Transcription factor genes involved in plant response to abiotic stress factors

Cover Page

Abstract


Hypothermia, drought, salinity and heavy metals are the most widespread stress factors negatively affecting plant growth and development. Plants respond to these stress factors on molecular, cellular, and physiological levels through the complicated mechanisms of signal perception and transduction, subsequently inducing various defense mechanisms. Transcription factors controlling the expression of numerous defense proteins are the most significant abiotic stress reaction regulators. Mainly, the negative environmental influence activates the AP2/ERF, WRKY, MYB, NAC, bZIP transcription factors. The numerous transcription factors genes can be used in genetic engineering of agricultural crops resistant to abiotic stress. These genes are also of great interest in marker assisted selection of cultivated plants. This review is dedicated to description of transcription factors and their genes, involved in plant response to hypothermia, drought, salinity and heavy metals.


In Progress

Evgeniya A. Zaikina

Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics

Author for correspondence.
Email: evisheva@yandex.ru
ORCID iD: 0000-0003-1070-0804
SPIN-code: 4224-0089
Scopus Author ID: 1019764

Russian Federation, 450054, prosp. Oktyabrya, 71, Ufa, Bashkortostan

Ph.D, Researcher Lab of Plant Genomics

Sergey D. Rumyantsev

Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics

Email: Rumyantsev-Serg@mail.ru

Russian Federation, 450054, prosp. Oktyabrya, 71, Ufa, Bashkortostan

Junior Researcher Lab of Plant Genomics

Elena R. Sarvarova

Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics

Email: sarvarova_lena@mail.ru

Russian Federation, 450054, prosp. Oktyabrya, 71, Ufa, Bashkortostan

Junior Researcher Lab of Plant Genomics

Bulat R. Kuluev

Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics

Email: kuluev@bk.ru
ORCID iD: 0000-0002-1564-164X
Scopus Author ID: 23094029400

Russian Federation, 450054, prosp. Oktyabrya, 71, Ufa, Bashkortostan

Doctor of Biology, Head of the Lab of Plant Genomics

  1. Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48(12):909-930. https://doi.org/10. 1016/j.plaphy.2010. 08. 016.
  2. Тарчевский И.А. Метаболизм растений при стрессе. Избр. тр. – Казань: Фэн, 2001. – 448 с. [Tarchevskii IA. Metabolizm rastenii pri stresse. Izbr. tr. Kazan’: Fen; 2001. 448 p. (In Russ.)]
  3. Huang GT, Ma SL, Bai LP, et al. Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep. 2012;39(2):969-987. https://doi.org/10. 1007/s11033-011-0823-1.
  4. Singh K, Foley R, Oñate-Sánchez L. Transcription factors in plant defense and stress responses. Curr Opin Plant Biol. 2002;5(5):430-436. https://doi.org/10. 1016/S1369-5266(02)00289-3.
  5. Korner C. Plant adaptation to cold climates. F1000Res. 2016;5:2769-2774. https://doi.org/10. 12688/f1000research.9107. 1.
  6. Thomashow MF. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol. 1999;50:571-599. https://doi.org/10. 1146/annurev.arplant.50. 1. 571.
  7. Maurya JP, Bhalerao RP. Photoperiod- and temperature-mediated control of growth cessation and dormancy in trees: a molecular perspective. Ann Bot. 2017;120(3): 351-360. https://doi.org/10. 1093/aob/mcx061.
  8. Климов С.В. Холодовое закаливание растений — результат поддержания повышенного отношения фотосинтез/дыхание при низких температурах // Известия Российской академии наук. Серия биологическая. – 2003. – № 1. – С. 57–62. [Klimov SV. Cold hardening of plants is a result of maintenance of an increased photosynthesis/respiration ratio at low temperatures. Biology Bulletin. 2003;30(1):48-52. (In Russ.)]
  9. Трунова Т.И. Растения и низкотемпературный стресс (64-е Тимирязевские чтения). – М.: Наука, 2007. – 54 с. [Trunova TI. Rasteniya i nizkotemperaturnyi stress (64-e Timiryazevskie chteniya). Moscow: Nauka; 2007. 54 p. (In Russ.)]
  10. Fowler DB, Limin AE. Interactions among factors regulating phenological development and acclimation rate determine low-temperature tolerance in wheat. Ann Bot. 2004;94(5):717-724. https://doi.org/10. 1093/aob/mch196.
  11. Fowler SG, Cook D, Thomashow MF. Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiol. 2005;137(3): 961-968. https://doi.org/10. 1104/pp.104. 058354.
  12. Franklin KA, Whitelam GC. Light-quality regulation of freezing tolerance in Arabidopsis thaliana. Nat Genet. 2007;39(11):1410-3. https://doi.org/10. 1038/ng.2007. 3.
  13. Jouyban Z, Rohola H, Sharafi S. Chilling stress in plants. Int J Agric Crop Sci. 2013;5(24):2961-2968.
  14. Murata N, Los DA. Membrane fluidity and temperature perception. Plant Physiol. 1997;115(3):875-879. https://doi.org/10. 1104/pp.115. 3. 875.
  15. Maruyama K, Todaka D, Mizoi J, et al. Identification of cis-acting promoter elements in cold- and dehydration-induced transcriptional pathways in Arabidopsis, rice, and soybean. DNA Res. 2012;19(1):37-49. https://doi.org/10. 1093/dnares/dsr040.
  16. Таланова В.В., Титов А.Ф., Топчиева Л.В., и др. Экспрессия генов транскрипционного фактора WRKY и стрессовых белков у растений пшеницы при холодовом закаливании и действии АБК // Физиология растений. – 2009. – Т. 56. – № 5. – С. 776–782. [Talanova VV, Titov AF, Topchieva LV, et al. Expression of WRKY transcription factor and stress protein genes in wheat plants during cold hardening and ABA treatment. Russian Journal of Plant Physiology. 2009;56(5):702-8. (In Russ.)]
  17. Gaudet DA, Wang Y, Frick M, et al. Low temperature induced defence gene expression in winter wheat in relation to resistance to snow moulds and other wheat diseases. Plant Sci. 2011;180(1):99-110. https://doi.org/10. 1016/j.plantsci.2010. 07. 023.
  18. Niu C, Wei W, Zhou Q, et al. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ. 2012;35(6):1156-1170. https://doi.org/10. 1111/j.1365-3040. 2012. 02480. x.
  19. Kidokoro S, Yoneda K, Takasaki H, et al. Different cold-signaling pathways function in the responses to rapid and gradual decreases in temperature. Plant Cell. 2017;29(4): 760-774. https://doi.org/10. 1105/tpc.16. 00669.
  20. Park S, Lee CM, Doherty CJ, et al. Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. Plant J. 2015;82(2):193-207. https://doi.org/10. 1111/tpj.12796.
  21. Jaglo KR, Kleff S, Amundsen KL, et al. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol. 2001;127(3):910-917. https://doi.org/10. 1104/pp.127. 3. 910.
  22. Dubouzet JG, Sakuma Y, Ito Y, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 2003;33(4):751-763. https://doi.org/10. 1046/j.1365-313x.2003. 01661. x.
  23. Skinner JS, von Zitzewitz J, Szucs P, et al. Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Mol Biol. 2005;59(4): 533-551. https://doi.org/10. 1007/s11103-005-2498-2.
  24. Choi DW, Rodriguez EM, Close TJ. Barley CBF3 gene identification, expression pattern, and map location. Plant Physiol. 2002;129(4):1781-1787. https://doi.org/10. 1104/pp.003046.
  25. Xue GP. Characterization of the DNA-binding profile of HvCBF1 using an enzymatic method for rapid, quantitative and high-throughput analysis of the DNA binding activity. Nucleic Acids Res. 2002;30(15):e77. https://doi.org/10. 1093/nar/gnf076.
  26. Kume S, Kobayashi F, Ishibashi M, et al. Differential and coordinated expression of Cbf and Cor/Lea genes during long-term cold acclimation in 2 wheat cultivars showing distinct levels of freezing tolerance. Genes Genet Syst. 2005;80(3):185-97. https://doi.org/10. 1266/ggs.80. 185.
  27. Miller AK, Galiba G, Dubcovsky J. A cluster of 11 CBF transcription factors is located at the frost tolerance locus Fr-Am2 in Triticum monococcum. Mol Genet Genomics. 2006;275(2):193-203. https://doi.org/10. 1007/s00438-005-0076-6.
  28. Zarka DG, Vogel JT, Cook D, Thomashow MF. Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiol. 2003;133(2):910-918. https://doi.org/10. 1104/pp.103. 027169.
  29. Yiting S, Yanglin D, Shuhua Y. Cold signal transduction and its interplay with phytohormones during cold acclimation. Plant Cell Physiol. 2015;56(1):7-15. https://doi.org/10. 1093/pcp/pcu115.
  30. Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREBI and DREB2, with an EREBP/AP2 DNA-binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression in Arabidopsis. Plant Cell. 1998;10(8): 1391-1406. https://doi.org/10. 2307/3870648.
  31. Novillo F, Medina J, Salinas J. Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc Natl Acad Sci USA. 2007;104(52): 21002-7. https://doi.org/10. 1073/pnas.0705639105.
  32. Novillo F, Alonso JM, Ecker JR, Salinas J. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA. 2004;101(11):3985-3990. https://doi.org/10. 1073/pnas.0303029101.
  33. Zhen Y, Ungerer MC. Relaxed selection on the CBF/DREB1 regulatory genes and reduced freezing tolerance in the southern range of Arabidopsis thaliana. Mol Biol Evol. 2008;25(12):2547-2555. https://doi.org/10. 1093/molbev/msn196.
  34. Kang J, Zhang H, Sun T, et al. Natural variation of C-repeat-binding factor (CBFs) genes is a major cause of divergence in freezing tolerance among a group of Arabidopsis thaliana populations along the Yangtze River in China. New Phytol. 2013;199(4):1069-1080. https://doi.org/10. 1111/nph.12335.
  35. Gehan MA, Park S, Gilmour SJ, et al. Natural variation in the C-repeat binding factor cold response pathway correlates with local adaptation of Arabidopsis ecotypes. Plant J. 2015;84(4):682-93. https://doi.org/10. 1111/tpj.13027.
  36. Kovalchuk N, Jia W, Eini O, et al. Optimization of TaDREB3 gene expression in transgenic barley using cold-inducible promoters. Plant Biotechnol J. 2013;11(6): 659-670. https://doi.org/10. 1111/pbi.12056.
  37. Soltész A, Smedley M, Vashegyi I, et al. Transgenic barley lines prove the involvement of TaCBF14 and TaCBF15 in the cold acclimation process and in frost tolerance. J Exp Bot. 2013;64(7):1849-1862. https://doi.org/10. 1093/jxb/ert050.
  38. Jeknić Z, Pillman KA, Dhillon T, et al. Hv-CBF2A overexpression in barley accelerates COR gene transcript accumulation and acquisition of freezing tolerance during cold acclimation. Plant Mol Biol. 2014;84(1-2):67-82. https://doi.org/10. 1007/s11103-013-0119-z.
  39. Zong JM, Li XW, Zhou YH, et al. The AaDREB1 transcription factor from the cold-tolerant plant Adonis amurensis enhances abiotic stress tolerance in transgenic plant. Int J Mol Sci. 2016;17(4):Е 611. https://doi.org/10. 2174/1389202918666170227150057.
  40. Nijhawan A, Jain M, Tyagi AK. Khurana JP. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol. 2008;146(2):333-350. https://doi.org/10. 1104/pp.107. 112821.
  41. Liu C, Schläppi MR, Mao B, et al. The bZIP73 transcription factor controls rice cold tolerance at the reproductive stage. Plant Biotechnol J. 2019 [print]. https://doi.org/10. 1111/pbi.13104.
  42. Liu C, Ou S, Mao B, et al. Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates. Nat Commun. 2018;9(1):3302. https://doi.org/10. 1038/s41467-018-05753-w.
  43. Dubos C, Le Gourrierec J, Baudry A, et al. MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J. 2008;55(6):940-953. https://doi.org/10. 1111/j.1365-313X.2008. 03564. x.
  44. Agarwal M, Hao Y, Kapoor A, et al. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem. 2006;281(49):37636-37645. https://doi.org/10. 1074/jbc.M605895200.
  45. An J, Li R, Qu F, et al. R2R3 MYB transcription factor MdMYB23 is involved in the cold tolerance and proanthocyanidin accumulation in apple. Plant J. 2018;96(3): 562-577. https://doi.org/10. 1111/tpj.14050.
  46. Chen Y, Chen Z, Kang J, et al. AtMYB14 regulates cold tolerance in Arabidopsis. Plant Mol Biol Report. 2013;31:87-97. https://doi.org/10. 1007/s11105-012-0481-z.
  47. Yang A, Dai X, Zhang WH. A R2R3 type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot. 2012;63(7):2541-2556. https://doi.org/10. 1093/jxb/err431.
  48. Xie Y, Chen P, Yan Y, et al. An atypical R2R3 MYB transcription factor increases cold hardiness by CBF dependent and CBF independent pathways in apple. New Phytol. 2018;218(1):201-218. https://doi.org/10. 1111/nph.14952.
  49. Pellegrineschi A, Ribaut J, Trethowan R, et al. Progress in the genetic engineering of wheat for water-limited conditions. JIRCAS Working Report; 2002. P. 55-60.
  50. Mitra J. Genetics and genetic improvement of drought resistance in crop plants. Curr Sci. 2001;80(6):758-763.
  51. Shao-Xia W, Zhen-Ying W, Yong-Kang P. Dehydration responsive element binding (DREB) transcription activator and its function in plant tolerance to environment stress. Plant Physiol Comm. 2004;40(1):7-13. https://doi.org/10. 3724/sp.j.1005. 2009. 00236.
  52. Hayashi H, Mustardy L, Deshnium P, et al. Transformation of Arabidopsis thaliana with the coda gene for choline oxidase: accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J. 1997;12(1):133-142. https://doi.org/10. 1046/j.1365-313x.1997. 12010133. x.
  53. Li Q, Gui-You Z, Shou-Yi C. Structure and regulatory function of plant transcription factors. Chin Sci Bull. 2001;46(4):211-79. https://doi.org/10. 1007/bf03187184.
  54. Oh S, Song S, Kim Y, et al. Arabidopsis CBF3 DREBIA and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol. 2005;138(1):341-351. https://doi.org/10. 1104/pp.104. 059147.
  55. Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, et al. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science. 1998;280(5360):104-106. https://doi.org/10. 1126/science.280. 5360. 104.
  56. Jun-Wei W, Feng-Ping Y, Xu-Qing C, et al. Induced expression of DREB transcriptional factor and study on its physiological effects of drought tolerance in transgenic wheat. Acta Genetica Sinica. 2006;33(5):468-476. https://doi.org/10. 1016/S0379-4172(06)60074-7.
  57. Riechmann J, Heard J, Martin G, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science. 2000;290(5499):2105-2110. https://doi.org/10. 1126/science.290. 5499. 2105.
  58. Fang Y, You J, Xie K, et al. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Genet Genomics. 2008;280(6):547-563. https://doi.org/10. 1007/s00438-008-0386-6.
  59. Ooka H, Satoh K, Doi K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Research. 2003;10(6):239-247. https://doi.org/10. 1093/dnares/10. 6. 239.
  60. Tran L, Nakashima K, Sakuma Y, et al. Isolation and functional analysis of Arabidopsis stress inducible NAC transcription factors that bind to a drought responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell. 2004;16(9):2481-2498. https://doi.org/10. 1105/tpc.104. 022699.
  61. Hu H, You J, Fang Y, et al. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol. 2008;67(1-2): 169-181. https://doi.org/10. 1007/s11103-008-9309-5.
  62. Nakashima K, Tran LS, Van Nguyen D, et al. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J. 2007;51(4):617-630. https://doi.org/10. 1111/j.1365-313X.2007. 03168. x.
  63. Xue G, Way H, Richardson T, et al. Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Mol Plant. 2011;4(4):697-712. https://doi.org/10. 1093/mp/ssr013.
  64. Xia N, Zhang G, Liu X, et al. Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses. Mol Biol Rep. 2010;37(8): 3703-12. https://doi.org/10. 1007/s11033-010-0023-4.
  65. Tang Y, Liu M, Gao S, et al. Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco. Physiol Plant. 2012;144(3):210-224. https://doi.org/10. 1111/j.1399-3054. 2011. 01539. x.
  66. Zhu X, Liu S, Meng C, et al. WRKY transcription factors in wheat and their induction by biotic and abiotic stress. Plant Mol Biol Rep. 2013;31(5):1053-1067. https://doi.org/10. 1007/s11105-013-0565-4.
  67. Pandey S, Somssich I. The role of WRKY transcription factors in plant immunity. Plant Physiol. 2009;150(4): 1648-1655. https://doi.org/10. 1104/pp.109. 138990.
  68. Ma J, Gao X, Liu Q, et al. Overexpression of TaWRKY146 increases drought tolerance through inducing stomatal closure in Arabidopsis thaliana. Front Plant Sci. 2017;8:2036. https://doi.org/10. 3389/fpls.2017. 02036.
  69. Okay S, Derelli E, Unver T. Transcriptome-wide identification of bread wheat WRKY transcription factors in response to drought stress. Mol Genet Genomics. 2014;289:765. doi.org/10. 1007/s00438-014-0849-x.
  70. Qiu Y, Yu D. Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ Exp Bot. 2009;65(1): 35-47. https://doi.org/10. 1016/j.envexpbot.2008. 07. 002.
  71. Jakoby M, Weisshaar B, Droge-Laser W, et al. bZIP transcription factors in Arabidopsis. Trends Plant Sci. 2002;7(3):106-111. https://doi.org/10. 1016/S1360-1385(01)02223-3.
  72. Joshi R, Wani SH, Singh B, et al. Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci. 2016;7:1029. https://doi.org/10. 3389/fpls.2016. 01029.
  73. Zhang X, Wollenweber B, Jiang D, et al. Water deficit and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor. J Exp Bot. 2008;59(4): 839-848. https://doi.org/10. 1093/jxb/erm364.
  74. Nakamura M, Katsumata H, Abe M, et al. Characterization of the class IV homeodomain-Leucine Zipper gene family in Arabidopsis. Plant Physiol. 2006;141(4): 1363-75. https://doi.org/10. 1104/pp.106. 077388.
  75. Yu H, Chen X, Hong Y, et al. Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. Plant Cell. 2008;20(4):1134-1151. https://doi.org/10. 1105/tpc.108. 058263.
  76. Cominelli E, Galbiati M, Vavasseur A, et al. A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Current Biology. 2005;15(13):1196-1200. https://doi.org/10. 1016/j.cub.2005. 05. 048.
  77. Jung C, Seo J, Han S, et al. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol. 2008;146(2):623-635. https://doi.org/10. 1104/pp.107. 110981.
  78. Ding Z, Li S, An X, et al. Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. J Genet Genomics. 2009;36(1):17-29. https://doi.org/10. 1016/S1673-8527(09)60003-5.
  79. Lee SB, Kim H, Kim RJ, Suh MC. Overexpression of Arabidopsis MYB96 confers drought resistance in Camelina sativa via cuticular wax accumulation. Plant Cell Rep. 2014;33(9):1535-1546. https://doi.org/10. 1007/s00299-014-1636-1.
  80. Hussain SS, Kayani MA, Amjad M. Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotech Prog. 2011;27(2):297-306. https://doi.org/10. 1002/btpr.514.
  81. Tardieu F, Reymond M, Hamard H, et al. Spatial distributions of expansion rate, cell division rate and cell size in maize leaves: a synthesis of the effects of soil water status, evaporative demand and temperature. J Exp Bot. 2000;51(350):1505-1514. https://doi.org/10. 1093/jexbot/51. 350. 1505.
  82. Munns R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002;25(2):239-250. https://doi.org/10. 1046/j.0016-8025. 2001. 00808. x.
  83. Hirel B, Gadal P. Glutamine synthetase in rice a comparative study of the enzymes from roots and leaves. Plant Physiol. 1980;66(4):619-623. https://doi.org/10. 1104/pp.66. 4. 619.
  84. Yousfi S, Serret MD, Araus JL. Comparative response of δ13C, δ18O and δ15N in durum wheat exposed to salinity at the vegetative and reproductive stages. Plant Cell Environ. 2013;36(6):1214-1227. https://doi.org/10. 1111/pce.12055.
  85. Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol. 2003;6(5):410-17. https://doi.org/10. 1016/S1369-5266(03)00092-X.
  86. Mohsenzadeh S, Sadeghi S, Mohabatkar H, Niazi A. Some responses of dry farming wheat to osmotic stresses in hydroponics culture. J Cell Mol Med. 2009;1(2):84-90.
  87. Shen YG, Zhang WK, He SJ, et al. An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor App Genet. 2003;106(5):923-930. https://doi.org/10. 1007/s00122-002-1131-x.
  88. Kurahashi Y, Terashima A, Takumi S. Variation in dehydration tolerance, ABA sensitivity and related gene expression patterns in D-genome progenitor and synthetic hexaploid wheat lines. Int J Mol Sci. 2009;10(6):2733-51. https://doi.org/10. 3390/ijms10062733.
  89. Egawa C, Kobayashi F, Ishibashi M, et al. Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Genet Syst. 2006;81(2):77-91. https://doi.org/10. 1266/ggs.81. 77.
  90. Jiang Y, Deyholos MK. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol. 2006;6:25. https://doi.org/10. 1186/1471-2229-6-25.
  91. Fang Y, You J, Xie K, et al. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Genet Genomics. 2008;280(6):547-563. https://doi.org/10. 1007/s00438-008-0386-6.
  92. Yu Y, Ni Z, Chen Q, Qu Y. The wheat salinity-induced R2R3-MYB transcription factor TaSIM confers salt stress tolerance in Arabidopsis thaliana. Biochem Biophys Res Commun. 2017;491(3):642-648. https://doi.org/10. 1016/j.bbrc.2017. 07. 150.
  93. Dai X, Xu Y, Ma Q, et al. Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol. 2007;143(4):1739-1751. https://doi.org/10. 1104/pp.106. 094532.
  94. Xiong H, Li J, Liu P, et al. Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS One. 2014;9(3):e92913. https://doi.org/10. 1371/journal.pone.0092913.
  95. Wang X, Zeng J, Li Y, et al. Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances. Front Plant Sci. 2015;6:615. https://doi.org/10. 3389/fpls.2015. 00615.
  96. Umezawa T, Fujita M, Fujita Y, et al. Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol. 2006;17(2):113-122. https://doi.org/10. 1016/j.copbio.2006. 02. 002.
  97. Valliyodan B, Nguyen HT. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol. 2006;9(2): 189-195. https://doi.org/10. 1016/j.pbi.2006. 01. 019.
  98. Manavalan LP, Guttikonda SK, Tran LS, Nguyen HT. Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol. 2009; 50(7):1260-76. https://doi.org/10. 1093/pcp/pcp082.
  99. Nakashima K, Yamaguchi-Shinozaki K. Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiol Plantarum. 2006;126:62-71. https://doi.org/10. 1111/j.1399-3054. 2005. 00592. x.
  100. Tran LS, Nishiyama R, Yamaguchi-Shinozaki K, Shinozaki K. Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops. 2010;1(1):32-39. https://doi.org/10. 4161/gmcr.1. 1. 10569.
  101. Репкина Н.С., Таланова В.В., Топчиева Л.В., и др. Влияние кадмия на экспрессию генов транскрипционных факторов CBF1 и DREB1 в листьях проростков пшеницы // Труды Карельского научного центра Российской академии наук. – 2012. – № 2. – С. 113-118. [Repkina NS, Talanova VV, Topchieva LV, et al. Effect of cadmium on gene expression of the transcription factors CBF1 and DREB1 in wheat seedling leaves. Trudy Karel’skogo nauchnogo tsentra Rossijskoj akademii nauk. 2012;(2): 113-118. (In Russ.)]
  102. Ogawa I, Nakanishi H, Mori S, Nishizawa NK. Time course analysis of gene regulation under cadmium stress in rice. Plant Soil. 2009;325:97-108. https://doi.org/10. 1007/s11104-009-0116-9.
  103. Van de Mortel JE, Schat H, Moerland PD, et al. Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd hyperaccumulator Thlaspi caerulescens. Plant Cell Environ. 2008;31(3):301-324. https://doi.org/10. 1111/j.1365-3040. 2007. 01764. x.
  104. Wang Y, Gao C, Liang Y, et al. A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants. J Plant Physiol. 2010;167(3):222-230. https://doi.org/10. 1016/j.jplph.2009. 09. 008.
  105. Singh KB, Foley RC, Onate-Sanchez L. Transcription factors in plant defense and stress responses. Curr Opin Plant Biol. 2002;5(5):430-436. https://doi.org/10. 1016/S1369-5266(02)00289-3.
  106. Faralli M, Lektemur C, Rosellini D, Gürel F. Effects of heat shock on salinity tolerance in barley (Hordeum vulgare L.): plant growth and stress-related gene transcription. Biol Plantarum. 2015;59(3):537-546. https://doi.org/10. 1007/s10535-015-0518-x.
  107. Hossain MA, Li ZG, Hoque TS, et al. Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms. Protoplasma. 2018;255(1):399-412. https://doi.org/10. 1007/s00709-017-1150-8.
  108. Crisp PA, Ganguly D, Eichten SR, et al. Reconsidering plant memory: intersections between stress recovery, RNA turnover, and epigenetics. Sci Adv. 2016;2(2): e1501340. https://doi.org/10. 1126/sciadv.1501340.

Supplementary files

There are no supplementary files to display.

Views

Abstract - 171

PDF (Russian) - 78

PDF (English) - 11

Cited-By


PlumX


Copyright (c) 2019 Zaikina E.A., Rumyantsev S.D., Sarvarova E.R., Kuluev B.R.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies