Identification of cryptic forms of the hybridogenic complex of European water frogs (Pelophylax esculentus complex) in the conditions of transformed biotopes of the south of the Central Russian Upland based on DNA markers

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

AIM: The aim of the study was to carry out species identification of the hybridogenic complex of European water frogs (Pelophylax esculentus complex) in the conditions of transformed biotopes of the south of the Central Russian Upland based on molecular genetic markers

MATERIALS AND METHODS: The study included 36 local populations (770 individuals) living in conditions of transformed biotopes of the south of the Central Russian Upland. Identification of cryptic forms was carried out by a Multiplex PCR. Two molecular genetic markers were used for amplification: intron 1 of the SAI-1 DNA serum albumin gene to determine hybrids and cryptic forms, and a fragment of the first subunit of the cytochrome oxidase COI mtDNA gene to determine maternal lines.

RESULTS: According to the data obtained, “pure” R-type population systems predominate (58.33%) in the study region. Mixed RE-type population systems were identified in 14 localities, REL-type in the region is extremely rare and is noted only in one locality. No pure L-type, E-type, or mixed LE-type population systems have been identified. The study revealed a statistically significant (p < 0.001) predominance of haplotypes of the “Western” form (Pelophylax ridibundus).

CONCLUSIONS: The data obtained indicate active adaptive changes in the population structure of European water frogs in the study area. Degradation of water bodies caused by abiotic and anthropogenic factors forces amphibians to migrate to neighboring reservoirs in which hybridization of representatives of this complex occurs. Introgressive and hybrid forms of the marsh frog, as well as hybrid edible individuals with greater ecological plasticity and tolerance to anthropogenic pressure, displace populations of Pelophylax lessonae. Based on the above, we consider it necessary to include the pond frog (P. lessonae) in the Red Book of the Belgorod region.

Full Text

Restricted Access

About the authors

Anatoliy S. Barkhatov

Belgorod State National Research University

Author for correspondence.
Email: barkhatov@bsu.edu.ru
ORCID iD: 0000-0001-9996-7251
SPIN-code: 3833-2940

Junior Research Associate, Research Center of Genomic Selection

Russian Federation, Belgorod

Eduard A. Snegin

Belgorod State National Research University

Email: snegin@bsu.edu.ru
ORCID iD: 0000-0002-7574-6910
SPIN-code: 5655-7828

Dr. Sci. (Biol.), Director of the Research Center of Genomic Selection

Russian Federation, Belgorod

References

  1. Pillsbury FC, Miller JR. Habitat and landscape characteristics underlying anuran community structure along an urban-rural gradient. Ecological applications: Ecological Society of America. 2008;18(5):1107–1118. doi: 10.1890/07-1899.1
  2. Vershinin VL. Biota urbanizirovannykh territorii. Yekaterinburg: USU, 2007. 85 p. (In Russ.)
  3. Lada GA. Sredneevropeiskie zelenye lyagushki (gibridogennyi kompleks Rana esculenta): vvedenie v problemu. Flora i fauna Chernozem’ya. Tambov: TGU, 1995. P. 88–109. (In Russ.)
  4. Zaripova FF, Yumagulova GR, Faizulin AI. Present state of population of lake frog rana ribunda pallas, 1771 (anura, amphibia) in the republic of bashkortostan according to the polymorphism of spinal coloration patterns. Izvestia of Samara Scientific Center of the Russian Academy of Sciences. 2009;11(1):78–82. (In Russ.)
  5. Fayzulin AI, Kuzovenko AE. Amphibians as bioindicators of environment condition in the middle Volga Region: phenetic structure of population. Izvestia of Samara Scientific Center of the Russian Academy of Sciences. 2012;14(1–3):829–833. (In Russ.)
  6. Fayzulin AI, Zamaletdinov RI, Litvinchuk SN, et al. Species composition and distributional peculiarities of green frogs (Pelophylax esculentus complex) in protected areas of the middle Volga Region (Russia). Nature Conservation Research. 2018;3(1):1–16. (In Russ.) doi: 10.24189/ncr.2018.056
  7. Zhelev ZM, Arnaudova DN, Popgeorgiev GS, Tsonev SV. In situ assessment of health status and heavy metal bioaccumulation of adult Pelophylax ridibundus (Anura: Ranidae) individuals inhabiting polluted area in southern Bulgaria. Ecological Indicators. 2020;115:106413. doi: 10.1016/j.ecolind.2020.106413
  8. Svinin AO, Ermakov OA, Litvinchuk SN, Bashinskiy IV. The anomaly P syndrome in green frogs: the history of discovery, morphological features and possible causes. Proceedings of the Zoological Institute RAS. 2020;324(1):108–123. (In Russ.) doi: 10.31610/trudyzin/2020.324.1.108
  9. Berger L. Morphology of the F1 generation of various crosses within Rana esculenta complex. Acta zoologica cracoviensia. 1968;13:301–324.
  10. Tunner HG. Das Albumin und andere Bluteiweiße bei Rana ridibunda Pallas, Rana lessonae Camerano, Rana esculenta Linne und deren Hybriden. J Zoolog Syst Evol Res. 1973;11(1):219–233. (In Germ.) doi: 10.1111/j.1439-0469.1973.tb00143.x
  11. Uzzell T, Berger L. Electrophoretic phenotypes of Rana ridibunda, Rana lessonae, and their hybridogenetic associate, Rana esculenta. Proc Acad Nat Sci Phila. 1975;127(2):13–24.
  12. Vinogradov AE, Borkin LJ, Günther R, Rosanov JM. Genome elimination in diploid and triploid Rana esculenta males: cytological evidence from DNA flow cytometry. Genome. 1990;33(5):619–627. doi: 10.1139/g90-092
  13. Plötner J. Die westpalaarktischen Wasserfrösche. Von Märtyrern der Wissenschaft zur biologischen Sensation. Bielefeld: Laurenti Verlag, 2005. (In Germ.)
  14. Dedukh DV, Krasikova AV. Methodological approaches for studying the European water frog Pelophylax esculentus complex. Russian Journal of Genetics. 2017;53(8):885–894. (In Russ.) doi: 10.7868/S0016675817080045
  15. Borisovskii AG, Borkin LYa, Litvinchuk SN, Rozanov YuM. Morfometricheskaya kharakteristika zelenykh lyagushek (kompleks Rana esculenta) Udmurtii. Bulletin of Udmurt University. 2000;(5):70–75. (In Russ.)
  16. Bannikov AG, Darevskii IS, Ishchenko VG, et al. Opredelitel’ zemnovodnykh i presmykayushchikhsya SSSR. Moscow: Prosveshchenie, 1977. 415 p. (In Russ.)
  17. Akin C, Bilgin CC, Beerli P, et al. Phylogeographic patterns of genetic diversity in eastern Mediterranean water frogs were determined by geological processes and climate change in the Late Cenozoic. J Biogeogr. 2010;37(11):2111–2124. doi: 10.1111/j.1365-2699.2010.02368.x
  18. Ivanov AYu. Molekulyarno-geneticheskie i ehkologicheskie osobennosti rasprostraneniya kripticheskikh form ozernoi lyagushki v vostochnoi chasti areala [dissertation]. Penza, 2019. 138 p. (In Russ.)
  19. Ermakov OA, Zaks MM, Titov SV. Diagnostics and distribution of “western” and “eastern” forms of marsh frog Pelophylax ridibundus s. L. In the Penza province (on data of analysis of mtDNA cytochrome oxidase gene). Vestnik Tambovskogo Gosudarstvennogo Universiteta. Seriya estestvennye nauki. 2013;18(6–1):2999–3002. (In Russ.)
  20. Ermakov OA, Fayzulin AI, Zaks MM, et al. Distribution “western” and “eastern” forms of marsh frog Pelophylax ridibundus s. L. In the Samara and Saratov Region (on data of analysis of mtDNA and nDNA). Izvestia of Samara Scientific Center of the Russian Academy of Sciences. 2014;16(5–1):409–412. (In Russ.)
  21. Zamaletdinov RI, Pavlov AV, Zaks MM, et al. Molecular-genetic characteristic of Pelophylax esculentus complex from the eastern range of distribution (Volga Rregion, Tatarstan Republic). Tomsk State University Journal of Biology. 2015;(3):54–66. (In Russ.) doi: 10.17223/19988591/31/5
  22. Svinin AO, Ivanov AYu, Zaks MM, et al. Distribution of the “eastern” and “western” forms of the marsh frog, pelophylax ridibundus, and their participation in the origin of hemiclonal hybrids, P. esculentus in Mari El Republic. Current studies in herpetology. 2015;15(3–4):120–129. (In Russ.)
  23. Kukushkin OV, Ivanov AYu, Ermakov OA. Genetic heterogeneity of the marsh frog (Pelophylax (ridibundus) complex; anura, ranidae) population in Crimea revealed by mitochondrial and nuclear DNA analyses. University proceedings. Volga Region. Natural sciences. 2018;(3):32–54. (In Russ.) doi: 10.21685/2307–9150–2018–3–3
  24. Faizulin AI, Kukushkin OV, Ivanov AYu, Ermakov OA. Preliminary data on the molecular genetic structure of Pelophylax ridibundus (Amphibia: Anura: Ranidae) from the southern part of the Crimean Peninsula, based on mitochondrial and nuclear DNA analysis. Current studies in herpetology. 2017;17(1/2):56–65. (In Russ.) doi: 10.18500/1814-6090-2017-17-1-2-56-65
  25. Kuzmin SL. Amphibians of the Former USSR. 2 ed. Moscow: KMK, 2012. (In Russ.)
  26. Berger L. European green frogs and their protection. Ecological Library Foundation, 2008.
  27. Ruchin AB, Lada GA, Borkin LYa, et al. O biotopicheskom raspredelenii trekh vidov zelenykh lyagushek (Rana esculenta complex) v basseine r. Volgi. Povolzhskiy Journal of Ecology. 2009;(2):137–147. (In Russ.)
  28. Lada GA. Beskhvostye zemnovodnye (Anura) Russkoi ravniny: izmenchivost’, vidoobrazovanie, arealy, problemy okhrany [dissertation]. Kazan, 2012. 626 p. (In Russ.)
  29. Snegin EA, Barkhatov AS. Morphogenetic structure of marsh frog populations of Pelophylax ridibundus (Amphibia, Anura) under conditions of urban environment. Theoretical and applied ecology. 2019;(1):47–53. (In Russ.) doi: 10.25750/1995-4301-2019-1-047-053
  30. Barkhatov AS, Snegin EA. Phenotypic structure of Pelophylax esculentus complex population in urbanized landscapes in the south central Russian upland. University proceedings. Volga Region. Natural sciences. 2021;(3):78–84. (In Russ.) doi: 10.21685/2307-9150-2021-3-7
  31. Snegin EA, Barkhatov AS, Kiselev VV, et al. Estimation of genomic DNA damage in populations of the marsh frog (Pelophylax ridibundus Pallas, 1771) of the Belgorod agglomeration by DNA comet assay. Tomsk State University Journal of Biology. 2021;(55):58–76. (In Russ.) doi: 10.17223/19988591/55/4
  32. Vershinin VL. Ehkologicheskie osobennosti populyatsii amfibii urbanizirovannykh territorii [dissertation abstract]. Yekaterinburg, 1997. 47 p. (In Russ.)
  33. Lipatov VA, Kryukov AA, Severinov DA, Saakyan AR. Ethical and legal aspects of in vivo experimental biomedical research of the conduct. Part II. I.P. Pavlov Russian Medical Biological Herald. 2019;27(2):245–257. (In Russ.) doi: 10.23888/PAVLOVJ2019272245-257
  34. Ermakov O, Ivanov A, Titov S, et al. New multiplex PCR method for identification of East European green frog species and their hybrids. Russian Journal of Herpetology. 2019;26(6):367–370. doi: 10.30906/1026-2296-2019-26-6-367-370
  35. Lada GA, Borkin LJ, Vinogradov AE. Distribution, population systems and reproductive behavior of green frogs (hybridogenetic Rana esculenta — complex) in the Central Chernozem Territory of Russia. Russian Journal of Herpetology. 1995;2(1):46–57. doi: 10.30906/1026-2296-1995-2-1-46-57
  36. Peakall R, Smouse PE. GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research — an update. Mol Ecol Notes. 2006;6(1):288–295. doi: 10.1111/j.1471–8286.2005.01155.x
  37. Borkin LJ, Korshunov AV, Lada GA, et al. Mass occurrence of polyploid green frogs (Rana esculenta complex) in eastern Ukraine. Russian Journal of Herpetology. 2004;11(3):203–222. doi: 10.30906/1026-2296-2004-11-3-203-222
  38. Shabanov DA, Litvinchuk SN. Green frogs: life without rules or a peculiar way of evolution? Priroda. 2010;(3):29–36. (In Russ.)
  39. Günther R, Plötner J. Zur Problematik der klonalen Vererbung bei Rana kl. esculenta (Anura). Beiträge zur Biologie und Bibliographie (1960–1987) der europäischen Wasserfrösche. Jb Feldherp Beiheft. 1988;1:23–46. (In Germ.)
  40. Mallet J. Hybridization as an invasion of the genome. Trends Ecol Evol. 2005;20(5):229–237. doi: 10.1016/j.tree.2005.02.010
  41. Vershinin VL, Sitnikov IA, Vershinina SD, et al. Mitochondrial heteroplasmy in marsh frog (Pelophylax ridibundus pallas, 1771). Russian Journal of Genetics. 2019;55(8):972–977. doi: 10.1134/S0016675819080174
  42. Ballard JWO, Whitlock MC. The incomplete natural history of mitochondria. Mol Ecol. 2004;13(4):729–744. doi: 10.1046/j.1365-294x.2003.02063.x
  43. Lada GA. Dynamics of population systems of green frogs (Pelophylax esculentus complex) on the territory of the Russian plain. Field biologist journal. 2021;3(1):53–63. doi: 10.18413/2658-3453-2021-3-1-53-63
  44. Mikulíček P, Pišút P. Genetic structure of the marsh frog (Pelophylax ridibundus) populations in urban landscape. Eur J Wildl Res. 2012;58:833–845. doi: 10.1007/s10344-012-0631-5
  45. Holenweg PA-K. Dispersal rates and distances in adult water frogs, Rana lessonae, R. ridibunda and their hybridogenetic associate, R. esculenta. Herpetologica. 2001;57:449–460.
  46. Smith MA, Green DM. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography. 2005;28(1):110–128. doi: 10.1111/j.0906-7590.2005.04042.x
  47. Barkhatov AS, Snegin EA, Yusupov SR. Genetic structure of the water frog (Pelophylax esculentus complex) populations in the south of the Central Russian Upland. Ecological genetics. 2021;19(2): 107–119. (In Russ.) doi: 10.17816/ecogen48555
  48. Yermokhin MV, Tabachishin VG, Ivanov GA. Size-weight and sexual structure of Pelophilax ridibundus and bombina bombina (Amphibia, Anura) populations in the floodplane of the medveditsa river (Saratov Region). Current studies in herpetology. 2017;17(1/2):10–20. (In Russ.) doi: 10.18500/1814-6090-2017-17-1-2-10-20
  49. Spolsky C, Uzzell T. Natural interspecies transfer of mitochondrial DNA in amphibians. PNAS. 1984;81(18):5802–5805. doi: 10.1073/pnas.81.18.5802
  50. Plötner J, Uzzell T, Beerli P, et al. Widespread unidirectional transfer of mitochondrial DNA: a case in western Palaearctic water frogs. J Evol Biol. 2008;21(3):668–681. doi: 10.1111/j.1420-9101.2008.01527.x
  51. Ivanov AYu, Ruchin AB, Fayzulin AI. The first record of natural transfer of mitochondrial DNA from Pelophylax cf. bedriagae into P. lessonae (amphibia, anura). Nature Conservation Research. 2019;4(2):125–128. (In Russ.) doi: 10.24189/ncr.2019.020
  52. Degtyar’ AV, Grigor’eva OI, Tatarintsev RYu. Ehkologiya Belogor’ya v tsifrakh: monografiya. Belgorod: KONSTANTA, 2016. 122 p. (In Russ.)
  53. Bol’shakov SYu, Vakulenko AG, Golub VB, et al. Krasnaya kniga Belgorodskoi oblasti. Redkie i ischezayushchie rasteniya, lishainiki, griby i zhivotnye. 2-e ofitsial’noe izdanie. Yu.A. Prisnyi, editor. Belgorod: BeLGU, 2019. 600 p. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Collection points. The numbering corresponds to Table 1

Download (624KB)
3. Fig. 2. Fragment of an electrophoregram of multiplex PCR of genes. Row No. 1: SAI-1 YADNA. Wells 1, 4 — Pelophylax cf. bedriagae (the “eastern” form of the marsh frog); 2, 3, 14, 17 — P. ridibundus (the “western” form of the marsh frog); 5, 7, 13, 15, 16, 18 — P. esculentus (parent species P. lessonae and P. ridibundus, “western” form); 8 — P. esculentus (parent species P. lessonae and P. cf. bedriagae, “eastern” form); 10 — hybrid form of P. ridibundus and P. cf. bedriagae; 11 — DNA length marker 50 + bp; 12 — Pelophylax lessonae (pond frog). Row No. 2: mtDNA COI. Wells 1–4, 6–10, 12–18 — haplotypes of P. ridibundus; 5 — haplotype of P. cf. bedriagae; 11 — is a marker of DNA lengths of 50 + bp

Download (278KB)
4. Fig. 3. Dried-up reservoir, Krasnogvardeysky District, Belgorod Region

Download (707KB)
5. Fig. 4. Lake Bannoye, point No. 11 “Grafovka”

Download (443KB)

Copyright (c) 2022 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies