The influence of epigenetic regulation on development of multifactorial diseases
- 作者: Vokhmyanina N.V.1, Golovanova N.E.1,2
-
隶属关系:
- North-Western State Medical University named after I.I. Меchnikov
- Saint Petersburg State University
- 期: 卷 28, 编号 4 (2024)
- 页面: 39-49
- 栏目: Review
- ##submission.dateSubmitted##: 28.09.2024
- ##submission.dateAccepted##: 31.10.2024
- ##submission.datePublished##: 15.12.2024
- URL: https://journals.eco-vector.com/RFD/article/view/636548
- DOI: https://doi.org/10.17816/RFD636548
- ID: 636548
如何引用文章
详细
Multifactorial diseases pose a growing challenge to global healthcare due to their rapidly increasing prevalence, high mortality rates, and significant contribution to disability among the working-age population. Intensive research aimed at improving early diagnosis, prevention, and treatment has underscored the critical role of epigenetic changes, which influence gene expression without altering the primary DNA sequence. This article provides an overview of the primary epigenetic mechanisms involved in gene expression regulation, including DNA methylation, post-translational histone modifications, and the role of non-coding microRNAs in gene silencing. Epigenetic factors serve as a bridge between the genome and environmental influences. Environmental risk factors—shaped by lifestyle, behavior, ecological exposures, and psycho-emotional stress—play a significant role in the phenotypic manifestations of diseases and overall human health. The reversibility of epigenetic mechanisms regulating gene expression can lead to both beneficial and adverse health outcomes. The continuous development of new technologies positions epigenetics as a promising field for functional research, with the potential to fundamentally transform therapeutic approaches to the treatment of multifactorial diseases.
全文:

作者简介
Natalya Vokhmyanina
North-Western State Medical University named after I.I. Меchnikov
Email: spbnat@yandex.ru
ORCID iD: 0000-0002-7162-9362
SPIN 代码: 7414-4257
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, 41 Kirochnaya St., Saint Petersburg, 191015Natalya Golovanova
North-Western State Medical University named after I.I. Меchnikov; Saint Petersburg State University
编辑信件的主要联系方式.
Email: nesh1764@mail.ru
ORCID iD: 0000-0001-9286-8787
SPIN 代码: 9598-4184
Cand. Sci. (Biology), Assistant Professor
俄罗斯联邦, 41 Kirochnaya St., Saint Petersburg, 191015; Saint Petersburg参考
- Bichurin DR, Atmaikina OV, Cherepanova OA. Cardiovascular diseases. A regional aspect. International Research Journal. 2023;(8(134)):116. EDN: JMQBSO doi: 10.23670/IRJ.2023.134.103
- Baranov VS, Baranova EV. Human genome, Epigenetics of complex diseases, and personalized medicine. Biosphera. 2012;4(1):76–85. EDN: OWKFFD
- Dedov II, Shestakova MV, Vikulova OK, et al. Diabetes mellitus in the Russian Federation: dynamics of epidemiological indicators according to the Federal Register of Diabetes Mellitus for the period 2010–2022. Diabetes mellitus. 2023;26(2):104–123. EDN: DVDJWJ doi: 10.14341/DM13035
- Rotar OP, Ilyanova IN, Boyarinova MA, et al. 2023 All-Russian screening for hypertension: results. Russian Journal of Cardiology. 2024;29(5):78–88. EDN: EMCJRB doi: 10.15829/1560-4071-2024-5931
- Utochkin YuA, Lobanova YuI, Yakshina AD. Cardiovascular diseases in Russia: a review of statistics. Nauka cherez prizmu vremeni. 2024;(1(82)):61–63. (In Russ). EDN: ZHZDCD
- Singh P, Arora A, Strand TA, et al. Global prevalence of celiac disease: systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2018;16(6):823–836. doi: 10.1016/j.cgh.2017.06.037
- Baranov VS. The “epigenetic landscape” hypothesis implicated in development of major obstetric conditions, such as endometriosis, uterine leiomyoma, and preeclampsia. Patogenez (Pathogenesis). 2017;15(3):4–11. EDN: ZWOHQP doi: 10.25557/GM.2017.3.8492
- Glotov OS, Chernov AN, Glotov AS. Human exome sequencing and prospects for predictive medicine: analysis of international data and own experience. J Pers Med. 2023;13(8):1236. doi: 10.3390/jpm13081236
- Puzyrev VP. Multifactorial diseases. In: Bochkov NP, Ginter ЕК, Puzyrev VP, editors. Hereditary diseases: national guidelines. Moscow: GEOTAR-Media; 2013. P. 610–660. (In Russ.)
- Inge-Vechtomov SG, Borchsenius AS, Zadorskij SP. Protein inheritance: conformational matrices and epigenetics. VOGiS Herald. 2004;8(29):60–66. (In Russ.) EDN: HRSMBJ
- Inge-Vechtomov SG. Variation. Phenomenology and mechanisms. Vavilov journal of genetics and breeding. 2013;17(4/2):791–804. (In Russ.) EDN: RVGWIP
- Pal’cev MA. Medicine of the future. Personalized medicine: experience of the past, realities of tomorrow. Moscow: Russian Academy of Sciences; 2020. 152 с. (In Russ.) EDN: RRCGRM
- Belushkina NN, Chemezov AS, Pal’tsev MA. Genetic studies of multifactorial diseases in the concept of personalized medicine. Russian Journal of Preventive Medicine. 2019;22(3):26–30. EDN: NSNEAG doi: 10.17116/profmed20192203126
- Ramanouskaya TV. Epigenetics: electronic educational and methodological complex for specialty 1-3180 01 “Biology”. Minsk: BSU; 2022. 88 p. (In Russ.)
- Smirnov VV, Leonov GE. Epigenetics: theoretical aspects and practical value. Lechaschi Vrach. 2016;(12):26–30. (In Russ.) EDN: XWQGNT
- Georgiev GP. Mobile genetic elements in animal cells and their biological significance. Eur J Biochem. 1984;145(2):203–220. doi: 10.1111/j.1432-1033.1984.tb08541.x
- Xuan D, Han Q, Tu Q, et al. Epigenetic modulation in periodontitis: interaction of adiponectin and JMJD3-IRF4 axis in macrophages. J Cell Physiol. 2016;231(5):1090–1096. doi: 10.1002/jcp.25201
- Stamp MA, Hadfield JD. The relative importance of plasticity versus genetic differentiation in explaining between population differences; a meta-analysis. Ecol Lett. 2020;23(10):1432–1441. doi: 10.1111/ele.13565
- Kiselev VI. Epigenetics opens up enormous therapeutic and diagnostic possibilities. Nacional’naya onkologicheskaya programma – 2030. 2022;(1):30–33. (In Russ.)
- Oppermann U. Why is epigenetics important in understanding the pathogenesis of inflammatory musculoskeletal diseases? Arthritis Res Ther. 2013;15(2):209. doi: 10.1186/ar4186
- Vanyushin BF. DNA methylation and epigenetics. Russian Journal of Genetics. 2006;42(9):985–997. EDN: LJWBIN doi: 10.1134/S1022795406090055
- Kumar S, Chinnusamy V, Mohapatra T. Epigenetics of modified DNA bases: 5-methylcytosine and beyond. Front Genet. 2018;(9):640. doi: 10.3389/fgene.2018.00640
- Mattei AL, Bailly N, Meissner A. DNA methylation: A historical perspective. Trends Genet. 2022;38(7):676–707. doi: 10.1016/j.tig.2022.03.010
- Fleming AM, Burrows CJ. DNA modifications walk a fine line between epigenetics and mutagenesis. Nat Rev Mol Cell Biol. 2023;(24):449–450. doi: 10.1038/s41580-023-00590-2
- Zhu D, Zeng S, Su C, et al. The interaction between DNA methylation and tumor immune microenvironment: from the laboratory to clinical applications. Clin Epigenet. 2024;(16):e24. doi: 10.1186/s13148-024-01633-x
- Ilango S, Paital B, Jayachandran P, et al. Epigenetic alterations in cancer. Front Biosci (Landmark Ed). 2020;25(6):1058–1109. doi: 10.2741/4847
- Frommer M, McDonald LE, Millar DS, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA. 1992;89(5):1827–1831. doi: 10.1073/pnas.89.5.1827
- Zaina S, Heyn H, Carmona FJ, et al. DNA methylation map of human atherosclerosis. Circ Cardiovasc Genet. 2014;7(5):692–700. doi: 10.1161/CIRCGENETICS.113.000441
- Soler-Botija C, Gálvez-Montón C, Bayés-Genís A. Epigenetic biomarkers in cardiovascular diseases. Front Genet. 2019;10:950. doi: 10.3389/fgene.2019.00950
- Wang X, Teng X, Luo Ch, Kong L. Mechanisms and advances of epigenetic regulation in cardiovascular disease. Front Biosci (Landmark Ed). 2024;29(6):205. doi: 10.31083/j.fbl2906205
- Shi Y, Zhang H, Huang S, et al. Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 2022;7(1):e200. doi: 10.1038/s41392-022-01055-2
- Westerman K, Sebastiani P, Jacques P, et al. DNA methylation modules associate with incident cardiovascular disease and cumulative risk factor exposure. Clin Epigenet. 2019;11(1):142. doi: 10.1186/s13148-019-0705-2
- Madsen A, Höppner G, Krause J, et al. An important role for DNMT3A-mediated DNA methylation in cardiomyocyte metabolism and contractility. Circulation. 2020;142(16):1562–1578. doi: 10.1161/CIRCULATIONAHA.119.044444
- Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403(6765):41–45. doi: 10.1038/47412
- Hyun K, Jeon J, Park K, Kim J. Writing, erasing and reading histone lysine methylations. Exp Mol Med. 2017;49(4):e324. doi: 10.1038/emm.2017.11
- Shahid Z, Simpson B, Miao KH, Singh G. Genetics, Histone Code. Treasure Island (FL):StatPearls Publishing; 2024.
- Fan S, Zhang MQ, Zhang X. Histone methylation marks play important roles in predicting the methylation status of CpG islands. Biochem Biophys Res Commun. 2008;374(3):559–564. doi: 10.1016/j.bbrc.2008.07.077
- Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet. 2009;10(5):295–304. doi: 10.1038/nrg2540
- Kucher AN, Nazarenko MS. epigenetics of cardiomyopathy: histone modifications and DNA methylation. Russian Journal of Genetics. 2023;59(3):226–241. EDN: IPXZDH doi: 10.1134/S1022795423030080
- Liu R, Wu J, Guo H, et al. Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm (2000). 2023;4(3):e292. doi: 10.1002/mco2.292
- Song JS, Kim YS, Kim DK, et al. Global histone modification pattern associated with recurrence and disease-free survival in non-small cell lung cancer patients. Pathol Int. 2012;62(3):182–190. doi: 10.1111/j.1440-1827.2011.02776.x
- Berger L, Kolben T, Meister S, et al. Expression of H3K4me3 and H3K9ac in breast cancer. J Cancer Res Clin Oncol. 2020;146(8):2017–2027. doi: 10.1007/s00432-020-03265-z
- Day CA, Hinchcliffe EH, Robinson JP. H3K27me3 in diffuse midline glioma and epithelial ovarian cancer: opposing epigenetic changes leading to the same poor outcomes. Cells. 2022;11(21):3376. doi: 10.3390/cells11213376
- Monaghan L, Massett ME, Bunschoten RP, et al. The emerging role of H3K9me3 as a potential therapeutic target in acute myeloid leukemia. Front Oncol. 2019;2(9):705. doi: 10.3389/fonc.2019.00705
- Ryabchikov DA, Vorotnikov IK, Talipov OA, et al. MicroRNA and their role in pathogenesis and diagnosis of breast cancer. Medical alphabet. 2020;(8):12–15. EDN: UXTTUF doi: 10.33667/2078-5631-2020-8-12-15
- Yao Q, Chen Y, Zhou X. The roles of microRNAs in epigenetic regulation. Curr Opin Chem Biol. 2019;51:11–17. doi: 10.1016/j.cbpa.2019.01.024
- Kumar S, Gonzalez EA, Rameshwar P, Etchegaray JP. Non-coding RNAs as mediators of epigenetic changes in malignancies. Cancers (Basel). 2020;12(12):3657. doi: 10.3390/cancers12123657
- Ratti M, Lampis A, Ghidini M, et al. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: first steps from bench to bedside. Target Oncol. 2020;15(3):261–278. doi: 10.1007/s11523-020-00717-x
- Nalbant E, Akkaya-Ulum YZ. Exploring regulatory mechanisms on miRNAs and their implications in inflammation-related diseases. Clin Exp Med. 2024;24(1):e142. doi: 10.1007/s10238-024-01334-y
- Poddar S, Kesharwani D, Datta M. Interplay between the miRNome and the epigenetic machinery: Implications in health and disease. J Cell Physiol. 2017;232(11):e2938–2945. doi: 10.1002/jcp.25819
- Farsetti A, Illi B, Gaetano C. How epigenetics impacts on human diseases. Eur J Int Med. 2023;(114):15–22. doi: 10.1016/j.ejim.2023.05.036
- Abdul QA, Yu BP, Chung HY, et al. Epigenetic modifications of gene expression by lifestyle and environment. Arch Pharm Res. 2017;40(11):1219–1237. doi: 10.1007/s12272-017-0973-3
- Wu H, Eckhardt CM, Baccarelli AA. Molecular mechanisms of environmental exposures and human disease. Nat Rev Genet. 2023;24(5):332–344. doi: 10.1038/s41576-022-00569-3
- Skinner MK. Epigenetic biomarkers for disease susceptibility and preventative medicine. Cell Metab. 2024;36(2):263–277. doi: 10.1016/j.cmet.2023.11.015
- Becker N, Prasad-Shreckengast S, Byosiere SE. Methodological challenges in the assessment of dogs’ (Canis lupus familiaris) susceptibility of the Ebbinghaus-Titchener illusion using the spontaneous choice task. Animal Behav Cogn. 2021;8(2):138–151. doi: 10.26451/abc.08.02.04.2021
- Liu S, Lam MA, Sial A, et al. Fluid outflow in the rat spinal cord: the role of perivascular and paravascular pathways. Fluids Barriers CNS. 2018;(15):13. doi: 10.1186/s12987-018-0098-1
- Gadd DA, Hillary RF, McCartney DL, et al. Epigenetic scores for the circulating proteome as tools for disease prediction. Elife. 2022;13(11):e71802. doi: 10.7554/eLife.71802
- Virolainen SJ, VonHandorf A, Viel KCMF, et al. Gene-environment interactions and their impact on human health. Gene Immun. 2023;24(1):1–11. doi: 10.1038/s41435-022-00192-6
- Maksimenko LV. Epigenetics as an evidence base of the impact of lifestyle on health and disease. Russian Journal of Preventive Medicine. 2019;22(2):115–120. (In Russ.) EDN: QHKMXX doi: 10.17116/profmed201922021115
- García-Giménez JL, Seco-Cervera M, Tollefsbol TO, et al. Epigenetic biomarkers: Current strategies and future challenges for their use in the clinical laboratory. Crit Rev Clin Lab Sci. 2017;54(7–8):529–550. doi: 10.1080/10408363.2017.1410520
补充文件
