Molecular screening of squash and patisson squash collection samples using markers of the Pm-0 gene, which controls resistance to powdery mildew

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Powdery mildew (PM) is one of the most harmful diseases of cucurbits. Modern commercial varieties of squash Cucurbita pepo L. var. giraumonas Duch and patisson C. pepo var. melopepo L. received powdery mildew resistance genes from wild species. The Pm-0 resistance gene belongs to the linkage group 10; two CAPS markers were developed for its mapping [15]. The main intragenic marker NBS_S9_1495924/HaeIII is localized in the NBS-LRR region, the additional marker S9_1539675/MspI shows complete co-segregation with resistance to PM [15]. In the present study, these markers were used for molecular screening of an experimental set of squash and patisson samples (differ in resistance to powdery mildew) from the VIR gene bank collection and perspective breeding lines of the Krymsk Experiment Breeding Station – branch of VIR. In total, 80 samples were investigated. Samples, carrying fragments of both CAPS markers (17) and fragments of only one marker (31) were found. Presence of two markers of the Pm-0 gene (NBS_S9_1495924/HaeIII и S9_1539675/MspI) has the strong correlation with resistance to PM (r = 0.837).

For three powdery mildew-resistant samples, which has demonstrated presence of both markers of the Pm-0 gene, additional analysis of individual plants was done. Resistant plants with Pm-0 gene markers were self-pollinated to create resistant lines. Thus, molecular screening allowed to preserve the valuable trait of resistance during maintaining of the squash collection samples.

Full Text

Restricted Access

About the authors

Fedor A. Berensen

N.I. Vavilov All-Russian Institute of Plant Genetic Resources

Author for correspondence.
Email: fberensen@gmail.com
ORCID iD: 0000-0002-0492-2024
SPIN-code: 1497-7502

research associate

Russian Federation, Saint Petersburg

Tatiana M. Piskunova

N.I. Vavilov All-Russian Institute of Plant Genetic Resources

Email: tmpiskunova@yandex.ru
ORCID iD: 0000-0002-9267-6619
SPIN-code: 6122-0333

Cand. Sci. (Agriculture), leading research associate

Russian Federation, Saint Petersburg

Semyon V. Kuzmin

Krymsk Experiment Breeding Station — N.I. Vavilov All-Russian Institute of Plant Genetic Resources

Email: sem290@mail.ru
SPIN-code: 9137-2253

Cand. Sci. (Agriculture), senior research associate

Russian Federation, Krymsk

Andrey F. Moskalu

N.I. Vavilov All-Russian Institute of Plant Genetic Resources

Email: andromos2015@yandex.ru

junior research associate

Russian Federation, Saint Petersburg

Olga Y. Antonova

N.I. Vavilov All-Russian Institute of Plant Genetic Resources

Email: olgaant326@mail.ru
ORCID iD: 0000-0001-8334-8069
SPIN-code: 9255-6449
Scopus Author ID: 23391684100

Cand. Sci. (Biol.)

Russian Federation, Saint Petersburg

Anna M. Artemyeva

N.I. Vavilov All-Russian Institute of Plant Genetic Resources

Email: akme11@yandex.ru
ORCID iD: 0000-0002-6551-5203
SPIN-code: 8776-7367
Scopus Author ID: 14014607500

Cand. Sci. (Agriculture), leading research associate

Russian Federation, Saint Petersburg

References

  1. Piskunova TM, Muteva ZF. The VIR collection — a source of initial breeding material for the perspective directions of breeding of a vegetable marrow and pumpkin. Vegetable crops of Russia. 2016;3:18–23. (In Russ.) doi: 10.18619/2072-9146-2016-3-18-23
  2. Aliu S, Rusinovci I, Fetahu S, et al. Nutritive and Mineral composition in a collection of Cucurbita pepo L. grown in Kosova. Food and Nutrition Sciences. 2012;3(5):634–638. doi: 10.4236/fns.2012.35087
  3. Palamarmuk II. Effectiveness of patisson (Сucurbita pepo var. melopepo L.) for different terms of crops in the conditions of forest step. Bulletin of Uman National University of Horticulture. 2019;1:25–28. doi: 10.31395/2310-0478-2019-1-25-28
  4. Varivoda OP, Maslennikova ES. Assessment and selection of source material for creating melon hybrids with integrated resistance to anthracnose and powdery mildew. Vegetable Crops of Russia. 2019;5:20–24. (In Russ.) doi: 10.18619/2072-9146-2019-5-20-24
  5. Lebeda A, Krístkova E, Sedlakova B, et al. New concept for determination and denomination of pathotypes and races of cucurbit powdery mildew. In: Proceedings of Cucurbitaceae 2008, IX EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae. Pitrat M. ed. 2008. P. 125–134.
  6. Lebeda A, Sedlakova B, Krístkova E, Vysoudil M. Long-lasting changes in the species spectrum of cucurbit powdery mildew in the Czech Republic — influence of climate changes or random effect. Plant Protection Science. 2009;45(10):41–47. doi: 10.17221/2807-PPS
  7. Treivas LYu, Bolezni i vrediteli ovoshchnykh kultur: atlas-opredelitel. Moscow: Fiton XXI; 2019. 192 p. (In Russ).
  8. Ermolaeva LV, Khmelinskaya TV, Piskunova TM, et al. Ustoichivost ovoshchnykh kul’tur k boleznyam. In: Realizatsiya metodologicheskikh i metodicheskikh idei professora B.A. Dospekhova v sovershenstvovanii adaptivno-landshaftnykh sistem zemledeliya. Moscow; Suzdal, 2017. P. 91–95. (In Russ.)
  9. Abbaskulieva SG. Muchnistaya rosa tykvennykh (Cucurbitaceae) rastenii i mery borby s nei // Uspekhi sovremennoi nauki i obrazovaniya. 2017;2:(3):85–88. (In Russ.)
  10. Medvedev AV, Kuzmin SV, Bukharov AF. Squash selection for powdery mildew resistance in the south of Russia. Agrarian Science. 2019;(3):91–95. (In Russ.) doi: 10.32634/0869-8155-2019-326-3-91-95
  11. Medvedev AV. Selektsiya ogurtsov na ustoichivost k muchnistoi rose [dissertation abstract]. Leningrad; 1974. 20 p. (In Russ.)
  12. Peresypkin VF. Sel’skokhozyaistvennaya fitopatologiya. Moscow; 1989. 480 p. (In Russ.)
  13. Expert Analytical Center for Agribusiness. [Internet]. Available from: https://ab-centre.ru/news/kabachki-ploschadi-i-sbory-po-regionam-rf-v-2007-2021-gg. [cited 2022 August 29] (In Russ.)
  14. Medvedev AV, Medvedevа NI, Kuzmin SV. Against cucumber mosaic virus No. 1. Potato and Vegetables. 2016;9:39–40. (In Russ.)
  15. Vielba-Fernandez A, Polonio A., Ruiz-Jimenez L, et al. Fungicide resistance in powdery mildew fungi. Microorganisms. 2020;8(9):1431. doi: 10.3390/microorganisms8091431
  16. Holdsworth W, LaPlant K, Bell D, et al. Cultivar-based introgression mapping reveals wild species-derived Pm-0, the major powdery mildew resistance locus in squash. PLoS ONE. 2016;11(12): e0167715. doi: 10.1371/journal.pone.0167715
  17. Guo WL, Chen BH, Guo YY, et al. Improved powdery mildew resistance of transgenic Nicotiana benthamiana overexpressing the Cucurbita moschata CmSGT1 Gene. Frontiers in Plant Science. 2019;10:955. doi: 10.3389/fpls.2019.00955
  18. Sowell F., Corley W. Resistance of Cucurbita plant introductions to powdery mildew. HortScience. 1973;8(6):492–493. doi: 10.21273/HORTSCI.8.6.492
  19. Lebeda A, Kristova E. Genotypic variation in field resistance of Cucurbita pepo cultivars to powdery mildew (Erysiphe cichoracearum). Genetic Resources and Crop Evolution. 1996;43(1):79–84. doi: 10.1007/BF00126944
  20. Cohen R, Hanan A, Paris H. Single-gene resistance to powdery mildew in zucchini squash (Cucurbita pepo). Euphytica. 2003;130(3):433–441. doi: 10.1023/A:1023082612420
  21. Contin ME, Munger HM. Inheritance of powdery mildew resistance in interspecific crosses with Cucurbita martinezii. HortScience. 1977;12(4):397.
  22. Jahn M, Munger H, McCreight J. Breeding cucurbit crops for powdery mildew resistance. In: The powdery mildews, a comprehensive treatise. Ed. by R.R. Belanger, W.R. Bushnell, A.J. Dik, T.L.W. Carver. Amer Phytopathol Soc., St. Paul, Minn. 2002. P. 239–248.
  23. Rhodes AM. Inheritance of powdery mildew resistance in the genus Cucurbita. The Plant Disease Reporter. 1964;(48):54–55.
  24. Paris HS, Cohen S. Oligogenic inheritance for resistance to zucchini yellow mosaic virus in Cucurbita pepo. Annals of Applied Biology. 2000;(136):209–214.
  25. Sazonova LV, Vlasova EG, Krivchenko VI, et al. Izuchenie i podderzhanie kollektsii ovoshchnykh rastenii: (metodicheskie ukazaniya). Leningrad: VIR; 1981. 192 p. (In Russ.)
  26. Kuzmin SV, Medvedev AV, Bukharov AF. Production of hybrid seeds of the vegetable marrow at free pollination. Vegetable Crops of Russia. 2018;(1):32–36. (In Russ.) doi: 10.18619/2072-9146-2018-1-32-36
  27. Cornell Vegetables. Disease-resistant cucurbit varieties [Internet]. Available from: https://www.vegetables.cornell.edu/pest-management/disease-factsheets/disease-resistant-vegetable-varieties/disease-resistant-cucurbit-varieties [cited 2022 Oct 15].
  28. Piskunova TM. Studying the global collection of pumpkin, marrow, pattypan and crookneck squashes and its maintenance in viable conditions: guidelines. Saint Petersburg: VIR; 2020. 48 p. (In Russ.) doi: 10.30901/978-5-907145-21-4
  29. Antonova OYu, Klimenko NS, Rybakov DA, et al. SSR analysis of modern Russian potato varieties using DNA samples of nomenclatural standards. Plant Biotechnology and Breeding. 2020;3(4):77–96. (In Russ.) doi: 10.30901/2658-6266-2020-4-o2
  30. Inglis PW, Pappas MdCR, Resende LV, Grattapaglia D. Fast and inexpensive protocols for consistent extraction of high quality DNA and RNA from challenging plant and fungal samples for high-throughput SNP genotyping and sequencing applications. PLoS ONE. 2018;13(10): e0206085. doi: 10.1371/journal.pone.0206085
  31. Ivanter EV, Korosov AV. Vvedenie v kolichestvennuyu biologiyu. Petrozavodsk: PetrGU; 2011. 302 p. (In Russ.)
  32. Paris HS, Padley LD. Gene List for Cucurbita species. Cucurbit Genet Coop Rep. 2014;(37):1–14.
  33. Ogden AB. Utilization of exotic germplasm in a Cucurbita breeding program [Dissertation]. University of New Hampshire: Durham; 2021.
  34. Margaritopoulou T, Kizis D, Kotopoulis D, et al. Corrigendum to: Enriched HeK4me3 marks at Pm-0 resistance-related genes prime courgette against Podosphaera xanthii. Plant Physiol. 2022;188(1):576–592. doi: 10.1093/plphys/kiab502
  35. Totsky IV, Rozanova IV, Safonova AD, et al. Geno-typing of potato samples from the GenAgro ICG SB RAS collection using DNA markers of genes conferring resistance to phytopathogens. Vavilov Journal of Genetics and Breeding 2021;25(6):677–686. doi: 10.18699/VJ21.077
  36. Klimenko NS, Antonova OY, Kostina LI, et al. Marker-associated selection of russian potato varieties with using markers of resistance genes to the golden potato cyst nematode (pathotype RO1). Proceedings on Applied Botany, Genetics and Breeding. 2017;178(4):66–75. (In Russ.) doi: 10.30901/2227-8834-2017-4-66-75
  37. Schultz L, Cogan NOI, McLean K, et al. Evaluation and implementation of a potential diagnostic molecular marker for H1-conferred potato cyst nematode resistance in potato (Solanum tuberosum L.). Plant Breeding. 2012;131(2):315–321. doi: 10.1111/j.1439-0523.2012.01949.x
  38. Biryukova VA, Shmyglya IV, Meleshin AA, et al. Study of Genetic Collections of the All-Russian Research Institute of potato farming by means of molecular markers. Dostizheniya Nauki i Tekhniki APK. 2016;30(10):22–26. (In Russ.)
  39. Njuguna W. Development and use of molecular tools in Fragaria [Dissertation]. Corvallis, Oregon, USA: Oregon State University; 2010.
  40. Lyzhin AS, Lukyanchuk IV, Zhbanova EV, et al. Polymorphism of the Rca2 anthracnose resistance gene in strawberry cultivars (Fragaria × ananassa). Proceedings on Applied Botany, Genetics and Dreeding. 2019;180(1):73–77. (In Russ.) doi: 10.30901/2227-8834-2019-1-73-77
  41. Lukyanchuk IV, Lyzhin AS, Kozlova II. Analysis of the genetic collection of strawberries (Fragaria L.) for the Rca2 and Rpf1 genes with molecular markers. Vavilov Journal of Genetics and Breeding. 2018;22(7):795–799. (In Russ.) doi: 10.18699/VJ18.423
  42. Sturzeanu M, Coman M, Ciuca M, et al. Molecular characterization of allelic status of the Rpf1 and Rca2 genes in six cultivars of strawberries. Acta Hortic. 2016;1139:107–112. doi: 10.17660/ActaHortic.2016.1139.19
  43. Khrabrov IE, Antonova OYu, Shapovalov MI, Semenova LG. Molecular screening of the VIR strawberry varieties collection for the presence of a marker for the anthracnose black rot resistance gene Rca2. Plant Biotechnology and Breeding. 2021;4(4):15–24. (In Russ.) doi: 10.30901/2658-6266-2021-4-o3
  44. Milczarek D, Flis B, Przetakiewicz A. Suitability of molecular markers for selection of potatoes resistant to Globodera spp. American Journal of Potato Research 2011;88:245–255. doi: 10.1007/s12230-011-9189-0

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Molecular screening of squash and patisson squash samples (3–4 individual plants per sample) for Pm-0 resistance gene markers: А — marker NBS_S9_1495924; Б — marker S9_1539675. The arrows indicate diagnostic fragments associated with resistance. 1 — negative control (water); 2–4 — Lena F1; 5–8 — Nevira F1; 9–12 — Ardendo 174 F1; 13–16 — Gribovsky 37; 17–20 — Sukha F1; 21–24 — Casanova F1; 25–28 — Aral F1; 29–32 — line Ds 4; M — molecular weight marker “100+ bp DNA Ladder”, Eurogen (Russia)

Download (131KB)

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies