Inositol phosphates’ synthesis in pea Pisum sativum L. root seedlings at the early stages after Rhizobium leguminosarum bv. viciae inoculation

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Studying the role of inositol phosphates in the regulation of signal exchange between leguminous plants and nodule bacteria is of great interest since it affects the regulation of calcium level in the root cells in response to bacterial signals during symbiosis development. The regulation of intracellular calcium content is one of the key events in the control of symbiosis development, but remains very poorly understood. In present work, we revealed a significant increase in the content of inositol hexasphosphate (IP6), which occurs in response to the recognition of Nod factors and indicates that in plants, unlike animals, this form (along with the inositol triphosphate (IP3)) may be important for signal transduction. This is consistent with the data that receptor for IP3 in plants has not yet been found, despite numerous efforts.

Expression analysis of the genes encoding enzymes of two biosynthetic pathways for inositol phosphates showed stimulation of the PsITPK1 gene (Psat6g210960), which can control the phospholipid-independent pathway for synthesis of these compounds. Despite the fact that PsPIP5K (Psat5g134320) important for another pathway did not show increased expression in our experiments upon inoculation, the activation of the phospholipid-dependent pathway of inositol phosphate biosynthesis can be evidenced by stimulation of a number of genes encoding pospholipases C (PLCs) which were previously found in pea Pisum sativum as well as during analysis of transcriptome of Medicago truncatula root treated with Nod factors. Therefore, in plants, in contrast to animals, the pathways for the synthesis of inositol phosphates can be more diverse, which indicates the plasticity of signal pathways.

Full Text

Restricted Access

About the authors

Andrey D. Bovin

All-Russia Research Institute for Agricultural Microbiology

Email: andy-piter2007@mail.ru
ORCID iD: 0000-0003-4061-435X
SPIN-code: 8119-0360

junior research associate

Russian Federation, Saint Petersburg

Svetlana A. Shirobokova

All-Russia Research Institute for Agricultural Microbiology

Email: schirobokova.s@gmail.com

research engineer

Russian Federation, Saint Petersburg

Georgy V. Karakashev

Research institute of hygiene, occupational pathology and human ecology, Federal medical biological agency

Email: karakashev58@mail.ru

Dr. Sci. (Biol.), head of the Laboratory of Analytical Toxicology

Russian Federation, Saint Petersburg

Elena A. Dolgikh

All-Russia Research Institute for Agricultural Microbiology

Author for correspondence.
Email: dol2helen@yahoo.com
ORCID iD: 0000-0002-5375-0943
SPIN-code: 4453-2060

Dr. Sci. (Biol.), head of the Laboratory of Signal Regulation

Russian Federation, Saint Petersburg

References

  1. Kirienko A.N., Porozov Y.B., Malkov N.V., et al. Role of a receptor-like kinase K1 in pea Rhizobium symbiosis development // Planta. 2018. Vol. 248, No. 5. P. 1101–1120. doi: 10.1007/s00425-018-2944-4
  2. Kirienko A.N., Vishnevskaya N.A., Kitaeva A.B., et al. Structural variations in LysM domains of LysM-RLK psK1 may result in a different effect on Pea–Rhizobial symbiosis development // Int J Mol Sci. 2019. Vol. 20, No. 7. P. 1–20. doi: 10.3390/ijms20071624
  3. Zhukov V., Radutoiu S., Madsen L.H., et al. The pea Sym37 receptor kinase gene controls infection-thread initiation and nodule development // Mol Plant-Microbe Interact. 2008. Vol. 21, No. 12. P. 1600–1608. doi: 10.1094/MPMI-21-12-1600
  4. Stracke S., Kistner C., Yoshida S., et al. A plant receptor-like kinase required for both bacterial and fungal symbiosis // Nature. 2002. Vol. 417, No. 6892. P. 959–962. doi: 10.1038/nature00841
  5. Oláh B., Brière C., Bécard G., et al. Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway // Plant J. 2005. Vol. 44, No. 2. P. 195–207. doi: 10.1111/j.1365-313X.2005.02522.x
  6. Riely B.K., Lougnon G., Ané J.M., et al. The symbiotic ion channel homolog DMI1 is localized in the nuclear membrane of Medicago truncatula roots // Plant J. 2007. Vol. 49, No. 2. P. 208–216. doi: 10.1111/j.1365-313X.2006.02957.x
  7. Cooke A., Charpentier M. Encoding nuclear calcium oscillations in root symbioses. In: The Model Legume Medicago truncatula. F. De Bruijn ed. Wiley. 2019. P. 461–466. doi: 10.1002/9781119409144.ch58
  8. Fonouni-Farde C., Tan S., Baudin M., et al. DELLA-mediated gibberellin signalling regulates Nod factor signalling and rhizobial infection // Nat Commun. 2016. Vol. 7. P. 12636. doi: 10.1038/ncomms12636
  9. Charpentier M., Sun J., Vaz Martins T., et al. Nuclear-localized cyclic nucleotide-gated channels mediate symbiotic calcium oscillations // Science. 2016. Vol. 352, No. 6289. P. 1102–1105. doi: 10.1126/science.aae0109
  10. Riely B.K., Lougnon G., Ané J.M., et al. The symbiotic ion channel homolog DMI1 is localized in the nuclear membrane of Medicago truncatula roots // Plant J. 2007. Vol. 49, No. 2. P. 208–216. doi: 10.1111/j.1365-313X.2006.02957.x
  11. Kevei Z., Lougnon G., Mergaert P., et al. 3-Hydroxy-3-methylglutaryl coenzyme A reductase1 interacts with NORK and is crucial for nodulation in Medicago truncatula // Plant Cell. 2007. Vol. 19, No. 12. P. 3974–3989. doi: 10.1105/tpc.107.053975
  12. Chen T., Zhu H., Ke D., et al. A MAP Kinase Kinase Interacts with SymRK and Regulates Nodule Organogenesis in Lotus japonicus // Plant Cell Online. 2012. Vol. 24, No. 2. P. 823–838. doi: 10.1105/tpc.112.095984
  13. Chen T., Duan L., Zhou B., et al. Interplay of pathogen-induced defense responses and symbiotic establishment in Medicago truncatula // Front Microbiol. 2017. Vol. 8. P. 937. doi: 10.3389/fmicb.2017.00973
  14. Lomovatskaya L.A., Kuzakova O.V., Romanenko A.S., et al. Activities of Adenylate Cyclase and Changes in cAMP Concentration in Root Cells of Pea Seedlings Infected with Mutualists and Phytopathogens // Russ J Plant Physiol. 2018. Vol. 65, No. 4. P. 588–597. doi: 10.1134/S1021443718030056
  15. Lomovatskaya L.A., Kuzakova O.V, Romanenko A.S. Current Views on Plant Adenylate Cyclases // Russ J Plant Physiol. 2022. Vol. 69, No. 3. P. 45. doi: 10.1134/S102144372202011X
  16. Gao J.P., Xu P., Wang M., et al. Nod factor receptor complex phosphorylates GmGEF2 to stimulate ROP signaling during nodulation // Curr Biol. 2021. Vol. 31, No. 16. P. 3538–3550.e5. doi: 10.1016/j.cub.2021.06.011
  17. Pingret J.L., Journet E.P., Barker D.G. Rhizobium Nod factor signaling: Evidence for a G protein-mediated transduction mechanism // Plant Cell. 1998. Vol. 10, No. 5. P. 659–672. doi: 10.1105/tpc.10.5.659
  18. Choudhury S.R., Pandey S. Heterotrimeric G-protein complex and its role in regulation of nodule development // Exocytosis Cell Res. 2016. Vol. 27, No. 2. P. 29–35.
  19. Bovin A.D., Pavlova O.A., Dolgikh A.V., et al. The Role of Heterotrimeric G-Protein Beta Subunits During Nodulation in Medicago truncatula Gaertn and Pisum sativum L // Front Plant Sci. 2022. Vol. 12. P. 808573. doi: 10.3389/fpls.2021.808573
  20. Kolesnikov Y., Kretynin S., Bukhonska Y., et al. Phosphatidic Acid in Plant Hormonal Signaling: From Target Proteins to Membrane Conformations // Int J Mol Sci. 2022. Vol. 23, No. 6. P. 3237. doi: 10.3390/ijms23063227
  21. Berridge M.J. Inositol trisphosphate and calcium signalling mechanisms // Biochim Biophys Acta. 2009. Vol. 1793, No. 6. P. 933–940. doi: 10.1016/j.bbamcr.2008.10.005
  22. Nunes P., Demaurex N. The role of calcium signaling in phagocytosis // J Leukoc Biol. 2010. Vol. 88, No. 1. P. 57–68. doi: 10.1189/jlb.0110028
  23. Sagar S., Singh A. Emerging role of phospholipase C mediated lipid signaling in abiotic stress tolerance and development in plants // Plant Cell Rep. 2021. Vol. 40, No. 11. P. 2123–2133. doi: 10.1007/s00299-021-02713-5
  24. Rhee S.G. Regulation of Phosphoinositide-Specific Phospholipase C // Annu Rev Biochem. 2001. Vol. 70. P. 281–312. doi: 10.1146/annurev.biochem.70.1.281
  25. den Hartog M., Verhoef N., Munnik T. Nod factor and elicitors activate different phospholipid signaling pathways in suspension-cultured alfalfa cells. // Plant Physiol. 2003. Vol. 132, No. 1. P. 311–317. doi: 10.1104/pp.102.017954
  26. den Hartog M., Musgrave A., Munnik T. Nod factor-induced phosphatidic acid and diacylglycerol pyrophosphate formation: a role for phospholipase C and D in root hair deformation. // Plant J. 2001. Vol. 25, No. 1. P. 55–65. doi: 10.1046/j.1365-313x.2001.00931.x
  27. Charron D., Pingret J.L., Chabaud M., et al. Pharmacological Evidence That Multiple Phospholipid Signaling Pathways Link Rhizobium Nodulation Factor Perception in Medicago truncatula Root Hairs to Intracellular Responses, Including Ca2+ Spiking and Specific ENOD Gene Expression // Plant Physiol. 2004. Vol. 136, No. 3. P. 3582–3593. doi: 10.1104/pp.104.051110
  28. De Los Santos-Briones C., Cárdenas L., Estrada-Navarrete G., et al. GTPγS antagonizes the mastoparan-induced in vitro activity of PIP2-phospholipase C from symbiotic root nodules of Phaseolus vulgaris // Physiol Plant. 2009. Vol. 135, No. 3. P. 237–245. doi: 10.1111/j.1399-3054.2008.01184.x
  29. van Zeijl A., Op den Camp R.H., Deinum E.E., et al. Rhizobium Lipo-chitooligosaccharide Signaling Triggers Accumulation of Cytokinins in Medicago truncatula Roots // Mol Plant. 2015. Vol. 8, No. 8. P. 1213–1226. doi: 10.1016/j.molp.2015.03.010
  30. Jardinaud M.F., Boivin S., Rodde N., et al. A Laser Dissection-RNAseq Analysis Highlights the Activation of Cytokinin Pathways by Nod Factors in the Medicago truncatula Root Epidermis // Plant Physiol. 2016. Vol. 171, No. 3. P. 2256–2276. doi: 10.1104/pp.16.00711
  31. Peng X., Frohman M.A. Mammalian phospholipase D physiological and pathological roles // Acta Physiol (Oxf). 2012. Vol. 204, No. 2. P. 219–226. doi: 10.1111/j.1748-1716.2011.02298.x
  32. Kolesnikov Y.S., Nokhrina K.P., Kretynin S.V., et al. Molecular structure of phospholipase D and regulatory mechanisms of its activity in plant and animal cells // Biochem. 2012. Vol. 77, No. 1. P. 1–14. doi: 10.1134/S0006297912010014
  33. Bouillet L.E., Cardoso A.S., Perovano E., et al. The involvement of calcium carriers and of the vacuole in the glucose-induced calcium signaling and activation of the plasma membrane H+-ATPase in Saccharomyces cerevisiae cells // Cell Calcium. 2012. Vol. 51, No. 1. P. 72–81. doi: 10.1016/j.ceca.2011.10.008
  34. Lev S., Bowring B., Desmarini D., et al. Inositol polyphosphate–protein interactions: Implications for microbial pathogenicity // Cell Microbiol. 2021. Vol. 23, No. 6. P. 13325. doi: 10.1111/cmi.13325
  35. Li J., Zhang B., Ma T., et al. Role of the Inositol Polyphosphate Multikinase Ipk2 in Regulation of Hyphal Development, Calcium Signaling and Secretion in Candida albicans // Mycopathologia. 2017. Vol. 182, No. 7–8. P. 609–623. doi: 10.1007/s11046-017-0138-4
  36. Krinke O., Novotná Z., Valentová O., et al. Inositol trisphosphate receptor in higher plants: Is it real? // J Exp Bot. 2007. Vol. 58, No. 3. P. 361–376. doi: 10.1093/jxb/erl220
  37. Tan X., Calderon-Villalobos L.I., Sharon M., et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase // Nature. 2007. Vol. 446, No. 7136. P. 640–645. doi: 10.1038/nature05731
  38. Fleet C.M., Ercetin M.E., Gillaspy G.E. Inositol phosphate signaling and gibberellic acid // Plant Signal Behav. 2009. Vol. 4, No. 1. P. 73–74. doi: 10.4161/psb.4.1.7418
  39. Urbano G., López-Jurado M., Aranda P., et al. The role of phytic acid in legumes: antinutrient or beneficial function? // J Physiol Biochem. 2000. Vol. 56, No. 3. P. 283–294. doi: 10.1007/BF03179796
  40. Raboy V., Dickinson D.B. The Timing and Rate of Phytic Acid Accumulation in Developing Soybean Seeds // Plant Physiol. 1987. Vol. 85, No. 3. P. 841–844. doi: 10.1104/pp.85.3.841
  41. Joyce C., Deneau A., Peterson K., et al. The concentrations and distributions of phytic acid phosphorus and other mineral nutrients in wild-type and low phytic acid Js-12-LPA wheat (Triticum aestivum) grain parts // Can J Bot. 2005. Vol. 83, No. 12. P. 1599–1607. doi: 10.1139/b05-128
  42. Graf E. Applications of phytic acid // J Am Oil Chem Soc. 1983. Vol. 60, No. 11. P. 1861–1867. doi: 10.1007/BF02901539
  43. Kepinski S. The anatomy of auxin perception // Bio Essays. 2007. Vol. 29, No. 10. P. 953–956. doi: 10.1002/bies.20657
  44. Williams S.P., Gillaspy G.E., Perera I.Y. Biosynthesis and possible functions of inositol pyrophosphates in plants // Front Plant Sci. 2015. Vol. 6. P. 67. doi: 10.3389/fpls.2015.00067
  45. Cridland C., Gillaspy G. Inositol pyrophosphate pathways and mechanisms: What can we learn from plants? // Molecules. 2020. Vol. 25, No. 12. P. 2789. doi: 10.3390/molecules25122789
  46. Wang Z., Kuo H.F., Chiou T.J. Intracellular phosphate sensing and regulation of phosphate transport systems in plants // Plant Physiol. 2021. Vol. 187, No. 4. P. 2043–2055. doi: 10.1093/plphys/kiab343
  47. Desfougères Y., Wilson M.S.C., Laha D., et al. ITPK1 mediates the lipid-independent synthesis of inositol phosphates controlled by metabolism // Proc Natl Acad Sci USA. 2019. Vol. 116, No. 49. P. 24551–24561. doi: 10.1073/pnas.1911431116
  48. Du H., Liu L., You L., et al. Characterization of an inositol 1,3,4-trisphosphate 5/6-kinase gene that is essential for drought and salt stress responses in rice // Plant Mol Biol. 2011. Vol. 77, No. 6. P. 547–563. doi: 10.1007/s11103-011-9830-9
  49. Vlčko T., Ohnoutková L. Allelic Variants of CRISPR/Cas9 Induced Mutation in an Inositol Trisphosphate 5/6 Kinase Gene Manifest Different Phenotypes in Barley // Plants (Basel). 2020. Vol. 9, No. 2. P. 195. doi: 10.3390/plants9020195
  50. Laha D., Portela-Torres P., Desfougères Y., et al. Inositol phosphate kinases in the eukaryote landscape // Adv Biol Regul. 2021. Vol. 79. P. 100782. doi: 10.1016/j.jbior.2020.100782
  51. Kuo HF, Hsu YY, Lin WC, et al. Arabidopsis inositol phosphate kinases IPK1 and ITPK1 constitute a metabolic pathway in maintaining phosphate homeostasis // Plant J. 2018. Vol. 95, No. 4. P. 613–630. doi: 10.1111/tpj.13974
  52. Van Brussel AAN, Tak T, Wetselaar A, et al. Small leguminosae as test plants for nodulation of Rhizobium leguminosarum and other rhizobia and agrobacteria harbouring a leguminosarum sym-plasmid // Plant Sci Lett. 1982. Vol. 27, No. 3. P. 317–325. doi: 10.1016/0304-4211(82)90134-1
  53. Spaink H.P., Sheeley D.M., van Brussel A.A., et al. A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium // Nature. 1991. Vol. 354, No. 6349. P. 125–130. doi: 10.1038/354125a0
  54. Van Brussel A.A.N., Planque K., Quispel A. The Wall of Rhizobium leguminosarum in Bacteroid and Free-living Forms // J Gen Microbiol. 1977. Vol. 101, No. 1. P. 51–56. doi: 10.1099/00221287-101-1-51
  55. Perera I.Y., Heilmann I., Chang S.C., et al. A role for inositol 1,4,5-trisphosphate in gravitropic signaling and the retention of cold-perceived gravistimulation of oat shoot pulvini // Plant Physiol. 2001. Vol. 125, No. 3. P. 1499–1507. doi: 10.1104/pp.125.3.1499
  56. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method // Methods. 2001. Vol. 25, No. 4. P. 402–408. doi: 10.1006/meth.2001.1262
  57. Kreplak J., Madoui M.A., Cápal P., et al. A reference genome for pea provides insight into legume genome evolution // Nat Genet. 2019. Vol. 51, No. 9. P. 1411–1422. doi: 10.1038/s41588-019-0480-1

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Inositol triphosphate (IP3) [M – H]–, m/z 418.9551

Download (14KB)
3. Inositoltetraphosphate (IP4) [M – H]–,m/z 498.9208

Download (17KB)
4. Inositolpentaphosphate (IP5) [M – H]–, m/z 578.8833

Download (20KB)
5. Inositol hexaphosphate (IP6) [M – 2H] 2–, m/z 328.9234

Download (23KB)
6. Fig. 1. Scheme of inositol hexaphosphate (IP6) biosynthesis in plants (modified according to [46]). ITPK — inositol-1,3,4-trisphosphate 5/6-kinase, IPK — inositol-polyphosphate kinase, PIP — phosphatidylinositol phosphate, PI-PLC — phosphoinositide-phospholipase C

Download (137KB)
7. Fig. 2. Phylogenetic analysis of plant ITPK family proteins in A. thaliana, M. truncatula and P. sativum. For the construction, the method of Maximum likelihood was used. Phylogenetic test was done with bootstrap = 1000

Download (72KB)
8. Fig. 3. Relative expression of PsITPK1 and PsPIP5K genes in the roots of pea seedlings inoculated with effective strains of R. leguminosarum bv. viciae RIAM 1026 and RIAM 3841 and in non-inoculated control (3 dpi). Statistically significant differences between the control and treatment groups were shown using One-Way analysis of variance. Error bars indicate the standard errors

Download (106KB)

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies