The influence of epigenetic regulation on development of multifactorial diseases

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Multifactorial diseases pose a growing challenge to global healthcare due to their rapidly increasing prevalence, high mortality rates, and significant contribution to disability among the working-age population. Intensive research aimed at improving early diagnosis, prevention, and treatment has underscored the critical role of epigenetic changes, which influence gene expression without altering the primary DNA sequence. This article provides an overview of the primary epigenetic mechanisms involved in gene expression regulation, including DNA methylation, post-translational histone modifications, and the role of non-coding microRNAs in gene silencing. Epigenetic factors serve as a bridge between the genome and environmental influences. Environmental risk factors—shaped by lifestyle, behavior, ecological exposures, and psycho-emotional stress—play a significant role in the phenotypic manifestations of diseases and overall human health. The reversibility of epigenetic mechanisms regulating gene expression can lead to both beneficial and adverse health outcomes. The continuous development of new technologies positions epigenetics as a promising field for functional research, with the potential to fundamentally transform therapeutic approaches to the treatment of multifactorial diseases.

全文:

受限制的访问

作者简介

Natalya Vokhmyanina

North-Western State Medical University named after I.I. Меchnikov

Email: spbnat@yandex.ru
ORCID iD: 0000-0002-7162-9362
SPIN 代码: 7414-4257

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, 41 Kirochnaya St., Saint Petersburg, 191015

Natalya Golovanova

North-Western State Medical University named after I.I. Меchnikov; Saint Petersburg State University

编辑信件的主要联系方式.
Email: nesh1764@mail.ru
ORCID iD: 0000-0001-9286-8787
SPIN 代码: 9598-4184

Cand. Sci. (Biology), Assistant Professor

俄罗斯联邦, 41 Kirochnaya St., Saint Petersburg, 191015; Saint Petersburg

参考

  1. Bichurin DR, Atmaikina OV, Cherepanova OA. Cardiovascular diseases. A regional aspect. International Research Journal. 2023;(8(134)):116. EDN: JMQBSO doi: 10.23670/IRJ.2023.134.103
  2. Baranov VS, Baranova EV. Human genome, Epigenetics of complex diseases, and personalized medicine. Biosphera. 2012;4(1):76–85. EDN: OWKFFD
  3. Dedov II, Shestakova MV, Vikulova OK, et al. Diabetes mellitus in the Russian Federation: dynamics of epidemiological indicators according to the Federal Register of Diabetes Mellitus for the period 2010–2022. Diabetes mellitus. 2023;26(2):104–123. EDN: DVDJWJ doi: 10.14341/DM13035
  4. Rotar OP, Ilyanova IN, Boyarinova MA, et al. 2023 All-Russian screening for hypertension: results. Russian Journal of Cardiology. 2024;29(5):78–88. EDN: EMCJRB doi: 10.15829/1560-4071-2024-5931
  5. Utochkin YuA, Lobanova YuI, Yakshina AD. Cardiovascular diseases in Russia: a review of statistics. Nauka cherez prizmu vremeni. 2024;(1(82)):61–63. (In Russ). EDN: ZHZDCD
  6. Singh P, Arora A, Strand TA, et al. Global prevalence of celiac disease: systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2018;16(6):823–836. doi: 10.1016/j.cgh.2017.06.037
  7. Baranov VS. The “epigenetic landscape” hypothesis implicated in development of major obstetric conditions, such as endometriosis, uterine leiomyoma, and preeclampsia. Patogenez (Pathogenesis). 2017;15(3):4–11. EDN: ZWOHQP doi: 10.25557/GM.2017.3.8492
  8. Glotov OS, Chernov AN, Glotov AS. Human exome sequencing and prospects for predictive medicine: analysis of international data and own experience. J Pers Med. 2023;13(8):1236. doi: 10.3390/jpm13081236
  9. Puzyrev VP. Multifactorial diseases. In: Bochkov NP, Ginter ЕК, Puzyrev VP, editors. Hereditary diseases: national guidelines. Moscow: GEOTAR-Media; 2013. P. 610–660. (In Russ.)
  10. Inge-Vechtomov SG, Borchsenius AS, Zadorskij SP. Protein inheritance: conformational matrices and epigenetics. VOGiS Herald. 2004;8(29):60–66. (In Russ.) EDN: HRSMBJ
  11. Inge-Vechtomov SG. Variation. Phenomenology and mechanisms. Vavilov journal of genetics and breeding. 2013;17(4/2):791–804. (In Russ.) EDN: RVGWIP
  12. Pal’cev MA. Medicine of the future. Personalized medicine: experience of the past, realities of tomorrow. Moscow: Russian Academy of Sciences; 2020. 152 с. (In Russ.) EDN: RRCGRM
  13. Belushkina NN, Chemezov AS, Pal’tsev MA. Genetic studies of multifactorial diseases in the concept of personalized medicine. Russian Journal of Preventive Medicine. 2019;22(3):26–30. EDN: NSNEAG doi: 10.17116/profmed20192203126
  14. Ramanouskaya TV. Epigenetics: electronic educational and methodological complex for specialty 1-3180 01 “Biology”. Minsk: BSU; 2022. 88 p. (In Russ.)
  15. Smirnov VV, Leonov GE. Epigenetics: theoretical aspects and practical value. Lechaschi Vrach. 2016;(12):26–30. (In Russ.) EDN: XWQGNT
  16. Georgiev GP. Mobile genetic elements in animal cells and their biological significance. Eur J Biochem. 1984;145(2):203–220. doi: 10.1111/j.1432-1033.1984.tb08541.x
  17. Xuan D, Han Q, Tu Q, et al. Epigenetic modulation in periodontitis: interaction of adiponectin and JMJD3-IRF4 axis in macrophages. J Cell Physiol. 2016;231(5):1090–1096. doi: 10.1002/jcp.25201
  18. Stamp MA, Hadfield JD. The relative importance of plasticity versus genetic differentiation in explaining between population differences; a meta-analysis. Ecol Lett. 2020;23(10):1432–1441. doi: 10.1111/ele.13565
  19. Kiselev VI. Epigenetics opens up enormous therapeutic and diagnostic possibilities. Nacional’naya onkologicheskaya programma – 2030. 2022;(1):30–33. (In Russ.)
  20. Oppermann U. Why is epigenetics important in understanding the pathogenesis of inflammatory musculoskeletal diseases? Arthritis Res Ther. 2013;15(2):209. doi: 10.1186/ar4186
  21. Vanyushin BF. DNA methylation and epigenetics. Russian Journal of Genetics. 2006;42(9):985–997. EDN: LJWBIN doi: 10.1134/S1022795406090055
  22. Kumar S, Chinnusamy V, Mohapatra T. Epigenetics of modified DNA bases: 5-methylcytosine and beyond. Front Genet. 2018;(9):640. doi: 10.3389/fgene.2018.00640
  23. Mattei AL, Bailly N, Meissner A. DNA methylation: A historical perspective. Trends Genet. 2022;38(7):676–707. doi: 10.1016/j.tig.2022.03.010
  24. Fleming AM, Burrows CJ. DNA modifications walk a fine line between epigenetics and mutagenesis. Nat Rev Mol Cell Biol. 2023;(24):449–450. doi: 10.1038/s41580-023-00590-2
  25. Zhu D, Zeng S, Su C, et al. The interaction between DNA methylation and tumor immune microenvironment: from the laboratory to clinical applications. Clin Epigenet. 2024;(16):e24. doi: 10.1186/s13148-024-01633-x
  26. Ilango S, Paital B, Jayachandran P, et al. Epigenetic alterations in cancer. Front Biosci (Landmark Ed). 2020;25(6):1058–1109. doi: 10.2741/4847
  27. Frommer M, McDonald LE, Millar DS, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA. 1992;89(5):1827–1831. doi: 10.1073/pnas.89.5.1827
  28. Zaina S, Heyn H, Carmona FJ, et al. DNA methylation map of human atherosclerosis. Circ Cardiovasc Genet. 2014;7(5):692–700. doi: 10.1161/CIRCGENETICS.113.000441
  29. Soler-Botija C, Gálvez-Montón C, Bayés-Genís A. Epigenetic biomarkers in cardiovascular diseases. Front Genet. 2019;10:950. doi: 10.3389/fgene.2019.00950
  30. Wang X, Teng X, Luo Ch, Kong L. Mechanisms and advances of epigenetic regulation in cardiovascular disease. Front Biosci (Landmark Ed). 2024;29(6):205. doi: 10.31083/j.fbl2906205
  31. Shi Y, Zhang H, Huang S, et al. Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 2022;7(1):e200. doi: 10.1038/s41392-022-01055-2
  32. Westerman K, Sebastiani P, Jacques P, et al. DNA methylation modules associate with incident cardiovascular disease and cumulative risk factor exposure. Clin Epigenet. 2019;11(1):142. doi: 10.1186/s13148-019-0705-2
  33. Madsen A, Höppner G, Krause J, et al. An important role for DNMT3A-mediated DNA methylation in cardiomyocyte metabolism and contractility. Circulation. 2020;142(16):1562–1578. doi: 10.1161/CIRCULATIONAHA.119.044444
  34. Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403(6765):41–45. doi: 10.1038/47412
  35. Hyun K, Jeon J, Park K, Kim J. Writing, erasing and reading histone lysine methylations. Exp Mol Med. 2017;49(4):e324. doi: 10.1038/emm.2017.11
  36. Shahid Z, Simpson B, Miao KH, Singh G. Genetics, Histone Code. Treasure Island (FL):StatPearls Publishing; 2024.
  37. Fan S, Zhang MQ, Zhang X. Histone methylation marks play important roles in predicting the methylation status of CpG islands. Biochem Biophys Res Commun. 2008;374(3):559–564. doi: 10.1016/j.bbrc.2008.07.077
  38. Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet. 2009;10(5):295–304. doi: 10.1038/nrg2540
  39. Kucher AN, Nazarenko MS. epigenetics of cardiomyopathy: histone modifications and DNA methylation. Russian Journal of Genetics. 2023;59(3):226–241. EDN: IPXZDH doi: 10.1134/S1022795423030080
  40. Liu R, Wu J, Guo H, et al. Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm (2000). 2023;4(3):e292. doi: 10.1002/mco2.292
  41. Song JS, Kim YS, Kim DK, et al. Global histone modification pattern associated with recurrence and disease-free survival in non-small cell lung cancer patients. Pathol Int. 2012;62(3):182–190. doi: 10.1111/j.1440-1827.2011.02776.x
  42. Berger L, Kolben T, Meister S, et al. Expression of H3K4me3 and H3K9ac in breast cancer. J Cancer Res Clin Oncol. 2020;146(8):2017–2027. doi: 10.1007/s00432-020-03265-z
  43. Day CA, Hinchcliffe EH, Robinson JP. H3K27me3 in diffuse midline glioma and epithelial ovarian cancer: opposing epigenetic changes leading to the same poor outcomes. Cells. 2022;11(21):3376. doi: 10.3390/cells11213376
  44. Monaghan L, Massett ME, Bunschoten RP, et al. The emerging role of H3K9me3 as a potential therapeutic target in acute myeloid leukemia. Front Oncol. 2019;2(9):705. doi: 10.3389/fonc.2019.00705
  45. Ryabchikov DA, Vorotnikov IK, Talipov OA, et al. MicroRNA and their role in pathogenesis and diagnosis of breast cancer. Medical alphabet. 2020;(8):12–15. EDN: UXTTUF doi: 10.33667/2078-5631-2020-8-12-15
  46. Yao Q, Chen Y, Zhou X. The roles of microRNAs in epigenetic regulation. Curr Opin Chem Biol. 2019;51:11–17. doi: 10.1016/j.cbpa.2019.01.024
  47. Kumar S, Gonzalez EA, Rameshwar P, Etchegaray JP. Non-coding RNAs as mediators of epigenetic changes in malignancies. Cancers (Basel). 2020;12(12):3657. doi: 10.3390/cancers12123657
  48. Ratti M, Lampis A, Ghidini M, et al. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: first steps from bench to bedside. Target Oncol. 2020;15(3):261–278. doi: 10.1007/s11523-020-00717-x
  49. Nalbant E, Akkaya-Ulum YZ. Exploring regulatory mechanisms on miRNAs and their implications in inflammation-related diseases. Clin Exp Med. 2024;24(1):e142. doi: 10.1007/s10238-024-01334-y
  50. Poddar S, Kesharwani D, Datta M. Interplay between the miRNome and the epigenetic machinery: Implications in health and disease. J Cell Physiol. 2017;232(11):e2938–2945. doi: 10.1002/jcp.25819
  51. Farsetti A, Illi B, Gaetano C. How epigenetics impacts on human diseases. Eur J Int Med. 2023;(114):15–22. doi: 10.1016/j.ejim.2023.05.036
  52. Abdul QA, Yu BP, Chung HY, et al. Epigenetic modifications of gene expression by lifestyle and environment. Arch Pharm Res. 2017;40(11):1219–1237. doi: 10.1007/s12272-017-0973-3
  53. Wu H, Eckhardt CM, Baccarelli AA. Molecular mechanisms of environmental exposures and human disease. Nat Rev Genet. 2023;24(5):332–344. doi: 10.1038/s41576-022-00569-3
  54. Skinner MK. Epigenetic biomarkers for disease susceptibility and preventative medicine. Cell Metab. 2024;36(2):263–277. doi: 10.1016/j.cmet.2023.11.015
  55. Becker N, Prasad-Shreckengast S, Byosiere SE. Methodological challenges in the assessment of dogs’ (Canis lupus familiaris) susceptibility of the Ebbinghaus-Titchener illusion using the spontaneous choice task. Animal Behav Cogn. 2021;8(2):138–151. doi: 10.26451/abc.08.02.04.2021
  56. Liu S, Lam MA, Sial A, et al. Fluid outflow in the rat spinal cord: the role of perivascular and paravascular pathways. Fluids Barriers CNS. 2018;(15):13. doi: 10.1186/s12987-018-0098-1
  57. Gadd DA, Hillary RF, McCartney DL, et al. Epigenetic scores for the circulating proteome as tools for disease prediction. Elife. 2022;13(11):e71802. doi: 10.7554/eLife.71802
  58. Virolainen SJ, VonHandorf A, Viel KCMF, et al. Gene-environment interactions and their impact on human health. Gene Immun. 2023;24(1):1–11. doi: 10.1038/s41435-022-00192-6
  59. Maksimenko LV. Epigenetics as an evidence base of the impact of lifestyle on health and disease. Russian Journal of Preventive Medicine. 2019;22(2):115–120. (In Russ.) EDN: QHKMXX doi: 10.17116/profmed201922021115
  60. García-Giménez JL, Seco-Cervera M, Tollefsbol TO, et al. Epigenetic biomarkers: Current strategies and future challenges for their use in the clinical laboratory. Crit Rev Clin Lab Sci. 2017;54(7–8):529–550. doi: 10.1080/10408363.2017.1410520

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2024



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 70763 от 21.08.2017 г.