Saccharomyces cerevisiae killer toxins: synthesis, mechanisms of action and practical use

Cover Page

Abstract


Yeast Saccharomyces cerevisiae is a unique model for studying the molecular mechanisms of exotoxin-mediated antagonistic relationships between coexisting microorganisms. The synthesis of yeast toxins can be considered as an example of allelopathy and environmental competition. The elucidation of the role of allelopathy in the formation of microbial communities is of great interest for modern ecology. Yeast toxins are widely used in medicine, the food industry and biotechnology. The review examines the nature of exotoxins, the mechanisms of inheritance and interaction of the virus and yeast cells, as well as the prospects for their practical application.


In Progress

Elena V. Sambuk

Saint-Petersburg State University

Author for correspondence.
Email: esambuk@mail.ru
ORCID iD: 0000-0003-0837-0498
SPIN-code: 8281-8020
Scopus Author ID: 6603061322
ResearcherId: H-6895-2013

Russian Federation, Saint-Petersburg, Universitetskaya embankment, 7/9,199034

Associate Professor, Professor of the Department of Genetics and Biotechnology

Dmitry M. Muzaev

Saint-Petersburg State University

Email: dmmuzaev@yandex.ru

Russian Federation, Saint-Petersburg, Universitetskaya embankment, 7/9,199034

engineer

Andrey M. Rumyantsev

Saint-Petersburg State University

Email: rumyantsev-am@mai.ru
ORCID iD: 0000-0002-1744-3890
SPIN-code: 9335-1184
Scopus Author ID: 55370658800

Russian Federation, Saint-Petersburg, Universitetskaya embankment, 7/9,199034

junior research assistant
 

Marina V. Padkina

Saint-Petersburg State University

Email: mpadkina@mail.ru
ORCID iD: 0000-0002-4051-4837
SPIN-code: 7709-0449
Scopus Author ID: 6602596755

Russian Federation, Saint-Petersburg, Universitetskaya embankment, 7/9,199034

Associate Professor, Professor of the Department of Genetics and Biotechnology

  1. Czárán TL, Hoekstra RF. Killer-sensitive coexistence in metapopulations of micro-organisms. Proc Biol Sci. 2003;270(1522):1373-1378. https://doi.org/10. 1098/rspb.2003. 2338.
  2. Chao L, Levin BR. Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc Natl Acad Sci USA. 1981;78(10):6324-6328. https://doi.org/10. 1073/pnas.78. 10. 6324.
  3. Cailliez JC, Cantelli C, Séguy N, et al. Killer toxin secretion through the cell wall of the yeast Pichia anomala. Mycopathologia. 1994;126(3):173-177. https://doi.org/10. 1007/BF01103772.
  4. Marquina D, Santos A, Peinado J. Biology of killer yeasts. Int Microbiol. 2002;5(2):65-71. https://doi.org/10. 1007/s10123-002-0066-z.
  5. Woods DR, Bevan EA. Studies on the nature of the killer factor produced by Saccharomyces cerevisiae. J Gen Microbiol. 2009;51(1):115-126. https://doi.org/10. 1099/00221287-51-1-115.
  6. Magliani W, Conti S, Gerloni M, et al. Yeast killer systems. Clin Microbiol Rev. 1997;10(3):369-400. https://doi.org/10. 1128/cmr.10. 3. 369.
  7. Hatoum R, Labrie S, Fliss I. Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Front Microbiol. 2012;3:421. https://doi.org/10. 3389/fmicb.2012. 00421.
  8. Bussey H, Sacks W, Galley D, et al. Yeast killer plasmid mutations affecting toxin secretion and activity and toxin immunity function. Mol Cell Biol. 1982;2(4):346-354. https://doi.org/10. 1128/mcb.2. 4. 346.
  9. Goto K, Totuka A, Kitano K, et al. Isolation and properties of a chromosome-dependent KHR killer toxin in Saccharomyces cerevisiae. Agric Biol Chem. 2011;54(2):505-509. https://doi.org/10. 1271/bbb1961. 54. 505.
  10. Goto K, Fukuda H, Kichise K, et al. Cloning and nucleotide sequence of the KHS killer gene of Saccharomyces cerevisiae. Agric Biol Chem. 1991;55(8):1953-1958. https://doi.org/10. 1271/bbb1961. 55. 1953.
  11. Schmitt MJ, Breinig F. The viral killer system in yeast: from molecular biology to application. FEMS Microbiol Rev. 2002;26(3):257-276. https://doi.org/10. 1016/S0168-6445(02)00099-2.
  12. Wickner R. Double-stranded and single-stranded RNA viruses of Saccharomyces cerevisiae. Annu Rev Microbiol. 2002;46(1):347-375. https://doi.org/10. 1146/annurev.micro.46. 1. 347.
  13. Adler J, Wood HA, Bozarth RF. Virus-like particles from killer, neutral, and sensitive strains of Saccharomyces cerevisiae. J Virol. 1976;17(2):472-476. https://doi.org/10. 1099/0022-1317-22-3-387.
  14. Bevan EA, Herring AJ, Mitchell DJ. Preliminary characterization of two species of dsRNA in yeast and their relationship to the “killer” character. Nature. 1973;245(5420):81-86. https://doi.org/10. 1038/245081b0.
  15. Fink GR, Styles CA. Curing of a killer factor in Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 1972;69(10):2846-2849. https://doi.org/ 10. 1073/pnas.69. 10. 2846.
  16. Hanes SD, Burn VE, Sturley SL, et al. Expression of a cDNA derived from the yeast killer preprotoxin gene: implications for processing and immunity. Proc Natl Acad Sci USA. 1986;83(6):1675-1679. https://doi.org/10. 1073/pnas.83. 6. 1675.
  17. Schmitt MJ, Breinig F. Yeast viral killer toxins: lethality and self-protection. Nat Rev Microbiol. 2006;4(3):212-221. https://doi.org/10. 1038/nrmicro1347.
  18. Naitow H, Tang J, Canady M, et al. L-A virus at 3. 4 А resolution reveals particle architecture and mRNA decapping mechanism. Nat Struct Biol. 2002;9(10):725-728. https://doi.org/10. 1038/nsb844.
  19. Melvydas V, Bružauskaitė I, Gedminienė G, Šiekštelė R. A novel Saccharomyces cerevisiae killer strain secreting the X factor related to killer activity and inhibition of S. cerevisiae K1, K2 and K28 killer toxins. Indian J Microbiol. 2016;56(3):335-343. https://doi.org/10. 1007/s12088-016-0589-1.
  20. Schmitt MJ, Schernikau G. Construction of a cDNA-based K1/K2/K28 triple killer strain of Saccharomyces cerevisiae. Food Technol Biotechnol. 1997;35:281-285.
  21. Tipper DJ, Schmitt MJ. Yeast dsRNA viruses: replication and killer phenotypes. Mol Microbiol. 1991;5(10):2331-2338. https://doi.org/10. 1111/j.1365-2958. 1991. tb02078. x.
  22. Zhu H, Bussey H. Mutational analysis of the functional domains of yeast K1 killer toxin. Mol Cell Biol. 1991;11(1):175-181. https://doi.org/10. 1128/mcb.11. 1. 175.
  23. Bussey H, Saville D, Hutchins K, Palfree RG. Binding of yeast killer toxin to a cell wall receptor on sensitive Saccharomyces cerevisiae. J Bacteriol. 1979;140(3):888-892.
  24. Hutchins K, Bussey H. Cell wall receptor for yeast killer toxin: involvement of (1 → 6)-β-d-glucan. J Bacteriol. 1983;154(1):161-169.
  25. Schmitt MJ, Radler F. Blockage of cell wall receptors for yeast killer toxin KT28 with antimannoprotein antibodies. Antimicrob Agents Chemother. 1990;34(8):1615-1618. https://doi.org/10. 1128/aac.34. 8. 1615.
  26. Lukša J, Podoliankaitė M, Vepštaitė I, et al. Yeast β-1,6-glucan is a primary target for the Saccharomyces cerevisiae K2 toxin. Eukaryot Cell. 2015;14(4):406-414. https://doi.org/10. 1128/EC.00287-14.
  27. Servienė E, Lukša J, Orentaitė I, et al. Screening the budding yeast genome reveals unique factors affecting K2 toxin susceptibility. PLoS One. 2012;7(12): e50779-e50779. https://doi.org/10. 1371/journal.pone.0050779.
  28. Schmitt M, Radler F. Mannoprotein of the yeast cell wall as primary receptor for the killer toxin of Saccharomyces cerevisiae strain 28. J Gen Microbiol. 1987;133(12):3347-3354. https://doi.org/ 10. 1099/00221287-133-12-3347.
  29. Giesselmann E, Becker B, Schmitt MJ. Production of fluorescent and cytotoxic K28 killer toxin variants through high cell density fermentation of recombinant Pichia pastoris. Microb Cell Fact. 2017;16(1):228. https://doi.org/10. 1186/s12934-017-0844-0.
  30. Takita MA, Castilho-Valavicius B. Absence of cell wall chitin in Saccharomyces cerevisiae leads to resistance to Kluyveromyces lactis killer toxin. Yeast. 1993;9(6):589-598. https://doi.org/10. 1002/yea.320090605.
  31. Kurzweilová H, Sigler K. Kinetic studies of killer toxin K1 binding to yeast cells indicate two receptor populations. Arch Microbiol. 1994;162(3):211-214. https://doi.org/10. 1007/BF00314477.
  32. Breinig F, Tipper DJ, Schmitt MJ. Kre1p, the plasma membrane receptor for the yeast K1 viral toxin. Cell. 2002;108(3):395-405. https://doi.org/10. 1016/S0092-8674(02)00634-7.
  33. Schmitt MJ, Compain P. Killer-toxin-resistant kre12 mutants of Saccharomyces cerevisiae: genetic and biochemical evidence for a secondary K1 membrane receptor. Arch Microbiol. 1995;164(6):435-443. https://doi.org/10. 1007/s002030050286.
  34. Gier S, Schmitt MJ, Breinig F. Expression of K1 toxin derivatives in Saccharomyces cerevisiae mimics treatment with exogenous toxin and provides a useful tool for elucidating k1 mechanisms of action and immunity. Toxins (Basel). 2017;9(11). pii:E345. https://doi.org/10. 3390/toxins9110345.
  35. Novotna D, Flegelova H, Janderova B. Different action of killer toxins K1 and K2 on the plasma membrane and the cell wall of Saccharomyces cerevisiae. FEMS Yeast Res. 2004;4(8):803-813. https://doi.org/10. 1016/j.femsyr.2004. 04. 007.
  36. Orentaite I, Poranen MM, Oksanen HM, et al. K2 killer toxin-induced physiological changes in the yeast Saccharomyces cerevisiae. FEMS Yeast Res. 2016;16(2): fow003. https://doi.org/10. 1093/femsyr/fow003.
  37. Eisfeld K, Riffer F, Mentges J, et al. Endocytotic uptake and retrograde transport of a virally encoded killer toxin in yeast. Mol Microbiol. 2000;37(4):926-940. https://doi.org/10. 1046/j.1365-2958. 2000. 02063. x.
  38. Schmitt MJ, Tipper DJ. Sequence of the M28 dsRNA: preprotoxin is processed to an alpha/beta heterodimeric protein toxin. Virology. 1995;213(2):341-351. https://doi.org/10. 1006/viro.1995. 0007.
  39. Becker B, Schmitt MJ. Yeast killer toxin K28: biology and unique strategy of host cell intoxication and killing. Toxins (Basel). 2017;9(10). pii:E333. https://doi.org/10. 3390/toxins9100333.
  40. Suzuki Y, Schwartz SL, Mueller NC, et al. Cysteine residues in a yeast viral A/B toxin crucially control host cell killing via pH-triggered disulfide rearrangements. Mol Biol Cell. 2017;28(8):1123-1131. https://doi.org/10. 1091/mbc.E16-12-0842.
  41. Heiligenstein S, Eisfeld K, Sendzik T, et al. Retrotranslocation of a viral A/B toxin from the yeast endoplasmic reticulum is independent of ubiquitination and ERAD. EMBO J. 2006;25(20):4717-4727. https://doi.org/10. 1038/sj.emboj.7601350.
  42. Schmitt MJ, Tipper DJ. K28, a unique double-stranded RNA killer virus of Saccharomyces cerevisiae. Mol Cell Biol. 1990;10(9):4807-4815. https://doi.org/10. 1128/mcb.10. 9. 4807.
  43. Schmitt MJ, Klavehn P, Wang J, et al. Cell cycle studies on the mode of action of yeast K28 killer toxin. Microbiology. 1996;142(9):2655-2662. https://doi.org/10. 1099/00221287-142-9-2655.
  44. Reiter J, Herker E, Madeo F, et al. Viral killer toxins induce caspase-mediated apoptosis in yeast. J Cell Biol. 2005;168(3):353-358. https://doi.org/10. 1083/jcb.200408071.
  45. Skipper N. Analysis and utilization of the preprotoxin gene encoded in the M1 double-stranded RNA of yeast. Basic Life Sci. 1986;40:215-226. https://doi.org/10. 1007/978-1-4684-5251-8_17.
  46. Zapun A, Jakob CA, Thomas DY, et al. Protein folding in a specialized compartment: the endoplasmic reticulum. Structure. 1999;7(8):173-182. https://doi.org/10. 1016/s0969-2126(99)80112-9.
  47. Frand AR, Kaiser CA. Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum. Mol Cell. 1999;4(4):469-477. https://doi.org/10. 1016/s1097-2765(00)80198-7.
  48. Page N, Gerard-Vincent M, Menard P, et al. A Saccharomyces cerevisiae genome-wide mutant screen for altered sensitivity to K1 killer toxin. Genetics. 2003;163(3):875-894.
  49. Santos A, Del Mar Alvarez M, Mauro MS, et al. The transcriptional response of Saccharomyces cerevisiae to Pichia membranifaciens killer toxin. J Biol Chem. 2005;280(51):41881-41892. https://doi.org/10. 1074/jbc.M507014200.
  50. Carroll SY, Stirling PC, Stimpson HE, et al. A yeast killer toxin screen provides insights into a/b toxin entry, trafficking, and killing mechanisms. Dev Cell. 2009;17(4): 552-560. https://doi.org/10. 1016/j.devcel.2009. 08. 006.
  51. McBride RC, Boucher N, Park DS, et al. Yeast response to LA virus indicates coadapted global gene expression during mycoviral infection. FEMS Yeast Res. 2013;13(2):162-179. https://doi.org/10. 1111/1567-1364. 12019.
  52. Lukša J, Ravoitytė B, Konovalovas A, et al. Different metabolic pathways are involved in response of Saccharomyces cerevisiae to L-A and M viruses. Toxins (Basel). 2017;9(8). pii:E233. https://doi.org/10. 3390/toxins9080233.
  53. Masison DC, Blanc A, Ribas JC, et al. Decoying the cap- mRNA degradation system by a double-stranded RNA virus and poly(A)- mRNA surveillance by a yeast antiviral system. Mol Cell Biol. 1995;15(5):2763-2771. https://doi.org/10. 1128/mcb.15. 5. 2763.
  54. Wickner RB, Edskes HK. Yeast killer elements hold their hosts hostage. PLoS Genet. 2015;11(5):e1005139. https://doi.org/10. 1371/journal.pgen.1005139.
  55. Rowley PA, Ho B, Bushong S, et al. XRN1 Is a species-specific virus restriction factor in yeasts. PLoS Pathog. 2016;12(10):e1005890. https://doi.org/10. 1371/journal.ppat.1005890.
  56. Rowley PA. The frenemies within: viruses, retrotransposons and plasmids that naturally infect Saccharomyces yeasts. Yeast. 2017;34(7):279-292. https://doi.org/10. 1002/yea.3234.
  57. Suzuki G, Weissman JS, Tanaka M. [KIL-d] protein element confers antiviral activity via catastrophic viral mutagenesis. Mol Cell. 2015;60(4):651-660. https://doi.org/10. 1016/j.molcel.2015. 10. 020.
  58. Rodriguez-Cousino N, Gomez P, Esteban R. Variation and distribution of L-A helper totiviruses in Saccharomyces sensu stricto yeasts producing different killer toxins. Toxins (Basel). 2017;9(10). pii:E313. https://doi.org/10. 3390/toxins9100313.
  59. Проворов Н.А. Молекулярные основы симбиогенной эволюции: от свободноживущих бактерий к органеллам // Журнал общей биологии. – 2005. – Т. 66. – № 5. – С. 371–388. [Provorov NA. Molecular basis of symbiogenic evolution: from free-living bacteria towards organelles. Journal of general biology. 2005;66(5):371-388. (In Russ.)]
  60. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669): 806-811. https://doi.org/10. 1038/35888.
  61. Ruby JG, Jan CH, Bartel DP. Intronic microRNA precursors that bypass Drosha processing. Nature. 2007;448(7149):83-86. https://doi.org/10. 1038/nature05983.
  62. Gregory RI, Chendrimada TP, Shiekhattar R. MicroRNA biogenesis: isolation and characterization of the microprocessor complex. Methods Mol Biol. 2006;342: 33-47. https://doi.org/10. 1385/1-59745-123-1:33.
  63. Faller M, Guo F. MicroRNA biogenesis: there’s more than one way to skin a cat. Biochim Biophys Acta. 2008;1779(11):663-667. https://doi.org/10. 1016/j.bbagrm.2008. 08. 005.
  64. Drinnenberg IA, Weinberg DE, Xie KT, et al. RNAi in budding yeast. Science. 2009;326(5952):544-550. https://doi.org/10. 1126/science.1176945.
  65. Macfarlane LA, Murphy PR. MicroRNA: biogenesis, function and role in cancer. Curr Genomics. 2010;11(7):537-561. https://doi.org/10. 2174/ 138920210793175895.
  66. Lejeune E, Allshire RC. Common ground: small RNA programming and chromatin modifications. Curr Opin Cell Biol. 2011;23(3):258-265. https://doi.org/10. 1016/j.ceb.2011. 03. 005.
  67. Wang L, Yue L, Chi Z, et al. Marine killer yeasts active against a yeast strain pathogenic to crab Portunus trituberculatus. Dis Aquat Organ. 2008;80(3):211-218. https://doi.org/10. 3354/dao01943.
  68. Dukare AS, Paul S, Nambi VE, et al. Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Crit Rev Food Sci Nutr. 2019;59(9):1498-513. https://doi.org/10. 1080/10408398. 2017. 1417235.
  69. Starmer WT, Ganter PF, Aberdeen V, et al. The ecological role of killer yeasts in natural communities of yeasts. Can J Microbiol. 1987;33(9):783-796. https://doi.org/10. 1139/m87-134.
  70. Abranches J, Morais PB, Rosa CA, et al. The incidence of killer activity and extracellular proteases in tropical yeast communities. Can J Microbiol. 1997;43(4):328-336. https://doi.org/10. 1139/m97-046.
  71. Pieczynska MD, de Visser JA, Korona R. Incidence of symbiotic dsRNA “killer” viruses in wild and domesticated yeast. FEMS Yeast Res. 2013;13(8):856-859. https://doi.org/10. 1111/1567-1364. 12086.
  72. Muccilli S, Restuccia C. Bioprotective role of yeasts. Microorganisms. 2015;3(4):588-611. https://doi.org/10. 3390/microorganisms3040588.
  73. Ferraz LP, Cunha T, da Silva AC, Kupper KC. Biocontrol ability and putative mode of action of yeasts against Geotrichum citri-aurantii in citrus fruit. Microbiol Res. 2016;188-189:72-79. https://doi.org/10. 1016/j.micres.2016. 04. 012.
  74. Magliani W, Conti S, Travassos LR, et al. From yeast killer toxins to antibiobodies and beyond. FEMS Microbiol Lett. 2008;288(1):1-8. https://doi.org/10. 1111/j.1574-6968. 2008. 01340. x.

Supplementary files

There are no supplementary files to display.

Views

Abstract - 210

PDF (Russian) - 78

PDF (English) - 20

Cited-By


PlumX


Copyright (c) 2019 Sambuk E.V., Muzaev D.M., Rumyantsev A.M., Padkina M.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies