9). Противоположным образом изменялся уровень НА в гиппокампе, что выражалось в достоверном снижении НА слева (рис. 10).

 

Рис. 9. Содержание 5-гидроксииндолуксусной кислоты в стриатуме белых беспородных мышей (нг/мг ткани). Обозначения как на рис. 3; * p < 0,05 между мышами контрольной (получавшие физраствор) и опытной (получавшие окситоцин) группы в правом стриатуме

 

Рис. 10. Содержание норадреналина в гиппокампе белых беспородных мышей (нг/мг ткани). Обозначения как на рис. 3; * p < 0,05 между мышами контрольной (получавшие физраствор) и опытной (получавшие окситоцин) группы в левом гиппокампе

 

Наконец, у беспородных мышей отмечен единственный случай, в котором межполушарные различия под влиянием окситоцина становились статистически значимыми: это уровень НА в обонятельном бугорке. У высокоагрессивных особей, получавших препарат, содержание НА в правом обонятельном бугорке оказывалось достоверно выше, чем в соответствующей структуре слева (рис. 11).

 

Рис. 11. Содержание норадреналина в обонятельном бугорке белых беспородных мышей (нг/мг ткани). Обозначения как на рис. 1; * p < 0,05 между левым и правым обонятельными бугорками у мышей, получавших окситоцин

 

Обращает на себя внимание тот факт, что у мышей обеих линий окситоцин по-разному влияет на моноаминергические системы различных структур переднего мозга. Можно предположить, что пулы компактно расположенных моноаминергических нейронов, посылающих отростки к различным структурам переднего мозга, гетерогенны по своей реакции на окситоцин. Однако наиболее вероятным является то, что взаимодействие моноаминов и окси тоцина происходит в самих зонах переднего мозга, на уровне моноаминергических синапсов. Это косвенно подтверждается данными о различной плотности рецепторов к окситоцину как на уровне ствола, так и в различных областях переднего мозга [9].

Необходимо отметить, что данные, полученные нами на высокоагрессивных белых беспородных мышах, существенно отличаются от результатов аналогичного исследования, проведенного на мышах линии C57Bl/6. В первую очередь это касается влияния препарата на агрессивность: под действием окситоцина латентный период атаки не только не увеличился, а даже несколько уменьшился (различия статистически недостоверны при p < 0,05). Это совпадает с результатами, полученными нидерландскими исследователями на белых высокоагрессивных крысах [4], которые показали отсутствие влияния интраназального введения окситоцина на латентный период атаки.

Анализируя содержание моноаминов в симметричных структурах мозга белых беспородных мышей, мы ожидали, что под воздействием окситоцина прежде всего изменится состояние серотонинергической системы. В пользу данного предположения свидетельствовали как данные о наличии окситоциновых рецепторов на серотонинергических нейронах [7], так и наши результаты, полученные на мышах линии C57Bl/6 [2, 5]. Однако действие окситоцина на серотонинергическую систему у белых беспородных мышей проявлялось слабо: эффекты окситоцина заключались в повышении 5-ГИУК в правом стриатуме и в исчезновении исходного преобладания 5-ОТ в левой коре. Необходимо отметить, что никаких других изменений в коре окситоцин не вызвал.

Неожиданным результатом стало также слабое действие окситоцина на дофаминергическую систему высокоагрессивных мышей, которое заключалось только в исчезновении исходной асимметрии по содержанию метаболитов ДА в стриатуме. У контрольных изолянтов линии C57Bl/6 данная асимметрия не проявлялась. Это позволяет предположить, что асимметрия метаболизма ДА в стриатуме может быть связана с высоким уровнем агрессивности.

Особенностью действия окситоцина на моноаминергические системы высокоагрессивных белых беспородных мышей оказалось влияние препарата на норадренергическую систему. Отметим, что у низкоагрессивных мышей (C57Bl/6) данные эффекты отсутствовали. У высокоагрессивных животных (беспородные) действие окситоцина проявилось как в достоверном снижении уровня НА в левом гиппокампе, так и в появлении асимметрии в обонятельном бугорке, что выразилось в правостороннем преобладании содержания НА в данной структуре мозга.

Можно предположить, что относительно слабые изменения состояния серотонинергической и дофаминергической систем на фоне высокой реактивности норадренергической системы являются особенностью реакции головного мозга высокоагрессивных животных на окситоцин.

×

Об авторах

Инесса Владимировна Карпова

ФБГНУ «Институт экспериментальной медицины»

Автор, ответственный за переписку.
Email: inessa.karpova@gmail.com

канд. биол. наук, доцент, старший научный сотрудник отдела нейрофармакологии

Россия, 197376, г. Санкт-Петербург, ул. Академика Павлова, 12

Евгений Рудольфович Бычков

ФГБНУ «Институт экспериментальной медицины»; ФГБВОУ ВО «Военно-медицинская академия им. С.М. Кирова» МО РФ

Email: bychkov@mail.ru

преподаватель кафедры фармакологии

Россия, 197376, г. Санкт-Петербург, ул. Академика Павлова, 12; 194044, г. Санкт-Петербург, ул. Академика Лебедева, д. 6Ж

Вера Васильевна Марышева

ФГБВОУ ВО «Военно-медицинская академия им. С.М. Кирова» МО РФ

Email: vmarycheva@rambler.ru

д-р биол. наук, зав. учебной лабораторией кафедры фармакологии

Россия, 194044, г. Санкт-Петербург, ул. Академика Лебедева, д. 6Ж

Владимир Владимирович Михеев

ФГБВОУ ВО «Военно-медицинская академия им. С.М. Кирова» МО РФ

Email: vmikheev58@gmail.com

д-р биол. наук, преподаватель кафедры фармакологии

Россия, 194044, г. Санкт-Петербург, ул. Академика Лебедева, д. 6Ж

Петр Дмитриевич Шабанов

ФГБВОУ ВО «Военно-медицинская академия им. С.М. Кирова» МО РФ

Email: pdshabanov@mail.ru

д-р мед. наук, профессор, заведующий кафедрой фармакологии

Россия, 194044, г. Санкт-Петербург, ул. Академика Лебедева, д. 6Ж

Список литературы

  1. Карпова И.В., Бычков Е.Р., Марышева В.В., Михеев В.В. Асимметричное влияние окситоцина на метаболизм моноаминов в мозге изолированных самцов белых беспородных мышей // Обзоры по клинической фармакологии и лекарственной терапии. – 2015. – Т. 13 (спецвыпуск). – C. 69. [Karpova IV, Bychkov ER, Marysheva VV, Miheev VV. Asimmetrichnoe vliyanie oksitocina na metabolizm monoaminov v mozge izolirovannyh samcov belyh besporodnyh myshej. Obzory po klinicheskoj farmakologii i lekarstvennoj terapii. 2015;13(suppl): 69 (In Russ.)]
  2. Карпова И.В., Михеев В.В., Марышева В.В., и др. Изменения содержания моноаминов в симметричных структурах мозга агрессивных мышей-изолянтов линии C57Bl/6 под влиянием окситоцина // Бюлл. эксперим. биол. и мед. – 2015. – Т. 160. – № 11. – С. 546–550.[Karpova IV, Miheev VV, Marysheva VV, et al. Izmeneniya soderzhaniya monoaminov v simmetrichnyh strukturah mozga agressivnyh myshej-izolyantov linii C57Bl/6 pod vliyaniem oksitocina. Byull Ehksperim Biol I Med. 2015;160(11):546-550 (In Russ.)]
  3. Anacker AMJ, Beery AK. Life in groups: the roles of oxitocin in mammalian sociality. Front Behav Neurocsi. 2013;7:185-207. doi: 10.3389/fnbeh.2013.00185.
  4. Calcagholi F, Kreutzmann JC, de Boer SF, et al. Acute and repeated intranasal oxytocin administration exerts anti-aggressive and pro-affiliative effects in male rats. Psychoneuroendocrinology. 2015;51:112-121. doi: 10.1016/ j.psyneuen.2014.09.019.
  5. Karpova IV, Mikheev VV, Marysheva VV, et al. Oxytocin-Induced Changes in Monoamine Level in Symmetric Brain Structures of Isolated Aggressive C57Bl/6 Mice. Bull Exp Biol Med. 2016Mar;160(5):605-9. doi: 10.1007/s10517-016-3228-2.
  6. Kirsch P, Esslinger C, Chen Q, et al. Oxytocin modulates neural circuitry for social cognition and fear in humans. J Neurosci. 2005;25:11489-11493. doi: 10.1523/ JNEUROSCI.3984-05.2005.
  7. Mottolese R, Redoute J, Costes N, et al. Switching brain serotonin with oxytocin. Proc Natl Acad Sci USA. 2014;111(23):8637-42. doi: 10.1073/pnas.1319810111.
  8. Takahashi A, Shiroishi T, Koide T. Genetic mapping of escalated aggression in wild-derived mouse strain MSM/Ms: assosiation with serotonin-related genes. Frontiers of Neurosci. Neuroendocrine science. 2014;8(Article156):1-12. doi: 10.3389/fnins.2014.00156.
  9. Yoshida M, Takayanagi Y, Inoue K, et al. Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J Neurosci. 2009;29:2259-2271. doi: 10.1523/JNEUROSCI.5593- 08.2009.
  10. Young KA, Liu Y, Wang Z. The neurobiology of social attachment: a comparative approach to behavioral, neuroanatomical, and neurochemical studies. Comp Diochem Physiol and Toxicol Pharmacol. 2008;148(4):401-410. doi: 10.1016/j.cbpc.2008.02.004.
  11. Zink CF, Meyer-Lidenberg A. Human neuroimaging of oxytocin and vasopressin in social cognition. Horm Behav. 2012;61(3):400-409. doi: 10.1016/j.yhbeh.2012.01.016.

© Карпова И.В., Бычков Е.Р., Марышева В.В., Михеев В.В., Шабанов П.Д., 2017

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах