Sinorhizobium meliloti: chromosomal types and genomic islands

Cover Page

Abstract


Background. Polymorphism analysis was done for the core genome sequences of nodule bacteria of S. meliloti species in order to identify chromosomal types and to evaluate the occurrence of accessory elements (genomic islands) in them.

Materials and methods. Chromosomal studied loci were: betBC (marker M-I) and SMc04407-SMc04881 (marker M-II) both are related to metabolic processes and stress tolerance, and 16S-23S intergenic sequences (marker M-III) to search phylogenetical distance at intraspecies level.

Results. Significant differences between the occurrence of alleles of gene-markers M-I/M-II and MIII were determined between strains related to tested the 5 typical groups and 9 subgroups of strains differing by geographical region/source (nodule, soil) of isolation, as well as by salt tolerance. Four chromosomal types were identified among tested S. meliloti native isolates and a preference occurence of one of the three islands Rm1021 in links with particular chromosomal type was shown. The significant prevalence of strains with particular chromosomal type was shown for S. meliloti populations native to centers of alfalfa diversity at the NE of Caucasus, as well as at NE of Kazakhstan (Aral sea related region), as well as in agrocenoses. Conclusion. It was predicted that strains inherited altered markers M-I/M-II may belong to divergent clonal lines occured in both centers of alfalfa diversity, while strains with altered sequences of all three markers could be a representatives of a new S. meliloti biovar(s), the formation of which is occurred much more intensively at the modern center of the introgressive hybridization of alfalfa at NE of Kazakhstan.


In Progress

Mariia E. Cherkasova

Federal State Budget Scientific Institution All-Russian Research Institute for Agricultural Microbiology

Email: mariiacherkasova@mail.ru
ORCID iD: 0000-0003-1873-9674
SPIN-code: 5341-5736
Scopus Author ID: 57191569585
ResearcherId: C-9626-2017

Russian Federation,  196608, Saint-Petersburg, Pushkin-8, sh. Podbelskogo 3

Research Engineer, Laboratory of Genetics and Breeding of Microorganisms

Victoria S. Muntyan

Federal State Budget Scientific Institution All-Russian Research Institute for Agricultural Microbiology

Email: vucovar@yandex.ru
ORCID iD: 0000-0002-1979-0853
SPIN-code: 7138-6763
Scopus Author ID: 56149831800
ResearcherId: K-5378-2013

Russian Federation, 196608, Saint-Petersburg, Pushkin-8, sh. Podbelskogo 3

Junior Researcher, Laboratory of Genetics and Breeding of Microorganisms

Alla S. Saksaganskaia

Federal State Budget Scientific Institution All-Russian Research Institute for Agricultural Microbiology

Email: allasaksaganskaya@mail.ru
ORCID iD: 0000-0002-8547-4904
SPIN-code: 5832-1676
Scopus Author ID: 57196477431
ResearcherId: H-8830-2017

Russian Federation, 196608, Saint-Petersburg, Pushkin-8, sh. Podbelskogo 3

Research Engineer, Laboratory of Genetics and Breeding of Microorganisms

Boris V. Simarov

Federal State Budget Scientific Institution All-Russian Research Institute for Agricultural Microbiology

Email: genet@yandex.ru
ORCID iD: 0000-0002-6893-557X
SPIN-code: 6859-1141
Scopus Author ID: 7003687173
ResearcherId: H-8898-2017

Russian Federation, 196608, Saint-Petersburg, Pushkin-8, sh. Podbelskogo 3

Doctor of Biology, Professor, Principal Researcher, Laboratory of Genetics and Breeding of Microorganisms

Marina L. Roumiantseva

Federal State Budget Scientific Institution All-Russian Research Institute for Agricultural Microbiology

Author for correspondence.
Email: mroumiantseva@yandex.ru
ORCID iD: 0000-0001-5582-6473
SPIN-code: 5470-9527
Scopus Author ID: 6506571716
ResearcherId: G-3628-2016
196608, Saint-Petersburg, Pushkin-8, sh. Podbelskogo 3

PhD (Candidate of Biology), Leading Researcher, Head of the Laboratory, Laboratory of Genetics and Breeding of Microorganisms

  1. Young JP, Crossman LC, Johnston AW, et al. The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol. 2006;7(4):R34. https://doi.org/10. 1186/gb-2006-7-4-r34.
  2. Шестаков С.В. Как происходит и чем лимитируется горизонтальный перенос генов у бактерий // Экологическая генетика. – 2007. – Т. 5. – № 2. – С. 12–24. [Shestakov SV. How does the horizontal gene transfer in bacteria occur and than is it tied up. Ecological genetics. 2007;5(2):12-24. (In Russ.)]. https://doi.org/10. 17816/ecogen5212-24.
  3. Равин Н.В., Шестаков С.В. Геном прокариот // Вавиловский журнал генетики и селекции. – 2013. – Т. 17. – № 4–2. – С. 972–984. [Ravin NV, Shestakov SV. The genome of prokaryotes. Vavilov journal of genetics and breeding. 2013;17(4-2):972-984. (In Russ.)]
  4. Mauchline TH, Hayat R, Roberts R, et al. Assessment of core and accessory genetic variation in Rhizobium leguminosarum symbiovar trifolii strains from diverse locations and host plants using PCR-based methods. Lett Appl Microbiol. 2014;59(2):238-246. https://doi.org/10. 1111/lam.12270.
  5. Тихонович И.А., Андронов Е.Е., Борисов А.Ю., и др. Принцип дополнительности геномов в расширении адаптационного потенциала растений // Генетика. – 2015. – Т. 51. – № 9. – С. 973–990. [Tikhonovich IA, Andronov EE, Borisov AY, et al. The principle of genome complementarity in the enhancement of plant adaptive capacities. Russian Journal of Genetics. 2015;51(9):831-846. (In Russ.)]. https://doi.org/10. 7868/S001667581509012X.
  6. Chidebe IN, Jaiswal SK, Dakora FD. Distribution and phylogeny of microsymbionts associated with cowpea (Vigna unguiculata) nodulation in three agroecological regions of Mozambique. Appl Environ Microbiol. 2018;84(2). pii:e01712-17. https://doi.org/10. 1128/AEM.01712-17.
  7. Jiao J, Ni M, Zhang B, et al. Coordinated regulation of core and accessory genes in the multipartite genome of Sinorhizobium fredii. PLoS Genet. 2018;14(5):e1007428. https://doi.org/10. 1371/journal.pgen.1007428.
  8. Boussau B, Karlberg EO, Frank AC, et al. Computational inference of scenarios for alpha-proteobacterial genome evolution. Proc Natl Acad Sci USA. 2004;101(26):9722-9727. https://doi.org/10. 1073/pnas.0400975101.
  9. Wang X, Liu D, Luo Y, et al. Comparative analysis of Rhizobial chromosomes and plasmids to estimate their evolutionary relationships. Plasmid. 2018;96-97:13-24. https://doi.org/10. 1016/j.plasmid.2018. 03. 001.
  10. Young JP, Wexler M. Sym plasmid and chromosomal genotypes are correlated in field populations of Rhizobium leguminosarum. J Gen Microbiol. 1988;134:2731-9. https://doi.org/10. 1099/00221287-134-10-2731.
  11. Stefan A, van Cauwenberghe J, Rosu CM, et al. Genetic diversity and structure of Rhizobium leguminosarum populations associated with clover plants are influenced by local environmental variables. Syst Appl Microbiol. 2018;41(3):251-259. https://doi.org/10. 1016/j.syapm.2018. 01. 007.
  12. Van Berkum P, Badri Y, Elia P, et al. Chromosomal and symbiotic relationships of rhizobia nodulating Medicago truncatula and M. laciniata. Appl Environ Microbiol. 2007;73(23):7597-7604. https://doi.org/10. 1128/AEM.01046-07.
  13. Проворов Н.А., Андронов Е.Е., Онищук О.П., и др. Генетическая структура интродуцированных и местных популяций Rhizobium leguminosarum в системах «растения–почва» // Микробиология. – 2012. – Т. 81. – № 2. – С. 244–253. [Provorov NA, Andronov EE, Onishchuk OP, et al. Genetic structure of the introduced and local populations of Rhizobioum leguminosarum in plant-soil systems. Microbiology. 2012;81(2):224-232. (In Russ.)]
  14. Laguerre G, Mavingui P, Allard M-R, et al. Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars. Appl Environ Microbiol. 1996;62(6):2029-2036.
  15. Guo XW, Zhang XX, Zhang ZM, Li FD. Characterization of Astragalus sinicus rhizobia by restriction fragment length polymorphism analysis of chromosomal and nodulation genes regions. Curr Microbiol. 1999;39(6):358-364. https://doi.org/10. 1007/s002849900472.
  16. Efrose RC, Rosu CM, Stedel C, et al. Molecular diversity and phylogeny of indigenous Rhizobium leguminosarum strains associated with Trifolium repens plants in Romania. Antonie Van Leeuwenhoek. 2018;111(1):135-153. https://doi.org/10. 1007/s10482-017-0934-3.
  17. Galperin MY, Makarova KS, Wolf YI, Koonin EV. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 2015;43:D261-269. https://doi.org/10. 1093/nar/gku1223.
  18. Zhang YM, Tian CF, Sui XH, et al. Robust markers reflecting phylogeny and taxonomy of Rhizobia. PLoS One. 2012;7(9):e44936. https://doi.org/10. 1371/journal.pone.0044936.
  19. Guo HJ, Wang ET, Zhang XX, et al. Replicon-dependent differentiation of symbiosis-related genes in Sinorhizobium strains nodulating Glycine max. Appl Environ Microbiol. 2014;80(4):1245-1255. https://doi.org/10. 1128/AEM.03037-13.
  20. Alexandre A, Laranjo M, Young JP, Oliveira S. dnaJ is a useful phylogenetic marker for alphaproteobacteria. Int J Syst Evol Microbiol. 2008;58(12):2839-2849. https://doi.org/10. 1099/ijs.0. 2008/001636-0.
  21. Biondi EG, Pilli E, Giuntini E, et al. Genetic relationship of Sinorhizobium meliloti and Sinorhizobium medicae strains isolated from Caucasian region. FEMS Microbiol Lett. 2003;220(2):207-213. https://doi.org/10. 1016/S0378-1097(03)00098-3.
  22. Escobar-Páramo P, Sabbagh A, Darlu P, et al. Decreasing the effects of horizontal gene transfer on bacterial phylogeny: the Escherichia coli case study. Mol Phylogenet Evol. 2004;30(1):243-250. https://doi.org/10. 1016/S1055-7903(03)00181-7.
  23. Matzke NJ. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst Biol. 2014;63(6):951-970. https://doi.org/10. 1093/sysbio/syu056.
  24. Dresler-Nurmi A, Fewer DP, Räsänen LA, Lindström K. The diversity and evolution of Rhizobia. In: Pawlowski K. (eds). Prokaryotic symbionts in plants. Springer-Verlag; 2009. P. 3-41.
  25. Tounsi-Hammami S, Le Roux C, Dhane-Fitouri S, et al. Genetic diversity of rhizobia associated with root nodules of white lupin (Lupinus albus L.) in Tunisian calcareous soils. Syst Appl Microbiol. 2019;42(4):448-456. https://doi.org/10. 1016/j.syapm.2019. 04. 002.
  26. Escobar-Páramo P, Clermont O, Blanc-Potard AB, et al. Specific genetic background is required for acquisition and expression of virulence factors in Escherichia coli. Mol Biol Evol. 2004;21(6):1085-1094. https://doi.org/10. 1093/molbev/msh118.
  27. Проворов Н.А. Симбиогенез как эволюция генетических систем открытого типа // Генетика. – 2018. – Т. 54. – № 8. – С. 879–889. [Provorov NA. Symbiogenesis as evolution of open genetic systems. Russian Journal of Genetics. 2018;54(8):888-896. (In Russ.)]. https://doi.org/10. 1134/S0016675818080106.
  28. Румянцева М.Л., Мунтян В.С., Черкасова М.Е., и др. Геномные острова штамма Sinorhizobium meliloti Rm1021 — азотфиксирующего симбионта люцерны // Генетика. – 2018. – Т. 54. – № 7. – С. 745-756. [Roumiantseva ML, Muntyan VS, Cherkasova ME, et al. Genomic islands in Sinorhizobium meliloti Rm1021, nitrogen-fixing symbiont of alfalfa. Russian Journal of Genetics. 2018;54(7):759-769. (In Russ.)]. https://doi.org/10. 1134/S0016675818070135.
  29. Barcellos FG, Menna P, da Silva Batista JS, Hungria M. Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian Savannah soil. Appl Environ Microbiol. 2007;73(8):2635-2643. https://doi.org/10. 1128/AEM.01823-06.
  30. Wielbo J. Rhizobial communities in symbiosis with legumes: genetic diversity, competition and interactions with host plants. Cent Eur J Biol. 2012;7(3):363-372. https://doi.org/10. 2478/s11535-012-0032-5.
  31. Румянцева М.Л., Мунтян В.С., Черкасова М.Е., и др. Сравнительный анализ геномных характеристик у референтных штаммов Sinorhizobium meliloti — симбионтов люцерны // Сельскохозяйственная биология. – 2017. – Т. 52. – № 5. – С. 928-939. [Roumiantseva ML, Muntyan VS, Cherkasova ME, et al. A comparative analysis of genomic characters of reference Sinorhizobium meliloti strains, the alfalfa symbionts. Agricultural Biology. 2017;52(5):928-939. (In Russ.)]. https://doi.org/10. 15389/agrobiology.2017. 5. 928rus.
  32. Che D, Hasan MS, Chen B. Identifying pathogenicity islands in bacterial pathogenomics using computational approaches. Pathogens. 2014;3(1):36-56. https://doi.org/10. 3390/pathogens3010036.
  33. Krogh TJ, Møller-Jensen J, Kaleta C. Impact of chromosomal architecture on the function and evolution of bacterial genomes. Front Microbiol. 2018;9:2019. https://doi.org/10. 3389/fmicb.2018. 02019.
  34. Dobrindt U, Hochhut B, Hentschel U, Hacker J. Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol. 2004;2(5):414-424. https://doi.org/10. 1038/nrmicro884.
  35. Juhas M, van der Meer JR, Gaillard M, et al. Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev. 2009;33(2):376-393. https://doi.org/10. 1111/j.1574-6976. 2008. 00136. x.
  36. Мунтян В.С., Черкасова М.Е., Андронов Е.Е., и др. Встречаемость островов в геномах природных штаммов Sinorhizobium meliloti // Генетика. – 2016. – Т. 52. – № 10. – С. 1126–1133. [Muntyan VS, Cherkasova ME, Andronov EE, et al. Occurrence of islands in genomes of Sinorhizobium meliloti native isolates. Russian Journal of Genetics. 2016;52(10):1015-1022. (In Russ.)]. https://doi.org/10. 7868/S0016675816080105.
  37. Hudson CM, Lau BY, Williams KP. Islander: a database of precisely mapped genomic islands in tRNA and tmRNA genes. Nucleic Acids Res. 2015;43 (Database issue):D48-53. https://doi.org/10. 1093/nar/gku1072.
  38. Румянцева М.Л., Симаров Б.В., Онищук О.П., и др. Биологическое разнообразие клубеньковых бактерий в экосистемах и агроценозах. Теоретические основы и методы / Под ред. М.Л. Румянцевой, Б.В. Симарова. – СПб.; Пушкин: Инновационный центр защиты растений, 2011. – 104 с. [Roumiantseva ML, Simarov BV, Onishchuk OP, et al. Biologicheskoe raznoobrazie kluben’kovykh bakterii v ekosistemakkh i agrotsenozakh. Teoreticheskie osnovy i metody. Ed. by M.L. Rumyantseva, B.V. Simarov. Saint Petersburg; Pushkin: Innovatsionnyi tsentr zashchity rastenii; 2011. 104 p. (In Russ.)]
  39. Румянцева М.Л., Мунтян В.С., Менгони А., Симаров Б.В. ITS-полиморфизм солеустойчивых и солечувствительных природных штаммов Sinorhizobium meliloti — симбионтов люцерны, донника и пажитника // Генетика. – 2014. – Т. 50. – № 4. – С. 400–412. [Roumiantseva ML, Muntian VS, Mengoni A, Simarov BV. ITS-polymorphism of salt-tolerant and salt-sensitive native isolates of Sinorhizoblum meliloti – symbionts of alfalfa, clover and fenugreek plants. Russian Journal of Genetics. 2014;50(4):348-359. (In Russ.)]. https://doi.org/10. 7868/S0016675814040109.
  40. Румянцева М.Л., Мунтян В.С. Клубеньковые бактерии Sinorhizobium meliloti: солеустойчивость и ее генетическая детерминированность // Микробиология. – 2015. – Т. 84. – № 3. – С. 263–280. [Roumiantseva ML, Muntyan VS. Root nodule bacteria Sinorhizobium meliloti: tolerance to salinity and bacterial genetic determinants. Microbiology. 2015;84(3):303-318. (In Russ.)]. https://doi.org/10. 7868/S0026365615030179.
  41. Демидёнок О.И., Гончаренко А.В. Системы токсин-антитоксин бактерий и перспективы их использования в медицине (обзор) // Прикладная биохимия и микробиология. – 2013. – Т. 49. – № 6. – С. 539–546. [Demidenok OI, Goncharenko AV. Bacterial toxin-antitoxin systems and perspectives for their application in medicine. Applied Biochemistry and Microbiology. 2013;49(6):535-541. (In Russ.)]. https://doi.org/10. 7868/S055510991306007X.
  42. Rannala B, Qiu W-G, Dykhuizen DE. Methods for estimating gene frequencies and detecting selection in bacterial populations. Genetics. 2000;155(2):499-508.
  43. Rasmussen HB. Restriction fragment length polymorphism analysis of PCR-amplified fragments (PCR-RFLP) and gel electrophoresis – valuable tool for genotyping and genetic fingerprinting. Gel Electrophoresis – Principles and Basics. 2012. P. 315-334. https://doi.org/10. 5772/37724.
  44. Румянцева М.Л., Белова В.С., Онищук О.П., и др. Полиморфизм bet-генов у штаммов Sinorhizobium meliloti из генцентров люцерны // Сельскохозяйственная биология. – 2011. – Т. 46. – № 3. – С. 48–54. [Roumiantseva ML, Belova VS, Onishchouk OP, et al. Polymorphism of bet-genes among Sinorhizobium meliloti isolates native to gene centers of alfalfa. Agricultural Biology. 2011;46(3):48-54. (In Russ.)]
  45. Маниатис Т., Фрич Э., Сэмбрук Д. Методы генетической инженерии. Молекулярное клонирование / Пер. с англ. под ред. А.А. Баева, К.Г. Скрябина. – М.: Мир, 1984. – 479 с. [Maniatis T, Fritch EE, Sambrook J. Molecular cloning: a laboratory manual. Translated from English ed. by A.A. Baev, K.G. Skryabin. Moscow: Mir; 1984. 479 р. (In Russ.)]
  46. Hammer O, Harper DAT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica. 2001;4(1):1-9.
  47. Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 1978;89(3):583-590.
  48. Excoffier L, Lischer HE. Arlequin suite ver 3. 5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10(3):564-567. https://doi.org/10. 1111/j.1755-0998. 2010. 02847. x.
  49. Проворов Н.А., Андронов Е.Е., Онищук О.П. Формы естественного отбора, определяющего геномную эволюцию клубеньковых бактерий // Генетика. – 2017. – Т. 53. – № 4. – С. 401–410. [Provorov NA, Andronov EE, Onishchuk OP. Forms of natural selection controlling the genomic evolution in nodule bacteria. Russian Journal of Genetics. 2017;53(4):411-419. (In Russ.)]. https://doi.org/10. 7868/S0016675817040129.
  50. Levin BR. Frequency dependent selection in bacterial populations. Philos Trans R Soc Lond B Biol Sci. 1988;319(1196):459-472. https://doi.org/10. 1098/rstb.1988. 0059.
  51. Румянцева М.Л., Саксаганская А.С., Мунтян В.С., и др. Структурный полиморфизм генов вирулентности и солеустойчивости Sinorhizobium meliloti // Генетика. – 2018. – Т. 54. – № 5. – С. 524–534. [Roumiantseva ML, Saksaganskaia AS, Muntyan VS, et al. Structural polymorphism of Sinorhizobium meliloti genes related to virulence and salt tolerance. Russian Journal of Genetics. 2018;54(5):525-535. (In Russ.)]. https://doi.org/10. 7868/S001667581805003X.
  52. Румянцева М.Л., Онищук О.П., Белова В.С., и др. Полиморфизм штаммов Sinorhizobium meliloti, выделенных в центрах разнообразия люцерны, различающихся по почвенно-климатическим условиям // Экологическая генетика. – 2009. – Т. 7. – № 2. – С. 19–25. [Roumiantseva ML, Onischuk OP, Belova VS, et al. Polymorphism among Sinorhizobium meliloti isolates native to the origins of alfalfa diversity differed in soil-climate characteristics. Ecological genetics. 2009;7(2):19-25. (In Russ.)]. https://doi.org/10. 17816/ecogen7219-25.
  53. Palmer KM, Young JP. Higher diversity of Rhizobium leguminosarum biovar viciae populations in arable soils than in grass soils. Appl Environ Microbiol. 2000;66(6):2445-2450. https://doi.org/10. 1128/AEM.66. 6. 2445-2450. 2000.

Supplementary files

There are no supplementary files to display.

Views

Abstract - 134

PDF (Russian) - 73

PDF (English) - 23

Cited-By


PlumX


Copyright (c) 2019 Cherkasova M.E., Muntyan V.S., Saksaganskaia A.S., Simarov B.V., Roumiantseva M.L.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies