Нейронопротекторное действие кортексина и кортагена



Цитировать

Полный текст

Аннотация

Изучены изменения внутриклеточных потенциалов покоя и действия идентифицированных нейронов педальных ганглиев ЦНС моллюска Planorbarius corneus, зарегистрированные с помощью внутриклеточных микроэлектродов и ионных токов изолированных нейронов при фиксации потенциала под влиянием официнального препарата кортексина (кортексина 0,5–1000 мкг/мл и глицина от 4–4000 мкМ), пептидов кортексина (0,5–1000 мкг/мл), глицина (0,5 и 5 мМ) и тетрапептида кортагена (0,1–10 000 мкМ). Показано, что препарат кортексина и пептиды кортексина сходным образом модулируют электрическую активность нейронов: незначительно изменяют потенциал покоя, параметры потенциала действия и частоту импульсной активности, что в целом можно интерпретировать как активирующее действие. Глицин оказывает подобное кортексину, но менее выраженное активирующее действие на нейроны. Смесь кортексина и глицина (препарат кортексин) не оказывала угнетающего, ухудшающего функциональное состояние нейронов действия, а после их применения всегда наблюдали гиперполяризацию клеток, сокращение длительности потенциалов действия, увеличение их амплитуды и урежение частоты импульсной активности нейронов. Терапептид кортаген в концентрациях 0,1–100 мкМ также вызывал гиперполяризацию нейронов на 2–3 мВ и урежение их спонтанной импульсной активности, что указывает на его активирующее (нейронопротекторное) действие. В концентрации 1000 мкМ кортаген незначительно (на 2–4 мВ) деполяризовал нейроны, происходило увеличение частоты импульсной активности, а в концентрации 10 мМ сильно и обратимо деполяризовал нейроны, увеличивая частоту и подавляя генерацию потенциалов действия. Активирующее влияние кортагена на нейроны было более выраженным, чем влияние кортексина. В концентрации 0,1 мкМ кортаген увеличивал амплитуду медленного выходящего тока на 3–5 %. Увеличения амплитуд (активации) входящих натриевых и кальциевых токов под влиянием кортагена не наблюдалось, а дозозависимое и обратимое подавление амплитуд этих токов начиналось при концентрации 100 и более мкМ вплоть до 80–90 % при концентрации 10 мМ. При этом подавление натриевых токов было более сильным, чем кальциевых. Эффекты действия тетрапептида в столь высоких концентрациях можно считать неспецифическими и даже токсичными.

Об авторах

Петр Дмитриеви Шабанов

ФГБУ «Научно-исследовательский институт экспериментальной медицины» СЗО РАМН

Email: pdshabanov@mail.ru
д. м. н., профессор, заведующий отделом нейрофармакологии им. С. В. Аничкова

Анатолий Иванович Вислобоков

ФГБУ «Научно-исследовательский институт экспериментальной медицины» СЗО РАМН

Email: vislobokov@yandex.ru
д. б. н., старший научный сотрудник отдела нейрофармакологии им. С. В. Аничкова

Список литературы

  1. Вислобоков А. И., Борисова В. А., Прошева В. И., Шабанов П. Д. Фармакология ионных каналов. — Серия: Цитофармакология. Т. 1 — СПб.: Информ-Навигатор, 2012. — 528 с.
  2. Вислобоков А. И., Игнатов Ю. Д., Галенко-Ярошевский П. А., Шабанов П. Д. Мембранотропное действие фармакологических средств. — Санкт-Петербург–Краснодар: Просвещение-Юг, 2010. — 528 с.
  3. Вислобоков А. И., Игнатов Ю. Д., Канидьева А. А., Мельников К. Н., Середенин С. Б. Влияние противоаритмических препаратов брадизола и амиодарона на ионные токи нейронов прудовика // Мед. акад. журн. — 2004. — Т. 4. С. 16–22.
  4. Вислобоков А. И., Игнатов Ю. Д., Середенин С. Б. Изменения электрической активности нейронов под влиянием афобазола // Эксперим. и клин. фармакол. — 2012. Т. 75, № 6. — С. 3–7.
  5. Дьяконов М. М., Шабанов П. Д. К вопросу о нейропротекторном действии пептидных препаратов // Вестник Рос. воен.-мед. акад. — 2011. — № 1 (33). — С. 255–258.
  6. Камкин А. Г., Киселева И. С. Физиология и молекулярная биология мембран клеток: учеб. пособие. — М.: Академия, 2008. — 592 с.
  7. Лысенко А. В., Арутюнян А. В., Козина Л. С. Пептидная регуляция адаптации организма к стрессорным воздействиям. — СПб: ВМедА, 2005. — 207 с.
  8. Шабанов П. Д. Психофармакологические свойства пептидов с ноотропным типом действия // Мед. акад. журн. — 2009. — Т. 9, № 2. — С. 3–18.
  9. Шабанов П. Д. Доказательность нейропротекторных эффектов полипептидных препаратов: нерешенные вопросы // Нервные болезни. — 2011. — Т. 1, № 4. — С. 17–20.
  10. Шабанов П. Д. Кортексин и другие пептидные нейропротекторы // Инновации в современной фармакологии. Матер. IV съезда фармакологов России. — Казань; М.: Фолиум, 2012. — С. 197.
  11. Шимановский Н. Л., Епинетов М. А., Мельников М. Я. Молекулярная и нанофармакология. — М.: Физматлит, 2010. — 624 с.
  12. Ashcroft F. M. Ion channels and disease. — San Diego: Academic Press, 2000. — 481 p.
  13. Camerino D. C., Tricarico D., Desaphy J. F. Ion channel pharmacology // Neurotherapeutics. — 2007. — Vol. 4, N 2. — P. 184–198.
  14. Catterall W. A. Structure and regulation of voltage-gated Ca 2+ channels // Annu. Rev. Cell Dev. Biol. — 2000. — Vol. 16. — P. 521–555.
  15. Decher N., Pirard B., Bundis F., Peukert S., Baringhaus K. H., Busch A. E., Steinmeyer K., Sanguinetti M. C. Molecular basis for Kv1.5 channel block: conservation of drugs binding sites among voltage-gated K+ channels // J. Biol. Chem. — 2004. — Vol. 279, N 1. — P. 394–400.
  16. Fozzard H. A., Lee P. J., Lipkind G. M. Mechanism of local anesthetic drug action on voltage-gated sodium channels // Curr. Pharm. — 2005. — Vol. 11, N 21. — P. 2671–2686.
  17. Hübner C. A., Jentsch T. J. Ion channel diseases // Hum. Mol. Genet. — 2002. — Vol. 11. — P. 2435–2445.
  18. Lipkind G. M., Fozzard H. A. Molecular modeling of local anesthetic drug binding by voltage-gated sodium channels // Mol. Pharmacol. — 2005. — Vol. 68, N 6. — P. 1611–1622.
  19. Miller K. W. The nature of sites of general anaesthetic action // Br. J. Anaesth. — 2002. — Vol. 89, N 1. — P. 17–31.
  20. Narahashi T. Neuroreceptors and ion channels as the basis for drug action: past, present, and future // J. Pharmacol. Exp. Ther. — 2000. — Vol. 294, N 1. — P. 1–26.
  21. Ragsdale D. S., McPhee J. C., Scheuer T., Catterall W. A. Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels // Proc. Natl. Acad. Sci. U S A. — 1996. — Vol. 93. — P. 9270–9275.
  22. Shabanov P. D. Neuroprotective effects of cortexin, a drug derived from the brain cortex // Обз. по клин. фармакол. и лек. терапии. — 2012. — Т. 10, № 2. — С. М97.

© Шабанов П.Д., Вислобоков А.И., 2013

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах