On spontaneity, variability and directed evolution. Whether it is necessary to push foreheads inherited or acquired features?

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

It seems, that historically the problem of oppose inherited features vs acquired is mainly two-causes problem. The first is an insufficient knowledge about mechanisms how acquired phenotypic feature could became inherited.

The second is semiotic or more precisely semantic. Any “language itself contained the seeds of the problem” because of ambiguous interpreting of same terms by different scientists. Human specific understanding of any term, which depends on their different education, specificity of different languages, usage of metaphors and analogies, etc., create “unintended illusions” of real truth.

This brief theoretical study attempts to consider adaptively significant traits as gradually moving from the category of non-heritable to heritable ones. The conceptual approach used makes it possible to erase the contradictions between the interrelated concepts of “acquired” and “inherited” features.

Full Text

Restricted Access

About the authors

Eugene V. Daev

Saint Petersburg State University; Pavlov Institute of Physiology Russian Academy of Sciences

Author for correspondence.
Email: mouse_gene@mail.ru
ORCID iD: 0000-0003-2036-6790
SPIN-code: 8926-6034

Dr. Sci. (Biol.)

Russian Federation, Saint Petersburg; Saint Petersburg

References

  1. Lima-de-Faria A. Evolution without Selection. Form and Function by Autoevolution. Amsterdam-New York-Oxford, 1988.
  2. Bolingbroke H.St.J. O prirode, predelakh i podlinnoi sushchnosti chelovecheskikh znanii. Barg MA. Pis’ma ob izuchenii i pol’ze istorii. Barg M.A., editor. Moscow: Nauka, 1978. P. 244–273. (In Russ.)
  3. Noble D. The Illusions of the Modern Synthesis. Biosemiotics. 2021;14:5–24. doi: 10.1007/s12304-021-09405-3
  4. Moreno J. Lamarck needs Darwin: The search for purpose in the study of evolution and of history. Asclepio. 2009;62(2):233–248. doi: 10.3989/asclepio.2009.v61.i2.291
  5. Koonin EV, Wolf YI. Is evolution Darwinian or/and Lamarckian? Biology Direct. 2009;4:42. doi: 10.1186/1745-6150-4-42
  6. Han S. The Connection between Charles Darwin’s Evolutionary Theory of ‘Heredity of Behaviors’ and the 19th Century Neuroscience: The Influence of Neuroscience on Darwin’s Overcoming of Lamarck’s Theory of Evolution. Korean J Med Hist. 2019;28(1):291–350. doi: 10.13081/kjmh.2019.28.291
  7. Tikhodeyev ON. Heredity determined by the environment: Lamarckian ideas in modern molecular biology. Sci Total Environ. 2020;710:135521. doi: 10.1016/j.scitotenv.2019.135521
  8. Kerkis YuYa. Fiziologicheskie izmeneniya v kletke kak prichina mutatsionnogo protsessa. Uspekhi sovremennoi biologii. 1940;12(1):143–159. (In Russ.)
  9. Lobashev ME. Fiziologicheskaya (paranekroticheskaya) gipoteza mutatsionnogo protsessa. Vestnik Leningradskogo Universiteta. 1947;(8):10–29. (In Russ.)
  10. Horváth V, Merenciano M, González J. Revisiting the Relationship between Transposable Elements and the Eukaryotic Stress Response. Trends in Genetics. 2017;33(11):832–841. doi: 10.1016/j.tig.2017.08.007
  11. Iovleva OV. Svyaz’ otbora i izmenchivosti: dokazatel’stvo ot protivnogo. Genetika vchera i segodnya. Saint Petersburg: Eco-Vector, 2019. P. 196–208. (In Russ.)
  12. Fambrini M, Usai G, Vangelisti A, et al. The plastic genome: The impact of transposable elements on gene functionality and genomic structural variations. Genesis. 2020;58(12): e23399. doi: 10.1002/dvg.23399
  13. Van Soom A, Peelman L, Holt WV, Fazeli A. An Introduction to Epigenetics as the Link Between Genotype and Environment: A Personal View. Reprod Dom Anim. 2014;49(S3):2–10. doi: 10.1111/rda.12341
  14. Van Otterdijk SD, Michels KB. Transgenerational epigenetic inheritance in mammals: how good is the evidence? The FASEB Journal. 2016;30(7):2457–2465. doi: 10.1096/fj.201500083
  15. Le Blévec E, Muroňová J, Ray PF, Arnoult C. Paternal epigenetics: Mammalian sperm provide much more than DNA at fertilization. Mol Cell Endocrinol. 2020;518:110964. doi: 10.1016/j.mce.2020.110964
  16. Braun K, Bockb J, Wainstock T, et al. Experience-induced transgenerational (re-)programming of neuronal structure and functions: Impact of stress prior and during pregnancy. Neurosci Biobehav Rev. 2020;117:281–296. doi: 10.1016/j.neubiorev.2017.05.021
  17. Zhu L, Marjani SL, Jiang Z. The Epigenetics of Gametes and Early Embryos and Potential Long-Range Consequences in Livestock Species — Filling in the Picture with Epigenomic Analyses. Front Genet. 2021;12:557934. doi: 10.3389/fgene.2021.557934
  18. Stil EH, Lindli R, Blanden R. Chto, esli Lamark prav? Immunogenetika i ehvolyutsiya. Moscow: Mir, 2002. 237 p.
  19. Lamark J-B. Izbrannye proizvedeniya v dvukh tomakh. Vol. II. Moscow: Izdatelstvo AN SSSR, 1959. P. 1–895. (In Russ.)
  20. Aguilera A. The connection between transcription and genomic instability. The EMBO Journal. 2002;21(3):195–201. doi: 10.1093/emboj/21.3.195
  21. D’Alessandro G, di Fagagn Fd’A. Transcription and DNA damage: holding hands or crossing swords? J Mol Biol. 2016;429(21): 3215–3229. doi: 10.1016/j.jmb.2016.11.002
  22. Bouwman BAM, Crosetto N. Endogenous DNA Double-Strand Breaks during DNA Transactions: Emerging Insights and Methods for Genome-Wide Profiling. Genes. 2018;9(12):632. doi: 10.3390/genes9120632
  23. Skinner MK. Environmental Epigenetics and a Unified Theory of the Molecular Aspects of Evolution: A Neo-Lamarckian Concept that Facilitates Neo-Darwinian Evolution. Genome Biol Evol. 2015;7(5):1296–1302. doi: 10.1093/gbe/evv073
  24. Skinner MK, Guerrero-Bosagna C, Haque MM. Environmentally induced epigenetic transgenerational inheritance of sperm epimutations promote genetic mutations. Epigenetics. 2015;10(8):762–771. doi: 10.1080/15592294.2015.1062207
  25. Jablonka E, Lamb MJ. Précis of Evolution in Four Dimensions. Behav Brain Sci. 2007;30(4):353–392. doi: 10.1017/S0140525X07002221
  26. Jablonka E, Lamb MJ. The inheritance of acquired epigenetic variations. Int J Epidemiol. 2015;44(4):1094–1103. doi: 10.1093/ije/dyv020
  27. Nejabati HR, Shahnazi V, Faridvand Y, et al. Epididymosomes: the black box of Darwin’s pangenesis? Mol Hum Reprod. 2021;27(2): gaaa079. doi: 10.1093/molehr/gaaa079
  28. Collins N, Roth TL. Intergenerational transmission of stress-related epigenetic regulation. Provenzi L, Montirosso R, editors. Developmental Human Behavioral Epigenetics. Principles, Methods, Evidence, and Future Directions. Vol. 23. Academic Press, 2020. Ch. 7. P. 119–141.
  29. Liu Y. Darwinian evolution includes Lamarckian inheritance of acquired characters. Int J Epidemiol. 2016;45(6):2206–2207. doi: 10.1093/ije/dyw182
  30. Skinner MK, Nilsson EE. Role of environmentally induced epigenetic transgenerational inheritance in evolutionary biology: Unified Evolution Theory. Environ Epigenet. 2021;7(1):dvab012. doi: 10.1093/eep/dvab012
  31. Liberman N, Wang SY, Greer EL. Transgenerational epigenetic inheritance: from phenomena to molecular mechanisms. Curr Opin Neurobiol. 2019;59:189–206. doi: 10.1016/j.conb.2019.09.012
  32. Tikhodeyev ON. Epigenetic and eugenetic processes. Uspekhi sovremennoi biologii. 2015;135(6):542–553. (In Russ.)
  33. Hoquet T. Laws of variation: Darwin’s failed Newtonian program? Endeavour. 2014;38(3–4):211–221. doi: 10.1016/j.endeavour.2014.10.007
  34. Eden M. Inadequacies of neo-Darwinian evolution as a scientific theory. Wistar Inst Symp Monogr. 1967;(5):109–111.
  35. Westling L. A Humanist’s Response to Denis Noble’s “The Illusions of the Modern Synthesis”. Biosemiotics. 2021;14:31–34. doi: 10.1007/s12304-021-09413-3
  36. Daev EV. About some genetic terms, their content and education. Ecological genetics. 2021;19(2):181–192. (In Russ.) doi: 10.17816/ecogen34777

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. General idea of the acquisition of any trait by a living organism and the gradual transition of non-inherited traits into the category of inherited ones (a); non-random distribution of genomic changes and corresponding positive selection of the desired phenotype due to changes in the genes of interest (b). EF — environmental factors; Ph — phenotype; GC, PhC, RC — genetic, phenetic and regulatory changes; EpiGC — “epigenetic” changes (reversible base modifications); AT — acquired traits (NI, TI, I — non-inherited, temporarily inherited or inherited, respectively); NS — shows the constant action of the environmental filter — natural selection. Genes “of interest” — genes, which work is activated under conditions of medium pressure on a certain phen

Download (325KB)

Copyright (c) 2022 ООО "Эко-Вектор"



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies