Chronic dust bronchitis: composition of the sputum bacterial microbiome and its association with chromosome damage in blood lymphocytes

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Recent studies show that the bacterial microbiome of the respiratory tract can influence the development of a number of diseases of the human respiratory system. Changes in the composition of the microbiome in patients are associated with dysbiosis, and in addition, many bacteria have a genotoxic potential and can directly or indirectly damage the genome in the cells of the host organism.

AIM: The aim of the study was to analyze the composition of the sputum microbiome and its relationship with chromosome damage in the blood leukocytes of patients with chronic dust bronchitis (CDB).

MATERIALS AND METHODS: The taxonomic composition of the sputum microbiome of 22 patients with CKD and 22 sputum donors from the control group was studied using next-generation sequencing (NGS) technology of 16S rRNA of bacterial genes. At the same time, the basic frequencies of chromosomal aberrations and micronuclei were determined in blood leukocytes.

RESULTS: The sputum microbiome of chronic dust bronchitis patients had a significant reduction in alpha and beta diversity parameters compared to healthy study participants. In addition, an increase in the relative abundance of the genus Streptococcus (29.97 ± 3.03 vs. 18.78 ± 2.47; p = 0.003) was found in the sputum of CP patients compared with the control. Thus, the results of metagenome sequencing indicate a common dysbiotic process with a predominance of one dominant genus of bacteria in this pulmonary pathology. The results of cytogenetic analysis of blood leukocytes showed a significant increase in the proportion of aberrant metaphases in CKD patients compared with healthy donors (3.41% vs. 1.84%; p < 0.01) and the absence of significant differences in frequency leukocytes with micronuclei between the compared groups (1.28% vs. 1.11%). Correlation analysis revealed the presence of significant direct relationships between the frequency of aberrant metaphases and the percentage of representatives of the genera Bacteroides in the sputum of patients with chronic dust bronchitis (r = 0.471; p = 0.031); Lachnoanaerobaculum (r = 0.446; p = 0.043) and Alloprevotella (r = 0.444; p = 0.044). Further studies should be devoted to the search for possible mechanisms of influence of these bacteria on clastogenic effects in the cells of the host organism.

Full Text

Restricted Access

About the authors

Vladimir G. Druzhinin

Kemerovo State University; Kemerovo State Medical University

Author for correspondence.
Email: druzhinin_vladim@mail.ru
ORCID iD: 0000-0002-5534-2062
SPIN-code: 6277-4704
Scopus Author ID: 7007062411

Dr. Sci. (Biol.), Professor, Professor of the Department of Genetics and Fundamental Medicine

Russian Federation, Kemerovo; Kemerovo

Elizaveta D. Baranova

Kemerovo State University

Email: laveivana@mail.ru
ORCID iD: 0000-0001-9503-8500
SPIN-code: 9000-9016

Junior Research Associate, Science and Innovation Department

Russian Federation, Kemerovo

Pavel S. Demenkov

Novosibirsk State University

Email: demps@bionet.nsc.ru
SPIN-code: 1172-7270

Cand. Sci. (Engineering), Associate Professor of the Department of Discrete Mathematics and Informatics

Russian Federation, Novosibirsk

Lyudmila V. Matskova

Immanuel Kant Baltic Federal University; Karolinska Institutet

Email: liudmila.matskova@ki.se
ORCID iD: 0000-0002-3174-1560
SPIN-code: 4756-7437
Scopus Author ID: 6507748788

Cand. Sci. (Biol.), Professor-Rresearcher, Microbiology and Biotechnology Unit of School of Life Science

Russian Federation, Kaliningrad; Stockholm

Snezhana A. Paradnikova

Kemerovo State University

Email: bird.doctor@inbox.ru

Student, Department of Genetics and Fundamental Medicine

Russian Federation, Kemerovo

Valentin P. Volobaev

Kemerovo State University

Email: volobaev.vp@gmail.com
SPIN-code: 2805-5700

Cand. Sci. (Med.), Senior Research Associate, Department of Genetics and Fundamental Medicine

Russian Federation, Kemerovo

Alexei V. Larionov

Kemerovo State University

Email: alekseylarionov09@gmail.com
SPIN-code: 5360-4410

Cand. Sci. (Med.), Associate Professor of the Department of Genetics and Fundamental Medicine

Russian Federation, Kemerovo

References

  1. Zhdanov VF. Anti-inflammatory treatment of chronic bronchitis. Pulmonologiya. 2002;(5):102–107. (In Russ.)
  2. Fennelley KP, Stulbarg MS. Chronic bronchitis. Pulmonologiya. 1994;(2):6–13. (In Russ.)
  3. Bakirov AB, Mingazova SR, Karimova LK, et al. Risk of dust bronchopulmonary pathology development in workers employed in various economic brunches under impacts exerted by occupational risk factors: clinical and hygienic aspects. Health Risk Analysis. 2017;(3):83–91. (In Russ.) doi: 10.21668/health.risk/2017.3.10
  4. Volobaev VP, Sinitsky MYu, Larionov AV, et al. Modifying influence of occupational inflammatory diseases on the level of chromosome aberrations in coal miners. Mutagenesis. 2016;31(2):225–229. doi: 10.1093/mutage/gev080
  5. Lemercier C. When our genome is targeted by pathogenic bacteria. Cell Mol Life Sci. 2015;72(14):2665–2676. doi: 10.1007/s00018-015-1900-8
  6. Druzhinin VG, Baranova ED, Buslaev VY, et al. Bacterial DNA damage effectors in host cells. Ecological genetics. 2018;16(3):26–36. (In Russ.) doi: 10.17816/ecogen16326-36
  7. Han MK, Huang YJ, Lipuma JJ, et al. Significance of the microbiome in obstructive lung disease. Thorax. 2012;67(5):456–463. doi: 10.1136/thoraxjnl-2011-201183
  8. Sze MA, Dimitriu PA, Hayashi S, et al. The lung tissue microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;185(10):1073–1080. doi: 10.1164/rccm.201111-2075OC
  9. Qi Y-J, Sun X-J, Wang Z, et al. Richness of sputum microbiome in acute exacerbations of eosinophilic chronic obstructive pulmonary disease. Chin Med J (Engl). 2020;133(5):542–551. doi: 10.1097/CM9.0000000000000677
  10. Lin K-W, Li J, Finn PW. Emerging pathways in asthma: Innate and adaptive interactions. Biochim Biophys Acta. 2011;1810(11): 1052–1058. doi: 10.1016/j.bbagen.2011.04.015
  11. Kozik AJ, Huang YJ. The microbiome in asthma: Role in pathogenesis, phenotype, and response to treatment. Ann Allergy Asthma Immunol. 2019;122(3):270–275. doi: 10.1016/j.anai.2018.12.005
  12. Wootton DG, Cox MJ, Gloor GB, et al. A Haemophilus sp. dominates the microbiota of sputum from UK adults with non-severe community acquired pneumonia and chronic lung disease. Sci Rep. 2019;9(1):2388. doi: 10.1038/s41598-018-38090-5
  13. Acosta N, Heirali A, Somayaji R, et al. Sputum microbiota is predictive of long-term clinical outcomes in young adults with cystic fibrosis. Thorax. 2018;73(11):1016–1025. doi: 10.1136/thoraxjnl-2018-211510
  14. Hewitt RJ, Molyneaux PL. The respiratory microbiome in idiopathic pulmonary fibrosis. Ann Transl Med. 2017;5(12):250. doi: 10.21037/atm.2017.01.56
  15. Maddi A, Sabharwal A, Violante T, et al. The microbiome and lung cancer. J Thorac Dis. 2019;11(1):280–291. doi: 10.21037/jtd.2018.12.88
  16. Druzhinin VG, Matskova LV, Demenkov PS, et al. Genetic damage in lymphocytes of lung cancer patients is correlated to the composition of the respiratory tract microbiome. Mutagenesis. 2021;36(2):143–153. doi: 10.1093/mutage/geab004
  17. Hungerford DA. Leukocytes cultured from small inocula of whole blood and the preparation of metaphase chromosomes by treatment with hypotonic KCl. Stain Techn. 1965;40(6):333–338. doi: 10.3109/10520296509116440
  18. Fenech M, Chang WP, Kirsch-Volders M, et al. HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res Genet Toxicol Enviton Mutag. 2003;534(1–2):65–75. doi: 10.1016/s1383-5718(02)00249-8
  19. Druzhinin VG, Baranova ED, Golovina TA, et al. The baseline level of cytogenetic damage in lymphocytes and buccal epitheliocytes of lung cancer patients. Russian Journal of Genetics. 2019;55(10): 1189–1197. (In Russ.) doi: 10.1134/S0016675819100047
  20. Savage JR. Classification and relationships of induced chromosomal structural changes. J Med Genet. 1976;13(2):103–122. doi: 10.1136/jmg.13.2.103
  21. Fenech M. Cytokinesis-block micronucleus cytome assay. Nat Protoc. 2007;2(5):1084–1104. doi: 10.1038/nprot.2007.77
  22. Ingel FI. Perspectives of micronuclear test in human lymphocytes cultivated in cytogenetic block conditions. Part 1: Cell proliferation. Ecological genetics. 2006;4(3):7–19. (In Russ.) doi: 10.17816/ecogen437-19
  23. Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME2. Nat Biotechnol. 2019;37(8):852–857. doi: 10.1038/s41587-019-0209-9
  24. Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71(12):8228–8235. doi: 10.1128/AEM.71.12.8228-8235.2005
  25. Ulker OC, Ustundag A, Duydu Y, et al. Cytogenetic monitoring of coal workers and patients with coal workers’ pneumoconiosis in Turkey. Environ Mol Mutagen. 2008;49(3):232–237. doi: 10.1002/em.20377
  26. Vodicka P, Polivkova Z, Sytarova S, et al. Chromosomal damage in peripheral blood lymphocytes of newly diagnosed cancer patients and healthy controls. Carcinogenesis. 2010;31(7):1238–1241. doi: 10.1093/carcin/bgq056
  27. Vodenkova S, Polivkova Z, Musak L, et al. Structural chromosomal aberrations as potential risk markers in incident cancer patients. Mutagenesis. 2015;30(4):557–563. doi: 10.1093/mutage/gev018
  28. Cottliar AS, Fundia AF, Morán C, et al. Evidence of chromosome instability in chronic pancreatitis. J Exp Clin Cancer Res. 2000;19(4):513–517.
  29. Holland N, Harmatz P, Golden D, et al. Cytogenetic damage in blood lymphocytes and exfoliated epithelial cells of children with inflammatory bowel disease. Pediatr Res. 2007;61(2):209–214. doi: 10.1203/pdr.0b013e31802d77c7
  30. Chao M-R, Rossner P, Haghdoost S, et al. Nucleic acid oxidation in human health and disease. Oxid Med Cell Longev. 2013;2013:368651. doi: 10.1155/2013/368651
  31. Druzhinin VG, Matskova LV, Fucic A. Induction and modulation of genotoxicity by the bacteriome in mammals. Mutat Res Rev Mutat Res. 2018;776:70–77. doi: 10.1016/j.mrrev.2018.04.002
  32. Xu N, Wang L, Li C, et al. (2020) Microbiota dysbiosis in lung cancer: evidence of association and potential mechanisms. Transl Lung Cancer Res. 2020;9(4):1554–1568. doi: 10.21037/tlcr-20-156
  33. Dickson RP, Huffnagle GB. The lung microbiome: new principles for respiratory bacteriology in health and disease. PLOS Pathog. 2015;11(7): e1004923. doi: 10.1371/journal.ppat.1004923
  34. Molyneaux PL, Cox MJ, Willis-Owen SAG, et al. The role of bacteria in the pathogenesis and progression of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2014;190(8):906–913. doi: 10.1164/rccm.201403-0541OC
  35. Han MK, Zhou Y, Murray S, et al. Lung microbiome and disease progression in idiopathic pulmonary fibrosis: an analysis of the COMET study. Lancet Respir Med. 2014;2(7):548–556. doi: 10.1016/S2213-2600(14)70069-4
  36. Cameron SJS, Lewis KE, Huws SA, et al. A pilot study using metagenomic sequencing of the sputum microbiome suggests potential bacterial biomarkers for lung cancer. PLoS One. 2017;12(5): e0177062. doi: 10.1371/journal.pone.0177062
  37. Hosgood HD III, Sapkota AR, Rothman N, et al. The potential role of lung microbiota in lung cancer attributed to household coal burning exposures. Environ Mol Mutagen. 2014;55(8):643–651. doi: 10.1002/em.21878
  38. Bello S, Vengoechea JJ, Ponce-Alonso M, et al. Core microbiota in central lung cancer with streptococcal enrichment as a possible diagnostic marker. Archivos de Bronconeumol. (Engl Ed). 2020;57(11):681–689. doi: 10.1016/j.arbres.2020.05.034
  39. Pragman AA, Kim HB, Reilly CS, et al. The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PLoS One. 2012;7(10): e47305. doi: 10.1371/journal.pone.0047305
  40. Einarsson GG, Comer DM, McIlreavey L, et al. Community dynamics and the lower airway microbiota in stable chronic obstructive pulmonary disease, smokers and healthy non-smokers. Thorax. 2016;71(9):795–803. doi: 10.1136/thoraxjnl-2015-207235
  41. Haldar K, George L, Wang Z, et al. The sputum microbiome is distinct between COPD and health, independent of smoking history. Respir Res. 2020;21(1):183. doi: 10.1186/s12931-020-01448-3
  42. Wang Z, Liu H, Wang F, et al. A refined view of airway microbiome in chronic obstructive pulmonary disease at species and strain-levels. Front Microbiol. 2020;11:1758. doi: 10.3389/fmicb.2020.01758
  43. Sears CL. Enterotoxigenic Bacteroides fragilis: a rogue among symbiotes. Clin Microbiol Rev. 2009;22(2):349–369. doi: 10.1128/CMR.00053-08
  44. Goodwin AC, Destefano Shields CE, Wu S, et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. PNAS. 2011;108(37):15354–15359. doi: 10.1073/pnas.1010203108
  45. Allen J, Rosendahl Huber A, Pleguezuelos-Manzano C, et al. Colon tumors in enterotoxigenic Bacteroides fragilis (ETBF)-colonized mice do not display a unique mutational signature but instead possess host-dependent alterations in the APC gene. Microbiol Spectr. 2022;10(3): e0105522. doi: 10.1128/spectrum.01055-22

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Shannon diversity index of microbiomes in chronic dust bronchitis patients and controls. Kruskal–Wallis test (p = 0.001). Span charts show the quartiles of a distribution; minimum and maximum values are displayed

Download (58KB)
3. Fig. 2. Two-dimensional diagram constructed by the method of principal components analysis demonstrating the phylogenetic diversity of prokaryotic sputum communities in chronic dust bronchitis patients and control subjects

Download (63KB)
4. Fig. 3. Representation of the type Bacteroidetes in the sputum of chronic bronchitis patients, differentiated by the level of chromosomal aberrations in blood lymphocytes

Download (97KB)

Copyright (c) 2022 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies