Diversity of the gene of benzoate dioxygenase in bacterial associations isolated from long term organochlorine-contaminated soils

Cover Page

Cite item


Background. Communities of bacteria with specific enzymes are formed in the soil with long-term organochlorine contamination.

The aim of this study was to analyze the diversity of the benA gene encoding the α-subunit of the benzoate 1,2-dioxygenase in aerobic bacterial associations isolated from the soils of the Chapayevsk-city (Samara region, Russia).

Materials and methods. The soil samples were taken on the territory, contaminated with organochlorine compounds for a long time. As a selection factor in the enrichment cultures were used 4-chlorobenzoic acid and chlorobenzene, in the pure cultures – benzoic acid. The isolation of total DNA from bacterial associations was performed using a commercial FastDNA Spin Kit for Soil kit (USA). Amplification was performed on a MyCycler instrument (USA). Determination of the nucleotide sequence was performed on an automatic sequencer Genetic Analyzer 3500XL (USA). The search and analysis for benA gene homologs was carried out using international GenBank databases and BLAST system (http://www.ncbi.nlm.nih.gov).

Results. As a result of selection, 12 associations of aerobic bacteria were obtained. Fragments of the benA gene (α-subunit of benzoate dioxygenase) were obtained with the total DNA of six bacterial associations selected on chlorobenzene and with the total DNA of three bacterial associations selected on 4-chlorobenzoate. Pure cultures of aerobic bacterial strains using benzoic acid as a carbon source were isolated from benA-positive associations. It was established that the amplified fragments with the DNA of the A1, A4, A5, B1, B2, B3, B4 and B6 association strains form a single phylogenetic cluster with the α-subunit gene of the benzoate dioxygenase of the Pseudomonas putida strain KT2440 (level of similarity is 96–98%). The amplified fragment with the DNA of strain B5-170 (association B5) forms a cluster with the gene of the α-subunit of the benzoate dioxygenase of the strain Pseudomonas sp. VLB120 (93% similarity).

Full Text

In preparation


About the authors

Elmira A. Nazarova

Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences

Email: e9026309777@gmail.com

Postgraduate Student, Laboratory of Molecular Microbiology and Biotechnology

Russian Federation,  Goleva, 13, Perm, 614081

Tatyana D. Kiryanova

Perm State University

Email: kitadi@gmail.com

Undergraduate, Biological Faculty

Russian Federation, Perm, 614990, Bukirev, 15.

Daria O. Egorova

Federal State Budget Establishment of Science Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences; Perm State University

Author for correspondence.
Email: daryao@rambler.ru
ORCID iD: 0000-0001-8018-4687
SPIN-code: 9450-7883
Scopus Author ID: 36622279600

PhD (Biological Sciences), Associate Professor, Senior Researcher of the Laboratory of Molecular Microbiology and Biotechnology "IEGM UB RAS"

Russian Federation, Perm, 614081, ul. Goleva, 13; Perm, Bukireva, 614990, 15. 


  1. Трегер Ю. СОЗ — стойкие и опасные // The Chemical Journal. – 2013. – № 1. – С. 30–34. [Treger U. POPs – persistent and dangerous. The Chemical Journal. 2013(1):30-34. (In Russ.)]
  2. Назаров А.В., Егорова Д.О., Макаренко А.А., и др. Эколого-микробиологическая оценка грунтов, загрязненных полихлорированными бифенилами // Экология человека. – 2016. – № 3. – С. 3–8. [Nazarov AV, Egorova DO, Makarenko AA, et al. Ecological-microbiological assessment of polychlorinated biphenyl-contaminated grounds. Ecology Human. 2016;(3):3-8. (In Russ.)]
  3. Revich B, Shelepchikov A. Persistent organic pollutants (POPs) hot spots in Russia. In: Mehmetli E, Koumanova B. The fate of persistent organic pollutants in the environment. NATO science for peace and security series. Springer, Dordrecht; 2008. P. 113-126. https://doi.org/10. 1007/978-1-4020-6642-9_9.
  4. Final act of the Conference of Plenipotentiaries on the Stockholm convention on persistent organic pollutants, Stockholm, 22-23 May / UNEP/POPS/CONF/4. United Nations Environment Programme. Geneva; 2001. 44 р.
  5. Соляникова И.П., Борзова Щ.В., Емельянова Е.В., и др. Диоксигеназы, индуцирующиеся при разложении бензоата деструкторами хлорбифенилов Rhodococcus wratislaviensis G10 и хлорфенолов Rhodococcus opacus 1CP, и гены, потенциально вовлеченные в этот процесс // Биохимия. – 2016. – Т. 81. – № 9. – С. 1239–1253. [Solyanikova IP, Borzova OV, Emelyanova EV, et al. Dioxygenases of chlorobiphenil-degrading species Rhodococcus wratislaviensis G10 and chlorophenol-degrading species Rhodococcus opacus 1CP induced in benzoate-grown cells and genes potentially involved in these processes. Biochemistry (Moscow). 2016;81(9):986-998. (In Russ.)]. https://doi.org/10. 1134/S000629791609008X.
  6. Field JA, Sierra-Alvarez R. Microbial transformation of chlorinated benzoates. Rev Environ Sci Bio Technol. 2008;7(3):191-210. https://doi.org/10. 1007/s11157-008-9133-z.
  7. Dalvi S, Youssef NH, Fathepure BZ. Microbial community structure analysis of a benzoate-degrading halofilic archeal enrichment. Extremophiles. 2016;20(3):311-321. https://doi.org/10. 1007/s00792-016-0823-0.
  8. Parales RE, Resnick SM. Aromatic ring hydroxylating dioxygenases. Pseudomonas. 2006;4:287-340. https://doi.org/10. 1007/0-387-28881-3_9.
  9. Kahlon RS. Pseudomonas: molekular and applied biology. Springer International Publishing Switzerland; 2016. 519 р. https://doi.org/10. 1007/978-3-319-31198-2.
  10. Solyanikova IP, Emelyanova EV, Shumkova ES, et al. Pecularities of the degradation of benzoate and its chloro- and hydraxy-substituted analogs by Actinobacteria. Int Biodeter Biodegrad. 2015;100:155-164. https://doi.org/10. 1016/j.ibiod.2015. 02. 028.
  11. Zhan Y, Yu H, Yan Y, et al. Genes involved in the benzoate catabolic pathway in Acinetobacter calcoaceticus PHEA-2. Curr Microbiol. 2008;57(6):609-614. https://doi.org/10. 1007/s00284-008-9251-4.
  12. Зайцев Г.М., Карасевич Ю.Н. Подготовительный метаболизм 4-хлорбензойной кислоты у Arthrobacter globiformis // Микробиология. – 1981. – Т. 50. – № 2. – С. 423–428. [Zaitsev GM, Karasevich YuN. Preparatory metabolism of 4-chlorobenzoic acid in Arthrobacter globiformis. Microbiology. 1981;50(2):423-428. (In Russ.)]
  13. .Ausbel FM, Brent R, Kingston RE, et al. Short protocols in molecular biology. 3rd ed. New York: John Wiley & Sons; 1995. 450 р.
  14. Методы общей бактериологии. В 3 т. / Под ред. Ф. Герхардта и др.; пер. с англ. под ред. Е.Н. Кондратьевой, Л.В. Калакуцкого. – М.: Мир, 1983–1984. [Methods for general and molecular bacteriology. V 3 t. Ed. by Ph. Gerhardt et al., translated from English E.N. Kondrat’eva, L.V. Kalakutskij. Moscow: Mir; 1983-1984. (In Russ.)]
  15. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173(2):697-703. https://doi.org/10. 1128/jb.173. 2. 697-703. 1991.
  16. Baggi G, Bernasconi S, Zangarossi M, et al. Co-metabolism of di- and trichlorobenzoates in a 2-chlorobenzoate-degrading bacterial culture: Effect of the position and number of halo-substituents. Int Biodeter Biodegrad. 2008;62(1):57-64. https://doi.org/10. 1016/j.ibiod.2007. 12. 002.
  17. Benning MM, Wesenberg G, Liu RQ, et al. The three-dementional structure of 4-hydroxybensoyl-CoA thioesterase from Pseudomonas sp. Strain CBS-3. J Biol Chem. 1998;273(50):33572-33579. https://doi.org/10. 1074/jbc.273. 50. 33572.
  18. Kobayashi K, Katayama-Hirayama K, Tobita S. Hydrolytic dehalogenation pf 4-chlorobenzoic acid by an Acinetobacter sp. J Gen Appl Microbiol. 1997;43(2):105-8. https://doi.org/10. 2323/jgam.43. 105.
  19. Coleman ML, Chisholm SW. Ecosystem-specific selection pressures revealed through comparative population genomics. Proc Natl Acad Sci USA. 2010;107(43): 18634-9. https://doi.org/10. 1073/pnas.1009480107.
  20. Dunning Hotopp JC. Horizontal gene transfer between bacterial and animals. Trends Genet. 2011;27(4):157-163. https://doi.org/10. 1016/j.tig.2011. 01. 005.
  21. Syvanen M. Evolutionary implications of horizontal gene transfer. Annu Rev Genet. 2012;46:341-358. https://doi.org/10. 1146/annurev-genet-110711-155529.
  22. Polz MF, Alm EJ, Hanage WP. Horizontal gene transfer and the evolution of bacterial and archaeal population structure. Trends Genet. 2013;29(3):170-175. https://doi.org/10. 1016/j.tig.2012. 12. 006.
  23. Li D, Yan Y, Ping S, et al. Genom-wide investigation and functional characterization of the β-ketoadipate pathway in the nitrogen-fixing and root-associated bacterium Pseudomonas stutzeri A1501. BMC Microbiol. 2010;10(1):36. http://www.biomedcentral.com/1471-2180/10/36.
  24. Vodovar N, Vallenet D, Cruveiller S, et al. Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nature Biotechnology. 2006;24(6):673-679. https://doi.org/10. 1038/nbt1212.
  25. Köhler KA, Rückert C, Schatschneider S, et al. Complete genome sequence of Pseudomonas sp. Strain VLB120 a solvent tolerant, styrene degrading bacterium, isolated from forest soil. J Biotechnol. 2013;168(4):729-730. https://doi.org/10. 1016/j.jbiotec.2013. 10. 016.
  26. Liang B, Jiang JD, Zhang J, et al. Horizontal transfer of dehalogenase genes involved in the catalysis of chlorinated compounds: evidence and ecological role. Crit Rev Microbiol. 2012;38(2):95-110. https://doi.org/ 10. 3109/1040841x.2011. 618114.

Supplementary files

There are no supplementary files to display.

Copyright (c) 2019 Nazarova E.A., Kiryanova T.D., Egorova D.O.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies