Twenty Years Since Discovery of Akkermansia muciniphila: Research and Prospects for Treating Metabolic Disorders in Children

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

First described in 2004, Akkermansia muciniphila remains a focus for scientists and healthcare professionals due to its potential impact on human health.

The World Health Organization reports that 890 million adults are living with obesity in 2024, and this number continues to grow. Russia also demonstrates a steady increase in childhood obesity. From 2010 to 2020, the percentage of children with obesity increased from 6.7% to 9.1%. The intestinal microbiota and its waste products actively regulate metabolic activity in the gastrointestinal tract. Akkermansia muciniphila is known to secrete the P9 protein, which increases glucagon-like peptide-1 secretion by interacting with intercellular adhesion molecule 2. In mice, this improves glucose homeostasis and slows the progression of metabolic disorders, including type 2 diabetes mellitus. In humans, lower intestinal levels of Akkermansia muciniphila are associated with higher blood glucose and lipid levels, as well as greater body weight. In rats with induced diabetes mellitus, the oral administration of Akkermansia muciniphila significantly decreased serum levels of proinflammatory cytokines, such as lipopolysaccharide-binding protein and interleukin-1β, and increased serum levels of the anti-inflammatory cytokine interleukin-10. These results suggest that Akkermansia muciniphila has an anti-inflammatory effect.

In recent years, research on Akkermansia muciniphila has demonstrated its high therapeutic and preventive potential. It is important to understand the relationship between dietary fiber, gut microbiota, bioavailability, and potential health benefits in order to develop healthy foods, improve eating habits, and prevent diseases. Akkermansia muciniphila has been identified as a potential probiotic candidate that plays a critical role in maintaining intestinal homeostasis, even in children under five years of age. Even non-viable Akkermansia muciniphila have beneficial effects, confirming the effectiveness of using this species of bacteria as a postbiotic or synbiotic.

全文:

受限制的访问

作者简介

Alexander Ustyuzhanin

Ural State Medical University

编辑信件的主要联系方式.
Email: ust103@yandex.ru
ORCID iD: 0000-0001-8521-7652
SPIN 代码: 8861-0584

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Yekaterinburg

Margarita Ustyuzhanina

Ural State Medical University

Email: ustmargarita@mail.ru
ORCID iD: 0000-0002-4285-6902
SPIN 代码: 5438-4476

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Yekaterinburg

Tatiana Smirnova

Ural State Medical University

Email: tanya_bondarenko@list.ru
ORCID iD: 0009-0004-2920-2623
SPIN 代码: 5845-5660

Cand. Sci. (Biology)

俄罗斯联邦, Yekaterinburg

Lucia Zakirova

Ural State Medical University

Email: zakirova-69@mail.ru
ORCID iD: 0000-0002-3598-4199

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Yekaterinburg

参考

  1. Derrien M, Vaughan EE, Plugge CM, de Vos W.M. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol. 2004;54(Pt 5):1469–1476. doi: 10.1099/ijs.0.02873-0
  2. Elzinga J, Narimatsu Y, de Haan N, et al. Binding of Akkermansia muciniphila to mucin is O-glycan specific. Nat Commun. 2024;15(1):4582. doi: 10.1038/s41467-024-48770-8
  3. Mohammed A, Jenq RR. Dietary fiber and gut bacteria shape infection susceptibility. Mol Syst Biol. 2024;20(6):593–595. doi: 10.1038/s44320-024-00042-9
  4. Mruk-Mazurkiewicz H, Kulaszyńska M, Czarnecka W, et al. Insights into the mechanisms of action of Akkermansia muciniphila in the treatment of non-communicable diseases. Nutrients. 2024;16(11):1695. doi: 10.3390/nu16111695
  5. Niu H, Zhou M, Zogona D, et al. Akkermansia muciniphila: a potential candidate for ameliorating metabolic diseases. Front Immunol. 2024;15:1370658. doi: 10.3389/fimmu.2024.1370658
  6. Choi SI, Kim N, Choi Y, et al. The effect of clostridium butyricum on gut microbial changes and functional profiles of metabolism in high-fat diet-fed rats depending on age and sex. J Neurogastroenterol Motil. 2024;30(2):236–250. doi: 10.5056/jnm23096
  7. Zhang Q, Zhou Y, He Q, et al. Effects of modified-BHI medium on the growth and metabolites of Akkermansia muciniphila. Food Sci Biotechnol. 2024;33(8):1921–1930. doi: 10.1007/s10068-023-01492-x
  8. Li W, Sun J, Jing Y, et al. Comparative genomics revealed wide intra-species genetic heterogeneity and lineage-specific genes of Akkermansia muciniphila. Microbiol Spectr. 2022;10(3):e0243921. doi: 10.1128/spectrum.02439-21
  9. Becken B, Davey L, Middleton DR, et al. Genotypic and phenotypic diversity among human isolates of Akkermansia muciniphila. mBio. 2021;12(3):e00478–21. doi: 10.1128/mBio.00478-21
  10. Jegatheesan T, Moorthy AS, Eberl HJ. A mathematical model of competition between fiber and mucin degraders in the gut provides a possible explanation for mucus thinning. J Theor Biol. 2024;587:111824. doi: 10.1016/j.jtbi.2024.111824
  11. Hu X, Yu C, He Y, et al. Integrative metagenomic analysis reveals distinct gut microbial signatures related to obesity. BMC Microbiol. 2024;24(1):119. doi: 10.1186/s12866-024-03278-5
  12. Zhang S, Dang Y. Roles of gut microbiota and metabolites in overweight and obesity of children. Front Endocrinol (Lausanne). 2022;13:994930. doi: 10.3389/fendo.2022.994930
  13. Zaharova IN, Berezhnaya IV, Dubovets NF, et al. Mysterious Akkermansia muciniphila. What do we know about it? A review. Pediatrics. Consilium Medicum. 2023;(1):74–80. doi: 10.26442/26586630.2023.1.202190
  14. Di W, Zhang Y, Zhang X, et al. Heterologous expression of P9 from Akkermansia muciniphila increases the GLP-1 secretion of intestinal L cells. World J Microbiol Biotechnol. 2024;40(7):199. doi: 10.1007/s11274-024-04012-z
  15. Niu H, Zhou M, Ji A, et al. Molecular mechanism of pasteurized Akkermansia muciniphila in alleviating type 2 diabetes symptoms. J Agric Food Chem. 2024;72(23):13083–13098 . doi: 10.1021/acs.jafc.4c01188
  16. Yan S, Chen L, Li N, et al. Effect of Akkermansia muciniphila on pancreatic islet β-cell function in rats with prediabetes mellitus induced by a high-fat diet. Bioresour Bioprocess. 2024;11(1):51. doi: 10.1186/s40643-024-00766-4
  17. Komisarska P, Pinyosinwat A, Saleem M, Szczuko M. Carrageenan as a potential factor of inflammatory bowel diseases. Nutrients. 2024;16(9):1367. doi: 10.3390/nu16091367
  18. Luo Y, Li M, Luo D, Tang B. Gut Microbiota: An important participant in childhood obesity. Adv Nutr. 2024;16(2):100362. doi: 10.1016/j.advnut.2024.100362
  19. Zhang H, Li C, Han L, et al. MUP1 mediates urolithin A alleviation of chronic alcohol-related liver disease via gut-microbiota-liver axis. Gut Microbes. 2024;16(1):2367342. doi: 10.1080/19490976.2024.2367342
  20. Wolter M, Grant ET, Boudaud M, et al. Diet-driven differential response of Akkermansia muciniphila modulates pathogen susceptibility. Mol Syst Biol. 2024;20(6):596–625. doi: 10.1038/s44320-024-00036-7
  21. Wang J, Zhao X, Li X, Jin X. Akkermansia muciniphila: a deworming partner independent of type 2 immunity. Gut Microbes. 2024;16(1):2338947. doi: 10.1080/19490976.2024.2338947
  22. Lu J, Gong X, Zhang C, et al. A multi-omics approach to investigate characteristics of gut microbiota and metabolites in hypertension and diabetic nephropathy SPF rat models. Front Microbiol. 2024;15:1356176. doi: 10.3389/fmicb.2024.1356176
  23. Nishiwaki H, Ueyama J, Ito M, et al. Meta-analysis of shotgun sequencing of gut microbiota in Parkinson’s disease. NPJ Parkinsons Dis. 2024;10(1):106. doi: 10.1038/s41531-024-00724-z
  24. Wang L, Christophersen CT, Sorich MJ, et al. Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Appl Environ Microbiol. 2011;77(18):6718–6721. doi: 10.1128/AEM.05212-11
  25. Cherevko NA, Novikov PS, Khudyakova MI, et al. The influence of modulation of intestinal microbiota on clinical and immunological parameters and oxytocin levels in children with autism spectrum disorders. Russian Journal of Immunology. 2024;27(4):831–838. doi: 10.46235/1028-7221-16873-TIO
  26. Zheng Y, Qin C, Wen M, et al. The effects of food nutrients and bioactive compounds on the gut microbiota: a comprehensive review. Foods. 2024;13(9):1345. doi: 10.3390/foods13091345
  27. Ahmadi Badi S, Malek A, Seyedi SA, et al. Direct and macrophage stimulation mediated effects of active, inactive, and cell-free supernatant forms of Akkermansia muciniphila and Faecalibacterium duncaniae on hepcidin gene expression in HepG2 cells. Arch Microbiol. 2024;206(7):287. doi: 10.1007/s00203-024-04007-2
  28. Zhang L, Wu Z, Kang M, et al. Utilization of Ningxiang pig milk oligosaccharides by Akkermansia muciniphila in vitro fermentation: enhancing neonatal piglet survival. Front Microbiol. 2024;15:1430276. doi: 10.3389/fmicb.2024.1430276
  29. Bechberger M, Eigenbrod T, Boutin S, et al. IL-1β knockout increases the intestinal abundancy of Akkermansia muciniphila. Benef Microbes. 2023;14(4):361–370. doi: 10.1163/18762891-20220042
  30. Tian R, Yu L, Tian F, et al. Effect of inulin, galacto-oligosaccharides, and polyphenols on the gut microbiota, with a focus on Akkermansia muciniphila. Food Funct. 2024;15(9):4763–4772. doi: 10.1039/d4fo00428k
  31. Lee MC, Hsu YJ, Chen MT, et al. Efficacy of lactococcus lactis subsp. lactis LY-66 and Lactobacillus plantarum PL-02 in enhancing explosive strength and endurance: a randomized, double-blinded clinical trial. Nutrients. 2024;16(12):1921. doi: 10.3390/nu16121921
  32. Chiantera V, Laganà AS, Basciani S, et al. A critical perspective on the supplementation of Akkermansia muciniphila: benefits and harms. Life (Basel). 2023;13(6):1247. doi: 10.3390/life13061247
  33. Ayala-García JC, García-Vera AM, Lagunas-Martínez A, et al. Interaction between Akkermansia muciniphila and diet is associated with proinflammatory index in school-aged children. Children (Basel). 2023;10(11):1799. doi: 10.3390/children10111799
  34. Sheynova AD, Podosokorskaya OA, Gubernatorova EO. The effect of the probiotic bacteria Akkermansia Muciniphila in intestinal homeostasis and DSS-induced inflammation in mice. Russian Journal of Infection and Immunity. 2024;14(3):564–568. doi: 10.15789/2220-7619-TEO-16882
  35. Bembeeva BO, Isaeva EL, Muravieva VV, et al. Optimising conditions for the preservation of extremely oxygen sensitive obligate anaerobes of the gut microbiota as candidates for probiotic strains. Epidemiology and Vaccinal Prevention. 2024;23(6):54–60. doi: 10.31631/2073-3046-2024-23-6-54-60
  36. Xiang X, Chen J, Zhu M, et al. Multiomics revealed the multi-dimensional effects of late sleep on gut microbiota and metabolites in children in Northwest China. Nutrients. 2023;15(20):4315. doi: 10.3390/nu15204315
  37. Yang Y, Chen J, Gao H, et al. Characterization of the gut microbiota and fecal and blood metabolomes under various factors in urban children from Northwest China. Front Cell Infect Microbiol. 2024;14:1374544. doi: 10.3389/fcimb.2024.1374544
  38. George CM, Birindwa A, Li S, et al. Akkermansia muciniphila associated with improved linear growth among young children, Democratic Republic of the Congo. Emerg Infect Dis. 2023;29(1):81–88. doi: 10.3201/eid2901.212118
  39. Midya V, Nagdeo K, Lane JM, et al. Akkermansia muciniphila attenuates association between specific metal exposures during pregnancy and depressive symptoms in late childhood. iScience. 2024;27(12):111335. doi: 10.1016/j.isci.2024.111335
  40. Demirci M, Tokman HB, Uysal HK, et al. Reduced Akkermansia muciniphila and Faecalibacterium prausnitzii levels in the gut microbiota of children with allergic asthma. Allergol Immunopathol (Madr). 2019;47(4):365–371. doi: 10.1016/j.aller.2018.12.009
  41. Lan C, Li H, Shen Y, et al. Next-generation probiotic candidates targeting intestinal health in weaned piglets: Both live and heat-killed Akkermansia muciniphila prevent pathological changes induced by enterotoxigenic Escherichia coli in the gut. Anim Nutr. 2024;17:110–122. doi: 10.1016/j.aninu.2024.01.007
  42. Xue C, Li G, Gu X, et al. Health and disease: Akkermansia muciniphila, the shining star of the gut flora. Research (Wash D C). 2023;6:0107. doi: 10.34133/research.0107

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2025

许可 URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 70763 от 21.08.2017 г.