Akkermansia muciniphila: 20 years since its discovery, research results, prospects for use for the correction of metabolic disorders in children.



Cite item

Full Text

Abstract

Akkermansia muciniphila is a bacterium that was first described in 2004 and has since attracted the attention of scientists and medical professionals due to its potential impact on human health.
According to the World Health Organization (2024), the number of obese adults has exceeded 890 million and continues to grow.
In Russia, the incidence of obesity in children is also currently growing steadily. Between 2010 and 2020, the share of pediatric pathologies increased from 6.7% to 9.1%. The intestinal microbiota and its metabolic products are actively involved in the regulation of the metabolic activity of the gastrointestinal tract.
It has been established that the P9 protein secreted by A. muciniphila into the environment can specifically increase the secretion of glucagon-like peptide-1 (GLP-1) through interaction with ICAM-2, thereby improving glucose homeostasis and alleviating the course of diseases accompanied by metabolic disorders in mice, in particular, type 2 diabetes mellitus.
A decrease in A. muciniphila in the intestinal contents negatively correlates with the concentration of glucose, lipids in the blood and body weight of a person.
Oral administration of A. muciniphila significantly decreased the serum levels of the pro-inflammatory cytokines LBP, IL-1β  and increased the serum levels of the anti-inflammatory cytokine IL-10 in rats with induced diabetes mellitus, indicating the anti-inflammatory effect of A. muciniphila.
Studies of A. muciniphila conducted in recent years demonstrate not only its high therapeutic but also prophylactic potential.
Understanding the association between dietary fiber and gut microbiota, its bioavailability and potential health benefits contributes to the development of healthy foods, improved eating habits and disease prevention.
A. muciniphila has been identified as a potential probiotic drug candidate that plays a critical role in maintaining intestinal homeostasis, including in children under 5 years of age.
It is interesting to note that the positive effects persist in the presence of non-viable A. muciniphila, which confirms the effect of using bacteria of this species as a postbiotic or synbiotic.

Full Text

Restricted Access

About the authors

Alexander Ustiuzhanin

Федеральное государственное бюджетное образовательное учреждение высшего образования "Уральский государственный медицинский университет" Министерства здравоохранения Российской Федерации

Email: ust103@yandex.ru
ORCID iD: 0000-0001-8521-7652

доцент кафедры Медицинской микробиологии и клинической лабораторной диагностики 

Russian Federation

Margarita Ustiuzhanina

Author for correspondence.
Email: ustmargarita@mail.ru
ORCID iD: 0000-0002-4285-6902

Tatiana Smirnova

Email: tanya_bondarenko@list.ru
ORCID iD: 0009-0004-2920-2623

Lucia Zakirova

Email: zakirova-69@mail.ru
ORCID iD: 0000-0002-3598-4199
Russian Federation

References

  1. REFERENCES
  2. Derrien M., Vaughan E.E., Plugge C.M., de Vos W.M. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. // Int J Syst Evol Microbiol. 2004 Sep;54(Pt 5):1469-1476. doi: 10.1099/ijs.0.02873-0.
  3. Elzinga J., Narimatsu Y., de Haan N., Clausen H., de Vos W.M., Tytgat H.L.P. Binding of Akkermansia muciniphila to mucin is O-glycan specific. // Nat Commun. 2024 May 29;15(1):4582. doi: 10.1038/s41467-024-48770-8.
  4. Mohammed A., Jenq R.R. Dietary fiber and gut bacteria shape infection susceptibility. // Mol Syst Biol. 2024 Jun;20(6):593-595. doi: 10.1038/s44320-024-00042-9.
  5. Mruk-Mazurkiewicz H., Kulaszyńska M., Czarnecka W., Podkówka A., Ekstedt N., Zawodny P., et al. Insights into the Mechanisms of Action of Akkermansia muciniphila in the Treatment of Non-Communicable Diseases. // Nutrients. 2024 May 29;16(11):1695. doi: 10.3390/nu16111695.
  6. Niu H., Zhou M., Zogona D., Xing Z., Wu T., Chen R., et al. Akkermansia muciniphila: a potential candidate for ameliorating metabolic diseases. Front Immunol. 2024 Mar 20;15:1370658. doi: 10.3389/fimmu.2024.1370658.
  7. Choi S.I., Kim N., Choi Y., Nam R.H., Jang J.Y., Cho S.Y. The Effect of Clostridium butyricum on Gut Microbial Changes and Functional Profiles of Metabolism in High-fat Diet-fed Rats Depending on Age and Sex. // J Neurogastroenterol Motil. 2024 Apr 30;30(2):236-250. doi: 10.5056/jnm23096.
  8. Zhang Q., Zhou Y., He Q., Zhao H., Zhou F., Chi P., et al. Effects of modified-BHI medium on the growth and metabolites of Akkermansia muciniphila. // Food Sci Biotechnol. 2024 Feb 16;33(8):1921-1930. doi: 10.1007/s10068-023-01492-x.
  9. Li W., Sun J., Jing Y., Zhao J., Wu Q., Liu J., et al. Comparative Genomics Revealed Wide Intra-Species Genetic Heterogeneity and Lineage-Specific Genes of Akkermansia muciniphila. // Microbiol Spectr. 2022 Jun 29;10(3):e0243921. doi: 10.1128/spectrum.02439-21.
  10. Becken B., Davey L., Middleton D.R., Mueller K.D., Sharma A., Holmes Z.C., et al. Genotypic and Phenotypic Diversity among Human Isolates of Akkermansia muciniphila. // mBio. 2021 May 18;12(3):e00478-21. doi: 10.1128/mBio.00478-21.
  11. Jegatheesan T., Moorthy A.S., Eberl H.J. A mathematical model of competition between fiber and mucin degraders in the gut provides a possible explanation for mucus thinning. // J Theor Biol. 2024 Jun 21;587:111824. doi: 10.1016/j.jtbi.2024.111824.
  12. Hu X., Yu C., He Y., Zhu S., Wang S., Xu Z., et al. Integrative metagenomic analysis reveals distinct gut microbial signatures related to obesity. // BMC Microbiol. 2024 Apr 5;24(1):119. doi: 10.1186/s12866-024-03278-5.
  13. Zhang S., Dang Y. Roles of gut microbiota and metabolites in overweight and obesity of children // Front Endocrinol (Lausanne). 2022 Sep 8;13:994930. doi: 10.3389/fendo.2022.994930.
  14. Zaharova I.N., Berezhnaya I.V., Dubovec N.F., Skorobogatova E.V., Dubovec E.A., Dubovec A.A. Zagadochnaya Akkermansia muciniphila. CHto my znaem o nej segodnya? // Pediatriya. Consilium Medicum. - 2023. - №1. - C. 74-80. doi: 10.26442/26586630.2023.1.202190.
  15. Di W., Zhang Y., Zhang X., Han L., Zhao L., Hao Y., et al. Heterologous expression of P9 from Akkermansia muciniphila increases the GLP-1 secretion of intestinal L cells. // World J Microbiol Biotechnol. 2024 May 10;40(7):199. doi: 10.1007/s11274-024-04012-z.
  16. Niu H., Zhou M., Ji A., Zogona D., Wu T., Xu X. Molecular Mechanism of Pasteurized Akkermansia muciniphila in Alleviating Type 2 Diabetes Symptoms. // J Agric Food Chem. 2024 Jun 3. doi: 10.1021/acs.jafc.4c01188.
  17. Yan S., Chen L., Li N., Wei X., Wang J., Dong W., et al. Effect of Akkermansia muciniphila on pancreatic islet β-cell function in rats with prediabetes mellitus induced by a high-fat diet. // Bioresour Bioprocess. 2024 May 19;11(1):51. doi: 10.1186/s40643-024-00766-4.
  18. Komisarska P., Pinyosinwat A., Saleem M., Szczuko M. Carrageenan as a Potential Factor of Inflammatory Bowel Diseases. // Nutrients. 2024 Apr 30;16(9):1367. doi: 10.3390/nu16091367.
  19. Luo Y., Li M., Luo D., Tang B. Gut Microbiota: An Important Participant in Childhood Obesity // Adv Nutr. 2024 Dec 28;16(2):100362. doi: 10.1016/j.advnut.2024.100362.
  20. Zhang H., Li C., Han L., Xiao Y., Bian J., Liu C., et al. MUP1 mediates urolithin A alleviation of chronic alcohol-related liver disease via gut-microbiota-liver axis. // Gut Microbes. 2024 Jan-Dec;16(1):2367342. doi: 10.1080/19490976.2024.2367342.
  21. Wolter M., Grant E.T., Boudaud M., Pudlo N.A., Pereira G.V., Eaton K.A., et al. Diet-driven differential response of Akkermansia muciniphila modulates pathogen susceptibility. // Mol Syst Biol. 2024 May 14. doi: 10.1038/s44320-024-00036-7.
  22. Wang J., Zhao X., Li X., Jin X. Akkermansia muciniphila: a deworming partner independent of type 2 immunity. // Gut Microbes. 2024 Jan-Dec;16(1):2338947. doi: 10.1080/19490976.2024.2338947.
  23. Lu J., Gong X., Zhang C., Yang T., Pei D. A multi-omics approach to investigate characteristics of gut microbiota and metabolites in hypertension and diabetic nephropathy SPF rat models. // Front Microbiol. 2024 Apr 29;15:1356176. doi: 10.3389/fmicb.2024.1356176.
  24. Nishiwaki H., Ueyama J., Ito M., Hamaguchi T., Takimoto K., Maeda T., et al. Meta-analysis of shotgun sequencing of gut microbiota in Parkinson's disease. // NPJ Parkinsons Dis. 2024 May 21;10(1):106. doi: 10.1038/s41531-024-00724-z.
  25. Wang L., Christophersen C.T., Sorich M.J., Gerber J.P., Angley M.T., Conlon M.A. Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism // Appl Environ Microbiol. 2011 Sep;77(18):6718-21. doi: 10.1128/AEM.05212-11.
  26. CHerevko N.A., Novikov P.S., Hudyakova M.I. i dr. Vliyanie modulyacii kishechnoj mikrobioty na kliniko-immunologicheskie pokazateli i uroven' oksitocina u detej s rasstrojstvami autisticheskogo spektra // Rossijskij immunologicheskij zhurnal. – 2024. – T. 27, № 4. – S. 831-838. – doi: 10.46235/1028-7221-16873-TIO.
  27. Zheng Y., Qin C., Wen M., Zhang L., Wang W. The Effects of Food Nutrients and Bioactive Compounds on the Gut Microbiota: A Comprehensive Review. // Foods. 2024 Apr 26;13(9):1345. doi: 10.3390/foods13091345.
  28. Ahmadi Badi S., Malek A., Seyedi S.A., et al. Direct and macrophage stimulation mediated effects of active, inactive, and cell-free supernatant forms of Akkermansia muciniphila and Faecalibacterium duncaniae on hepcidin gene expression in HepG2 cells. // Arch Microbiol. 2024 Jun 4;206(7):287. doi: 10.1007/s00203-024-04007-2.
  29. Zhang L., Wu Z., Kang M., Wang J., Tan B. Utilization of Ningxiang pig milk oligosaccharides by Akkermansia muciniphila in vitro fermentation: enhancing neonatal piglet survival. // Front Microbiol. 2024 Jun 12;15:1430276. doi: 10.3389/fmicb.2024.1430276.
  30. Bechberger M., Eigenbrod T., Boutin S., Heeg K., Bode K.A. IL-1β knockout increases the intestinal abundancy of Akkermansia muciniphila. // Benef Microbes. 2023 Sep 1;14(4):361-370. doi: 10.1163/18762891-20220042.
  31. Tian R., Yu L., Tian F., et al. Effect of inulin, galacto-oligosaccharides, and polyphenols on the gut microbiota, with a focus on Akkermansia muciniphila. // Food Funct. 2024 May 7;15(9):4763-4772. doi: 10.1039/d4fo00428k. PMID: 38590256.
  32. Lee M.C., Hsu Y.J., Chen M.T., et al. Efficacy of Lactococcus lactis subsp. lactis LY-66 and Lactobacillus plantarum PL-02 in Enhancing Explosive Strength and Endurance: A Randomized, Double-Blinded Clinical Trial. // Nutrients. 2024 Jun 18;16(12):1921. doi: 10.3390/nu16121921.
  33. Chiantera V., Laganà A.S., Basciani S., Nordio M., Bizzarri M. A Critical Perspective on the Supplementation of Akkermansia muciniphila: Benefits and Harms. // Life (Basel). 2023 May 24;13(6):1247. doi: 10.3390/life13061247.
  34. Ayala-García J.C., García-Vera A.M., Lagunas-Martínez A., et al. Interaction between Akkermansia muciniphila and Diet Is Associated with Proinflammatory Index in School-Aged Children. // Children (Basel). 2023 Nov 10;10(11):1799. doi: 10.3390/children10111799.
  35. SHejnova A.D., Podosokorskaya O.A., Gubernatorova E.O. Effekt vvedeniya probioticheskoj bakterii Akkermansia muciniphila v norme i pri DSS-inducirovannom vospalenii u myshej // Infekciya i immunitet. – 2024. – T. 14, № 3. – S. 564-568. – doi: 10.15789/2220-7619-TEO-16882.
  36. Bembeeva B.O., Isaeva E.L., Murav'eva V.V., i dr. Optimizaciya uslovij sohraneniya trudnokul'tiviruemyh ekstremal'no chuvstvitel'nyh k kislorodu obligatno-anaerobnyh bakterij kishechnoj mikrobioty kak kandidatov v probioticheskie shtammy // Epidemiologiya i Vakcinoprofilaktika. 2024;23(6):54-60. 10.31631/2073-3046-2024-23-6-54-60' target='_blank'>https://doi: 10.31631/2073-3046-2024-23-6-54-60.
  37. Xiang X., Chen J., Zhu M., Gao H., Liu X., Wang Q. Multiomics Revealed the Multi-Dimensional Effects of Late Sleep on Gut Microbiota and Metabolites in Children in Northwest China // Nutrients. 2023 Oct 10;15(20):4315. doi: 10.3390/nu15204315.
  38. Yang Y., Chen J., Gao H., et al. Characterization of the gut microbiota and fecal and blood metabolomes under various factors in urban children from Northwest China // Front Cell Infect Microbiol. 2024 Mar 22;14:1374544. doi: 10.3389/fcimb.2024.1374544.
  39. George C.M., Birindwa A., Li S., et al. Akkermansia muciniphila Associated with Improved Linear Growth among Young Children, Democratic Republic of the Congo // Emerg Infect Dis. 2023 Jan;29(1):81-88. doi: 10.3201/eid2901.212118.
  40. Midya V., Nagdeo K., Lane J.M., et al.Akkermansia muciniphila attenuates association between specific metal exposures during pregnancy and depressive symptoms in late childhood // iScience. 2024 Nov 6;27(12):111335. doi: 10.1016/j.isci.2024.111335.
  41. Demirci M., Tokman H.B., Uysal H.K., et al. Reduced Akkermansia muciniphila and Faecalibacterium prausnitzii levels in the gut microbiota of children with allergic asthma // Allergol Immunopathol (Madr). 2019 Jul-Aug;47(4):365-371. doi: 10.1016/j.aller.2018.12.009.
  42. George C.M., Birindwa A., Li S., et al. Akkermansia muciniphila Associated with Improved Linear Growth among Young Children, Democratic Republic of the Congo. // Emerg Infect Dis. 2023 Jan;29(1):81-88. doi: 10.3201/eid2901.212118.
  43. Lan C., Li H., Shen Y., et al. Next-generation probiotic candidates targeting intestinal health in weaned piglets: Both live and heat-killed Akkermansia muciniphila prevent pathological changes induced by enterotoxigenic Escherichia coli in the gut. // Anim Nutr. 2024 Mar 6;17:110-122. doi: 10.1016/j.aninu.2024.01.007.
  44. Xue C., Li G., Gu X., et al. Health and Disease: Akkermansia muciniphila, the Shining Star of the Gut Flora. // Research (Wash D C). 2023;6:0107. doi: 10.34133/research.0107.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 70763 от 21.08.2017 г.