DNA-metabarcoding analyses of the grapevine wood fungal community in the Krasnodar Region and Crimea

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Grapes are an economically important agricultural plant. Studies of the Grapevine microbiota and rhizosphere have become increasingly important in the last decade. The importance of such research is also supported by the fact that grapes are a perennial, long-used crop.

In this work, we present the results of a DNA-metabarcoding analysis of the fungal community of grape wood, collected from vineyards in the Krasnodar Territory and the Southern Coast of Crimea, and considered approaches to the analysis of DNA-metabarcoding data. Classifier is Naïve base (“sklearn”) based on machine learning is more informative metagenomic data classifier than BLAST+ (local alignment) and Vsearch (global alignment). Analysis of the ITS locus revealed the largest number of taxa, which was confirmed for all types of classifiers used in the study. Primers for the ITS locus showed a high specificity of fungal DNA in comparison with the LSU and SSU loci. The most common genera in the fungal community are Acidea, Alternaria, Cladosporium and Fusarium. Significant differences were revealed in the assessment of alpha and beta diversity in the analysis of samples from different regions. This article presents an analysis of the wood grapevine fungal community and ways to ASV classification. This study is the first to describe the endophytic fungal communities of the Krasnodar Territory and the Crimea vines using the analysis of DNA metabarcoding data.

Full Text

Restricted Access

About the authors

Sofiia A. Blinova

All-Russia Research Institute of Agricultural Biotechnology; LLC “Syntol”

Author for correspondence.
Email: sofya.blinova@yandex.ru
ORCID iD: 0000-0001-6782-8353
SPIN-code: 9148-3765
Scopus Author ID: 57217069755

Postgraduate Student, Junior Researcher

Russian Federation, Moscow; Moscow

Aleksey A. Shvartsev

LLC “Syntol”

Email: alexey.sva@yandex.ru
ORCID iD: 0000-0002-2786-9860
SPIN-code: 9792-6398

Researcher

Russian Federation, Moscow

Yakov I. Alekseev

LLC “Syntol”; National Research Institute for Grape and Wine Magarach Russian Academy of Sciences

Email: jalex01@mail.ru
ORCID iD: 0000-0002-1696-7684
SPIN-code: 8145-5586

Cand. Sci. (Biol.), Director of Science

Russian Federation, Moscow; Yalta

Elena P. Stranishevskaya

National Research Institute for Grape and Wine Magarach Russian Academy of Sciences

Email: stranishevskayaelena@gmail.com
ORCID iD: 0000-0002-2840-5638
Scopus Author ID: 57190218360

Dr. Sci. (Agricult.), Professor

Russian Federation, Yalta

Elena T. Ilnitskaya

North Caucasus Federal Scientific Center for Horticulture, Viticulture, Winemaking

Email: ilnitskaya79@mail.ru
ORCID iD: 0000-0002-2446-0971
SPIN-code: 7075-1328
Scopus Author ID: 57192072976

Cand. Sci. (Biol.), Head of Laboratory

Russian Federation, Krasnodar

Marina V. Makarkina

North Caucasus Federal Scientific Center for Horticulture, Viticulture, Winemaking

Email: konec_citatu@mail.ru
ORCID iD: 0000-0002-3397-0666
SPIN-code: 3833-1636
Scopus Author ID: 57204108200

Junior Researcher

Russian Federation, Krasnodar

Alexander A. Soloviev

All-Russia Research Institute of Agricultural Biotechnology

Email: a.soloviev70@gmail.com
ORCID iD: 0000-0003-4480-8776
SPIN-code: 3431-5168
Scopus Author ID: 35732425900

Dr. Sci. (Biol.), Professor RAS, Head of Laboratory

Russian Federation, Moscow

References

  1. Jayawardena RS, Purahong W, Zhang W, et al. Biodiversity of fungi on Vitis vinifera L. revealed by traditional and high-resolution culture-independent approaches. Fungal Divers. 2018;90:1–84. doi: 10.1007/s13225-018-0398-4
  2. Fuchs M. Grapevine viruses: a multitude of diverse species with simple but overall poorly adopted management solutions in the vineyard. J Plant Pathol. 2020;102(3):643–653. doi: 10.1007/s42161-020-00579-2
  3. Salvetti E, Campanaro S, Campedelli I, et al. Whole-Metagenome-Sequencing-Based Community Profiles of Vitis vinifera L. cv. Corvina Berries Withered in Two Post-harvest Conditions. Front Microbiol. 2016;7:937. doi: 10.3389/fmicb.2016.00937
  4. Mori N, Quaglino F, Tessari F, et al. Investigation on ‘bois noir’ epidemiology in north-eastern Italian vineyards through a multidisciplinary approach. Ann Appl Biol. 2014;166(1):75–89. doi: 10.1111/aab.12165
  5. Burovinskaya MV, Yurchenko EG. Tracheomycosis grape diseases and measures of their restrictions. Fruit growing and viticulture of South Russia. 2020;(63):270–284. (In Russ.) doi: 10.30679/2219-5335-2020-3-63-270-284
  6. Savchuk NV, Yurchenko EG, Vinogradova SV, Porotikova EV. Causative agents of Fusarium wilt of the reproductive organs of grapes. Ways of infection. Proceedings of the V International science and practice conferences: “Sovremennoe sostoyanie, problemy i perspektivy razvitiya agrarnoi nauki”; 2020 Sept 21–25. P. 95–97. (In Russ.) doi: 10.33952/2542-0720-2020-5-9-10-45
  7. Blackwell M. The Fungi: 1, 2, 3 … 5.1 million species? Am J Bot. 2011;98(3):426–438. doi: 10.3732/ajb.1000298
  8. Berlanas C, Berbegal M, Elena G, et al. The Fungal and Bacterial Rhizosphere Microbiome Associated With Grapevine Rootstock Genotypes in Mature and Young Vineyards. Front Microbiol. 2019;10:1142. doi: 10.3389/fmicb.2019.01142
  9. Úrbez-Torres JR, Gubler WD. Susceptibility of grapevine pruning wounds to infection by Lasiodiplodia theobromae and Neofusicoccum parvum. Plant Pathol. 2010;60(2):261–270. doi: 10.1111/j.1365-3059.2010.02381.x
  10. Jayawardena R, Purahong W, Zhang W, et al. Biodiversity of fungi on Vitis vinifera L. revealed by traditional and high-resolution culture-independent approaches. Fungal Divers. 2018;90(1):1–84. doi: 10.1007/s13225-018-0398-4
  11. Lade SB, Štraus D, Oliva J. Variation in Fungal Community in Grapevine (Vitis vinifera) Nursery Stock Depends on Nursery, Variety and Rootstock. Journal of Fungi. 2022;8(1):47. doi: 10.3390/jof8010047
  12. Mendes R, Kruijt M, De Bruijn I, et al. Deciphering the Rhizosphere Microbiome for Disease-Suppressive Bacteria. Science. 2011;3329(6033):1097–1100. doi: 10.1126/science.1203980
  13. Janssen PH. Identifying the Dominant Soil Bacterial Taxa in Libraries of 16S rRNA and 16S rRNA Genes. Appl Environ Microbiol. 2006;72(3):1719–1728. doi: 10.1128/aem.72.3.1719-1728.2006
  14. Buffet-Bataillon S, Rizk G, Cattoir V, et al. Efficient and Quality-Optimized Metagenomic Pipeline Designed for Taxonomic Classification in Routine Microbiological Clinical Tests. Microorganisms. 2022;10(4):711. doi: 10.3390/microorganisms10040711
  15. Zarraonaindia I, Owens SM, Weisenhorn P, et al. The Soil Microbiome Influences Grapevine-Associated Microbiota. mBio. 2015;6(2): e02527–14. doi: 10.1128/mbio.02527-14
  16. Niem JM, Billones-Baaijens R, Stodart B, Savocchia S. Diversity Profiling of Grapevine Microbial Endosphere and Antagonistic Potential of Endophytic Pseudomonas Against Grapevine Trunk Diseases. Front Microbiol. 2020;11:477. doi: 10.3389/fmicb.2020.00477
  17. Schoch CL, Seifert KA, Huhndorf S, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. PNAS. 2012;109(16):6241–6246. doi: 10.1073/pnas.1117018109
  18. Ishii N, Ishida S, Kagami M. PCR primers for assessing community structure of aquatic fungi including Chytridiomycota and Cryptomycota. Fungal Ecol. 2015;13:33–43. doi: 10.1016/j.funeco.2014.08.004
  19. Jones EBG, Devadatha B, Abdel-Wahab MA, et al. Phylogeny of new marine Dothideomycetes and Sordariomycetes from mangroves and deep-sea sediments. Botanica Marina. 2020;63(2):155–181. doi: 10.1515/bot-2019-0014
  20. Tedersoo L, Anslan S, Bahram M, et al. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys. 2015;10:1–43. doi: 10.3897/mycokeys.10.4852
  21. Bioinformatics.babraham.ac.uk [Internet]. Babraham Bioinformatics [cited: 2021 Dec 11]. Available from: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
  22. Multiqc.info [Internet]. MultiQC [cited: 2021 Dec 11]. Available from: https://www.multiqc.info/
  23. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170
  24. Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME2. Nat Biotechnol. 2019;37(8):852–857. doi: 10.1038/s41587-019-0209-9
  25. Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–583. doi: 10.1038/nmeth.3869
  26. Camacho C, Coulouris G, Avagyan V, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10(1):421. doi: 10.1186/1471-2105-10-421
  27. Rognes T, Flouri T, Nichols B, et al. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4: e2584. doi: 10.7717/peerj.2584
  28. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine Learning in Python. J Mach Learn Res. 2012;12:2825–2830. doi: 10.48550/arXiv.1201.0490
  29. Nilsson RH, Larsson K-H, Taylor AFS, et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2018;47(D1): D259–D264. doi: 10.1093/nar/gky1022
  30. Robeson MS II, O’Rourke DR, Kaehler BD, et al. RESCRIPt: Reproducible sequence taxonomy reference database management for the masses. bioRxiv. 2020: ID326504. doi: 10.1101/2020.10.05.326504
  31. McMurdie PJ, Holmes S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS One. 2013;8(4): e61217. doi: 10.1371/journal.pone.0061217
  32. Wickham H. ggplot2: Elegant Graphics for Data Analysis. In: Gentleman R, Hornik K, Parmigiani G, editors. Use R! New York: Springer-Verlag, 2016. P. 189–201. doi: 10.1007/978-3-319-24277-4_9
  33. González V, Tello ML. The endophytic mycota associated with Vitis vinifera in central Spain. Fungal Divers. 2010;47(1):29–42. doi: 10.1007/s13225-010-0073-x
  34. Aćimović SG, Harmon CL, Bec S, et al. First Report of Diplodia corticola Causing Decline of Red Oak (Quercus rubra) Trees in Maine. Plant Dis. 2016;100(3):649. doi: 10.1094/pdis-09-15-0994-pdn
  35. Phillips AJL, Alves A, Abdollahzadeh J, et al. The Botryosphaeriaceae: genera and species known from culture. Stud Mycol. 2013;76(1):51–167. doi: 10.3114/sim0021

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Analysis of ASV classification of different loci by a method based on machine learning (“sklearn”) a — SSU; b — LSU; c — ITS

Download (342KB)
3. Fig. 2. Boxplot alpha diversity of population in fungal ITS locus analysis

Download (174KB)
4. Fig. 3. Nonmetric multidimensional scaling (NMDS) ordination of Jaccard index dissimilarities. Samples that fall out of the general distribution array are indicated

Download (128KB)
5. Fig. 4. Fungi Population structure PCoA analysis of the weighted and unweighted variants of UniFrac. Principal coordinate analysis from metabarcoding results

Download (151KB)
6. Fig. 5. Fungal genera graph of the 50 most represented ASVs

Download (162KB)
7. Fig. 6. The ratio of the most common genera of fungi

Download (327KB)

Copyright (c) 2022 ООО "Эко-Вектор"



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies