Genetic diversity of cereal crops for powdery mildew resistance

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


Powdery mildew (causal agent Blumeria graminis) is a widespread and harmful fungi disease of cereal crops especially in the regions with humid climate. The pathogen is differentially interacting with plant host genotypes. Growing cereal crop varieties protected with different resistance genes is the most rational, costly and ecologically safe way of combating powdery mildew. The supply of effective genes can be increased due to studies of crop genetic resources collection, introgression of resistance from wild relatives, and also at the expense of mutant forms created with the use of traditional (induced mutagenesis) and biotechnological methods including genome editing. This causes the increasing interest to searching and identifying resistance genes, elucidation of their structural and functional organization, and analysis of molecular mechanisms of the character development. The review summarizes modern information on the identified genes of powdery mildew resistance of the main cereal crops – wheat, barley and oat. The list of wheat and barley genes identified at the molecular level is presented. It includes genes encoding NLR and CNL proteins (Pm2, Pm3, TaMla2, TaMla3 genes of wheat, rye Pm8 gene, barley Mla gene), receptor-like proteins (barley Mlo gene), transport proteins and receptor-like kinases (Lr34, Lr67, Pm21 of wheat).


Full Text

Restricted Access

About the authors

Eugeny E. Radchеnko

Federal Research Center “N.I. Vavilov All-Russian Institute of Plant Genetic Resources”

Author for correspondence.
Email: eugene_radchenko@rambler.ru
ORCID iD: 0000-0002-3019-0306
SPIN-code: 1667-0530
Scopus Author ID: 7005353107
ResearcherId: A-5064-2017

Russian Federation, St. Petersburg

Doctor of Science, Main Researcher, Department of Genetics

Renat A. Abdullaev

Federal Research Center “N.I. Vavilov All-Russian Institute of Plant Genetic Resources”

Email: abdullaev.1988@list.ru
ORCID iD: 0000-0003-1021-7951

Russian Federation, St. Petersburg

PhD, Researcher, Department of Genetics

Irina N. Anisimova

Federal Research Center “N.I. Vavilov All-Russian Institute of Plant Genetic Resources”

Email: irina_anisimova@inbox.ru
ORCID iD: 0000-0003-0474-8860
SPIN-code: 5000-3256
Scopus Author ID: 70006092428
ResearcherId: S-3762-2016

Russian Federation, St. Petersburg

Doctor of Science, Leader Researcher, Department of Genetics

References

  1. Marchal E. De la specialisation du paristisme chez l’Erysiphe graminis. Compt Rend Acad Sci Paris. 1902;135:210-212.
  2. Troch V, Audenaert K, Bekaert B, et al. Phylogeography and virulence structure of the powdery mildew population on its ‘new’ host triticale. BMC Evol Biol. 2012; 12:76. https://doi.org/10.1186/1471-2148-12-76.
  3. Klocke B, Flath K, Miedaner T. Virulence phenotypes in powdery mildew (Blumeria graminis) populations and resistance genes in triticale (×Triticosecale). Eur J Plant Pathol. 2013;137(3):463-476. https://doi.org/10.1007/s10658-013-0257-9.
  4. Hsam SL, Zeller FJ. Breeding for powdery mildew resistance in common wheat (Triticum aestivum L.). In: R.R. Bеlanger, W.R. Bushnell, A.J. Dik, T.L. Carver, ed. The Powdery Mildews, a Comprehensive Treatise. APS Press: St. Paul, Minnesota, USA; 2002. P. 219-238.
  5. Flor HH. Current status of the gene-for-gene concept. Annu Rev Phytopathol. 1971;9(1):275-296. https://doi.org/10.1146/annurev.py.09.090171.001423.
  6. Zhang Y, Lubberstedt T, Xu M. The genetic and molecular basis of plant resistance to pathogens. J Genet Genomics. 2013;40(1):23-35. https://doi.org/10.1016/j.jgg.2012.11.003.
  7. Dodds PN, Rathjen JP. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet. 2010;11(8):539-548. https://doi.org/10.1038/nrg2812.
  8. Briggle LW. Near-isogenic lines of wheat with genes for resistance to Erysiphe graminis f. sp. tritici. Crop Sci. 1969;9(1):70-72. https://doi.org/10.2135/cropsci1969.0011183X000900010023x.
  9. Briggle LW, Sears ER. Linkage of resistance to Erysiphe graminis f sp. tritici (Pm3) and hairy glume (Hg) on chromosome 1A of wheat. Crop Sci. 1966;6(6): 559-561. https://doi.org/10.2135/cropsci1966.0011183X000600060017x.
  10. Zeller FJ, Lutz J, Stephan U. Chromosome location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L.). 1. Mlk and other alleles at the Pm3 locus. Euphytica. 1993;68(3): 223-229. https://doi.org/10.1007/BF00029876.
  11. Sourdille P, Robe P, Tixier MH, et al. Location of Pm3g, a powdery mildew resistance allele in wheat, by using a monosomic analysis and by identifying associated molecular markers. Euphytica. 1999;110(3): 193-198. https://doi.org/10.1023/A:1003713219799.
  12. Zeller FJ, Hsam SL. Progress in breeding for resistance to powdery mildew in common wheat (Triticum aestivum L.). In: A.E. Slinkard, ed. Proceedings of the 9th International Wheat Genetics Symposium; 1998 Aug 2-7; Saskatoon, SK, Canada. Saskatoon: University of Saskatchewan; 1998. P. 178-180.
  13. Yahiaoui N, Kaur N, Keller B. Independent evolution of functional Pm3 resistance genes in wild tetraploid wheat and domesticated bread wheat. Plant J. 2009;57(5):846-856. https://doi.org/10.1111/j.1365-313X.2008.03731.x.
  14. Bhullar NK, Street K, Mackay M, et al. Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the Pm3 resistance locus. Proc Natl Acad Sci USA. 2009;106(23): 9519-9524. https://doi.org/10.1073/pnas.0904152106.
  15. Shi AN, Leath S, Murphy JP. A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat. Phytopathology. 1998;88(2): 144-7. https://doi.org/10.1094/PHYTO.1998.88.2.144.
  16. Lowry JR, Sammons DJ, Baenziger PS, Moseman JG. Identification and characterization of the gene conditioning powdery mildew resistance in Amigo wheat. Crop Sci. 1984;24(1):129-132. https://doi.org/10.2135/cropsci1984.0011183X002400010030x.
  17. Heun M, Friebe B, Bushuk W. Chromosomal location of the powdery mildew resistance gene of Amigo wheat. Phytopathology. 1990;80(10): 1129-1133. https://doi.org/10.1094/Phyto-80-1129.
  18. Hao YF, Liu AF, Wang YH, et al. Pm23: a new allele of Pm4 located on chromosome 2AL in wheat. Theor Appl Genet. 2008;117(8):1205-1212. https://doi.org/10.1007/s00122-008-0827-y.
  19. Li G, Cowger C, Wang X, et al. Characterization of Pm65, a new powdery mildew resistance gene on chromosome 2AL of a facultative wheat cultivar. Theor Appl Genet. 2019;132(9):22625-32. https://doi.org/10.1007/s00122-019-03377-2.
  20. Mohler V, Bauer C, Schweizer G, et al. Pm50: a new powdery mildew resistance gene in common wheat derived from cultivated emmer. J Appl Genet. 2013;54(3):259-263. https://doi.org/10.1007/s13353- 013-0158-9.
  21. The TT, McIntosh RA, Bennett FG. Cytogenetical studies in wheat. IX. Monosomic analyses, telocentric mapping and linkage relationships of genes Sr21, Pm4, and Mle. Aust J Biol Sci. 1979;32(1):115-125. https://doi.org/10.1071/BI9790115.
  22. Schmolke M, Mohler V, Hartl L, et al. A new powdery mildew resistance allele at the Pm4 locus transferred from einkorn (Triticum monococcum). Mol Breed. 2012;29(2):449-456. https://doi.org/10.1007/s11032-011-9561-2.
  23. Alam MA, Xue F, Wang C, Ji W. Powdery mildew resistance genes in wheat: identification and genetic analysis. J Mol Biol Res. 2011;1(1):20-39. https://doi.org/10.5539/jmbr.v1n1p20.
  24. Sun H, Hu J, Song W, et al. Pm61: a recessive gene for resistance to powdery mildew in wheat landrace Xuxusanyuehuang identified by comparative genomics analysis. Theor Appl Genet. 2018;131(10):2085-2097. https://doi.org/10.1007/s00122-018-3135-1.
  25. Reader SM, Miller TE. The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat. Euphytica. 1991;53(1):57-60. https://doi.org/10.1007/BF 00032033.
  26. Zhang R, Sun B, Chen J, et al. Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat. Theor Appl Genet. 2016;129(10):1975-1984. https://doi.org/10.1007/s00122-016-2753-8.
  27. Hao M, Liu M, Luo J, et al. Introgression of powdery mildew resistance gene Pm56 on rye chromosome arm 6RS into wheat. Front Plant Sci. 2018;9:1040. https://doi.org/10.3389/fpls.2018.01040.
  28. Qi LL, Cao MS, Chen PD, et al. Identification, mapping, and application of polymorphic DNA associated with resistance gene Pm21 of wheat. Genome. 1996;39(1):191-7. https://doi.org/10.1139/ g96-025.
  29. Hsam SL, Huang XQ, Earnst F, et al. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 5. Alleles at the Pm1 locus. Theor Appl Genet. 1998;96(8): 1129-1134. https://doi.org/10.1007/s001220050848.
  30. Singrun CH, Hsam SL, Hartl L, et al. Powdery mildew resistance gene Pm22 in cultivar Virest is a member of the complex Pm1 locus in common wheat (Triticum aestivum L. em Thell.). Theor Appl Genet. 2003;106(8):1420-1424. https://doi.org/10.1007/s00122-002-1187-7.
  31. Schneider DM, Heun M, Fischbeck G. Inheritance of the powdery mildew resistance gene Pm9 in relation to Pm1 and Pm2 of wheat. Plant Breed. 1991;107(2):161-164. https://doi.org/10.1111/j.1439-0523.1991.tb00545.x.
  32. Tan C, Li G, Cowger C, et al. Characterization of Pm59, a novel powdery mildew resistance gene in Afghanistan wheat landrace PI 181356. Theor Appl Genet. 2018;131(5):1145-1152. https://doi.org/10.1007/s00122-018-3067-9.
  33. Perugini LD, Murphy JP, Marshall D, Brown-Guedira G. Pm37, a new broadly effective powdery mildew resistance gene from Triticum timopheevii. Theor Appl Genet. 2008;116(3):417-425. https://doi.org/10.1007/s00122-007-0679-x.
  34. Zou SZ, Wang H, Li YW, et al. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat. New Phytol. 2018;218(1):298-309. https://doi.org/10.1111/nph.14964.
  35. Peusha H, Enno T, Pruliin O. Chromosomal location of powdery mildew resistance genes and cytogenetic analysis of meiosis in common wheat cultivar Meri. Hereditas. 2000;132(1):29-34. https://doi.org/10.1111/j.1601-5223.2000.00029.x.
  36. Lillemo M, Asalf B, Singh RP, et al. The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet. 2008;116(8):1155-1166. https://doi.org/10.1007/s00122-008-0743-1.
  37. Hsam SL, Lapochkina IF, Zeller FJ. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 8. Gene Pm32 in a wheat-Aegilops speltoides translocation line. Euphytica. 2003;133(3):367-370. https://doi.org/10.1023/A:1025738513638.
  38. Lukaszewski AJ. Manipulation of the 1RS. 1BL translocation in wheat by induced homoeologous recombination. Crop Sci. 2000;40(1):216-225. https://doi.org/10.2135/cropsci2000.401216x.
  39. Zhao Z, Sun H, Song W, et al. Genetic analysis and detection of the gene MlLX99 on chromosome 2BL conferring resistance to powdery mildew in the wheat cultivar Liangxing 99. Theor Appl Genet. 2013;126(12):3081-3089. https://doi.org/10.1007/s00122-013-2194-6.
  40. Tan C, Li G, Cowger C, et al. Characterization of Pm63, a powdery mildew resistance gene in Iranian landrace PI 628024. Theor Appl Genet. 2019;132(4):1137-1144. https://doi.org/10.1007/s00122-018-3265-5.
  41. Jørgensen JH, Jensen CJ. Gene Pm6 for resistance to powdery mildew in wheat. Euphytica. 1973;22(2):423. https://doi.org/10.1007/BF000 22656.
  42. Rong JK, Millet E, Manisterski J, Feldman M. A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica. 2000;115(2):121-126. https://doi.org/10.1023/A:1003950431049.
  43. Zhu ZD, Zhou RG, Kong XY, et al. Microsatellite markers linked to 2 powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat. Genome. 2005;48(4): 585-590. https://doi.org/10.1139/G05-016.
  44. Wei H, Liu ZJ, Zhu J, et al. Identification and genetic mapping of pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet. 2009;119(2):223-230. https://doi.org/10.1007/s00122-009-1031-4.
  45. Piarulli L, Gadaleta A, Mangini G, et al. Molecular identification of a new powdery mildew resistance gene on chromosome 2BS from Triticum turgidum ssp. dicoccum. Plant Sci. 2012;196:101-106. https://doi.org/10.1016/j.plantsci.2012.07.015.
  46. Zhang D, Zhu K, Dong L, et al. Wheat powdery mildew resistance gene Pm64 derived from wild emmer (Triticum turgidum var. dicoccoides) is tightly linked in repulsion with stripe rust resistance gene Yr5. Crop J. 2019;7(6):761-770. https://doi.org/10.1016/j.cj.2019.03.003.
  47. Liu W, Koo DH, Xia Q, et al. Homoeologous recombination based transfer and molecular cytogenetic mapping of powdery mildew resistant gene Pm57 from Aegilops searsii into wheat. Theor Appl Genet. 2017;130(4): 841-848. https://doi.org/10.1007/s00122-017-2855-y.
  48. Zhan H, Li G, Zhang X, et al. Chromosomal location and comparative genomics analysis of powdery mildew resistance gene Pm51 in a putative wheat — Thinopyrum ponticum introgression line. PLoS One. 2014;9(11): e113455. https://doi.org/10.1371/journal.pone.0113455.
  49. Zhang R, Fan Y, Kong L, et al. Pm62, an adult-plant powdery mildew resistance gene introgressed from Dasypyrum villosum chromosome arm 2VL into wheat. Theor Appl Genet. 2018;131(12):2613-20. https://doi.org/10.1007/s00122-018-3176-5.
  50. Li G, Fang T, Zhang H, et al. Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet. 2009;119(3):531-539. https://doi.org/10.1007/s00122-009-1061-y.
  51. Cenci A, D’Ovidio R, Tanzarella OA, et al. Identification of molecular markers linked to Pm13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat. Theor Appl Genet. 1999;98(3-4): 448-454. https://doi.org/10.1007/s001220051090.
  52. Friebe B, Jiang J, Raupp WJ, et al. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica. 1996;91(1): 59-87. https://doi.org/10.1007/BF00035277.
  53. Liu ZY, Sun QX, Ni ZF, et al. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica. 2002;123(1):21-29. https://doi.org/10.1023/A:1014471113511.
  54. Blanco A, Gadaleta A, Cenci A, et al. Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat. Theor Appl Genet. 2008;117(1):135-142. https://doi.org/10.1007/s00122-008-0760-0.
  55. Petersen S, Lyerly JH, Worthington ML, et al. Mapping of powdery mildew resistance gene Pm53 introgressed from Aegilops speltoides into soft red winter wheat. Theor Appl Genet. 2015;128(2):303-312. https://doi.org/10.1007/s00122-014-2430-8.
  56. Tosa Y, Tokunaga H, Ogura H. Identification of a gene for resistance to wheatgrass powdery mildew fungus in common wheat cultivar Chinese Spring. Genome. 1988;30(4):612-14. https://doi.org/10.1139/g88-103.
  57. Tosa Y, Sakai K. The genetics of resistance of hexaploid wheat to the wheatgrass powdery mildew fungus. Genome. 1990;33(2):225-230. https://doi.org/10.1139/g90-035.
  58. Hao Y, Parks R, Cowger C, et al. Molecular characterization of a new powdery mildew resistance gene Pm54 in soft red winter wheat. Theor Appl Genet. 2015;128(3):465-476. https://doi.org/10.1007/s00122-014-2445-1.
  59. Järve K, Peusha HO, Tsymbalova J, et al. Chromosomal location of a Triticum timopheevii: derived powdery mildew resistance gene transferred to common wheat. Genome. 2000;43(2):377-381. https://doi.org/10.1139/g99-141.
  60. Jia J, Devos KM, Chao S, et al. RFLP-based maps of homoeologous group-6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theor Appl Genet. 1996;92(5):559-565. https://doi.org/10.1007/BF00224558.
  61. Friebe B, Heun M, Tuleen N, et al. Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat. Crop Sci. 1994;34(3):621-625. https://doi.org/10.2135/cropsci1994.0011183X003400030003x.
  62. Hsam SL, Huang XQ, Zeller FJ. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em. Thell.) 6. Alleles at the Pm5 locus. Theor Appl Genet. 2001;102(1):127-133. https://doi.org/10.1007/s001220051627.
  63. Huang XQ, Wang LX, Xu MX, Roder MS. Microsatellite mapping of the powdery mildew resistance gene Pm5e in common wheat (Triticum aestivum L.). Theor Appl Genet. 2003;106(5):858-865. https://doi.org/10.1007/ s00122-002-1146-3.
  64. Xiao M, Song F, Jiao J, et al. Identification of the gene Pm47 on chromosome 7BS conferring resistance to powdery mildew in the Chinese wheat landrace Hongyanglazi. Theor Appl Genet. 2013;126(5):1397-1403. https://doi.org/10.1007/s00122-013-2060-6.
  65. Luo PG, Luo HY, Chang ZJ, et al. Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor Appl Genet. 2009;118(6):1059-1064. https://doi.org/10.1007/s00122-009-0962-0.
  66. Tosa Y, Tsujimoto H, Ogura H. A gene involved in the resistance of wheat to wheatgrass powdery mildew fungus. Genome. 1987;29(6):850-852. https://doi.org/10.1139/g87-145.
  67. Huang XQ, Hsam SL, Zeller FJ, et al. Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding. Theor Appl Genet. 2000;101(3):407-14. https://doi.org/10.1007/s001220051497.
  68. Huang XQ, Röder MS. High-density genetic and physical bin mapping of wheat chromosome 1D reveals that the powdery mildew resistance gene Pm24 is located in a highly recombinogenic region. Genetica. 2011;139(9):1179-1187. https://doi.org/10.1007/s10709-011-9620-y.
  69. Xue F, Wang C, Li C, et al. Molecular mapping of a powdery mildew resistance gene in common wheat landrace Baihulu and its allelism with Pm24. Theor Appl Genet. 2012;125(7):1425-1432. https://doi.org/10.1007/s00122-012-1923-6.
  70. Wiersma AT, Pulman JA, Brown LK, et al. Identification of Pm58 from Aegilops tauschii. Theor Appl Genet. 2017;130(6):1123-1133. https://doi.org/10.1007/s00122-017-2874-8.
  71. He R, Chang Z, Yang Z, et al. Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor Appl Genet. 2009;118(6):1173-1180. https://doi.org/10.1007/s00122-009-0971-z.
  72. Herrera-Foessel SA, Singh RP, Lillemo M, et al. Lr67/Yr46 confers adult plant resistance to stem rust and powdery mildew in wheat. Theor Appl Genet. 2014;127(4):781-789. https://doi.org/10.1007/s00122-013-2256-9.
  73. Xu H, Yi Y, Ma P, et al. Molecular tagging of a new broad-spectrum powdery mildew resistance allele Pm2 in Chinese wheat landrace Niaomai. Theor Appl Genet. 2015;128(10):2077-2084. https://doi.org/10.1007/s00122-015-2568-z.
  74. Gao H, Zhu F, Jiang Y, et al. Genetic analysis and molecular mapping of a new powdery mildew resistant gene Pm46 in common wheat. Theor Appl Genet. 2012;125(5):967-973. https://doi.org/10.1007/s00122-012-1886-7.
  75. McIntosh RA, Dubcovsky J, Rogers WJ, et al. Catalogue of gene symbols for wheat: 2013-2014 supplement. Available from: https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement 2013.pdf.
  76. Qiu Y, Sun X, Zhou R, et al. Identification of microsatellite markers linked to powdery mildew resistance gene Pm2 in wheat. Cereal Res Commun. 2006;34(4):1267-1273. https://doi.org/10.1556/CRC.34.2006.4.268.
  77. Miranda LM, Murphy JP, Marshall D, Leath S. Pm34: a new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theor Appl Genet. 2006;113(8):1497-1504. https://doi.org/10.1007/s00122-006-0397-9.
  78. Miranda LM, Murphy JP, Marshall D, et al. Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor Appl Genet. 2007;114(8):1451-6. https://doi.org/10.1007/s00122-007-0530-4.
  79. Ma PT, Xu HX, Xu YF, et al. Molecular mapping of a new powdery mildew resistance gene Pm2b in Chinese breeding line KM2939. Theor Appl Genet. 2015;128(4):613-622. https://doi.org/10.1007/s00122-015-2457-5.
  80. Ma H, Kong Z, Fu B, et al. Identification and mapping of a new powdery mildew resistance gene on chromosome 6D of common wheat. Theor Appl Genet. 2011;123(7):1099-1106. https://doi.org/10.1007/s00122-011-1651-3.
  81. Spielmeyer W, McIntosh RA, Kolmer J, Lagudah ES. Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theor Appl Genet. 2005;111(4):731-735. https://doi.org/10.1007/s00122-005-2058-9.
  82. Lutz J, Hsam SL, Limpert E, Zeller FJ. Chromosomal location of powdery mildew resistance genes in Triticum aestivum L. (common wheat). 2. Genes Pm2 and Pm19 from Aegilops squarrosa L. Heredity. 1995;74(2):152-156. https://doi.org/10.1038/hdy.1995.22.
  83. Zeller FJ, Kong L, Hartl L, et al. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 7. Gene Pm29 in line Pova. Euphytica. 2002;123(2): 187-194. https://doi.org/10.1023/A:1014944619304.
  84. Li Z, Lan C, He Z, et al. Overview and application of QTL for adult plant resistance to leaf rust and powdery mildew in wheat. Crop Sci. 2014;54(5):1907-1925. https://doi.org/10.2135/cropsci2014.02.0162.
  85. Tang S, Hu Y, Zhong S, Luo P. The potential role of powdery mildew-resistance gene Pm40 in Chinese wheat-breeding programs in the post-Pm21 era. Engineering. 2018;4:500-506. https://doi.org/10.1016/j.eng.2018.06.004.
  86. Švec M, Miklovičová M. Structure of populations of wheat powdery mildew (Erysiphe graminis DC f. sp. tritici Marchal) in Central Europe in 1993-1996: I. Dynamics of virulence. Eur J Plant Pathol. 1998;104(6):537-544. https://doi.org/10.1023/A:1008642816326.
  87. Hurni S, Brunner S, Stirnweis D, et al. Powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3. Plant J. 2014;79(6):904-913. https://doi.org/10.1111/tpj.12593.
  88. Jørgensen JH, Wolfe M. Genetics of powdery mildew resistance in barley. CRC Crit Rev Plant Sci. 1994;13(1):97-119. https://doi.org/10.1080/ 07352689409701910.
  89. Wei F, Gobelman-Werner K, Morroll SM, et al. The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics. 1999;153(4):1929-1948.
  90. Seeholzer S, Tsuchimatsu T, Jordan T, et al. Diversity at the Mla powdery mildew resistance locus from cultivated barley reveals sites of positive selection. Mol Plant Microbe Interact. 2010;23(4):497-509. https://doi.org/10.1094/MPMI-23-4-0497.
  91. Kusch S, Panstruga R. mlo-Based resistance: an apparently universal “weapon” to defeat powdery mildew disease. Mol Plant Microbe Interact. 2017;30(3):179-189. https://doi.org/10.1094/MPMI-12-16-0255-CR.
  92. Dreiseitl A. Genes for resistance to powdery mildew in European barley cultivars registered in the Czech Republic from 2011 to 2015. Plant Breeding. 2017;136(3): 351-356. https://doi.org/10.1111/pbr.12471.
  93. Ociepa T, Okoń S, Nucia A, et al. Molecular identifcation and chromosomal localization of new powdery mildew resistance gene Pm11 in oat. Theor Appl Genet. 2020;133(1):179-185. https://doi.org/10.1007/s00122-019-03449-3.
  94. Hsam SL, Mohler V, Zeller FJ. The genetics of resistance to powdery mildew in cultivated oats (Avena sativa L.): current status of major genes. J Appl Genetics. 2014;55(2):155-162. https://doi.org/10.1007/s13353-014-0196-y.
  95. Hsam SL, Zeller FJ. Chromosomal location of genes for resistance to powdery mildew in cultivated oat (Avena sativa L.). 1. Gene Eg-3 in the cultivar Mostyn. Plant Breed. 1998;117(2):177-178. https://doi.org/ 10.1111/j.1439-0523.1998.tb01474.x.
  96. Mohler V, Zeller FJ, Hsam SL. Molecular mapping of powdery mildew resistance gene Eg-3 in cultivated oat (Avena sativa L. cv. ‘Rollo’). J Appl Genetics. 2012;53(2):145-148. https://doi.org/10.1007/s13353-011-0077-6.
  97. Yu J, Herrmann M. Inheritance and mapping of a powdery mildew resistance gene introgressed from Avena macrostachya in cultivated oat. Theor Appl Genet. 2006;113(3):429-437. https://doi.org/10.1007/s00122-006-0308-0.
  98. Oliver RE, Tinker NA., Lazo GR, et al. SNP discovery and chromosome anchoring provide the first physically-anchored hexaploid oat map and reveal synteny with model species. PLoS ONE. 2013;8(3): e58068. https://doi.org/10.1371/journal.pone.0058068.
  99. Herrmann MH, Mohler V. Locating two novel genes for resistance to powdery mildew from Avena byzantina in the oat genome. Plant Breed. 2018;137(6):832-838. https://doi.org/10.1111/pbr.12655.
  100. Hsam SL, Peters N., Paderina EV, et al. Genetic studies of powdery mildew resistance in common oat (Avena sativa L.) I. Cultivars and breeding lines grown in Western Europe and North America. Euphytica. 1997;96(3):421-427. https://doi.org/10.1023/A:1003057505151.
  101. Hsam SL, Paderina EV, Gordei S, Zeller FJ. Genetic studies of powdery mildew resistance in cultivated oat (Avena sativa L.). II. Cultivars and breeding lines grown in Northern and Eastern Europe. Hereditas. 1998;129(3):227-230. https://doi.org/10.1111/j.1601-5223.1998.00227.x.
  102. Okoń S. Identifcation of powdery mildew resistance genes in Polish common oat (Avena sativa L.) cultivars using host-pathogen tests. Acta Agrobot. 2012;65(3): 63-68. https://doi.org/10.5586/aa.2012.008.
  103. Okoń S. Effectiveness of resistant genes to powdery mildew in oat. Crop Prot. 2015;74:48-50. https://doi.org/10.1016/j.cropro.2015.04.004.
  104. Okoń S, Ociepa T, Nucia A. Molecular identification of Pm4 powdery mildew resistant gene in oat. Not Bot Horti Agrobot Cluj Napoca. 2018;46(2): 350-355. https://doi.org/10.15835/nbha46210904.
  105. Okoń S, Paczos-Grzęda E, Ociepa T, et al. Avena sterilis L. genotypes as a potential source of resistance to oat powdery mildew. Plant Dis. 2016;100(10): 2145-2151. https://doi.org/10.1094/PDIS-11-15-1365-RE.
  106. Okoń S, Ociepa T. Effectiveness of new sources of resistance against oat powdery mildew identified in A. sterilis. J Plant Dis Prot. 2018;125(5):505-510. https://doi.org/10.1007/s41348-018-0171-7.
  107. Okoń SM, Chrząstek M, Kowalczyk K, Koroluk A. Identification of new sources of resistance to powdery mildew in oat. Eur J Plant Pathol. 2014;139(1): 9-12. https://doi.org/10.1007/s10658-013-0367-4.
  108. Okoń S, Ociepa T, Paczos-Grzęda E, Ladizinsky G. Evaluation of resistance to Blumeria graminis (DC.) f. sp. avenae, in Avena murphyi and A. magna genotypes. Crop Protect. 2018;106:177-181. https://doi.org/10.1016/j.cropro.2017.12.025.
  109. Sánchez-Martín J, Rubiales D, Prats E. Resistance to powdery mildew (Blumeria graminis f. sp. avenae) in oat seedlings and adult plants. Plant Pathol. 2011;60(5):846-856. https://doi.org/10.1111/j.1365-3059.2011.02453.x.
  110. Dodds PN, Lawrence GJ, Catanzariti AM, et al. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc Natl Acad Sci U S A. 2006;103(23):8888-8893. https://doi.org/10.1073/pnas.0602577103.
  111. Ortiz D, de Guillen K, Cesari S, et al. Recognition of the Magnaporthe oryzae effector AVR-Piaby the decoy domain of the rice NLR immune receptor RGA5. Plant Cell. 2017;29(1):156-168. https://doi.org/10.1105/tpc.16.00435.
  112. Vakhrusheva OA, Nedospasov SA. System of innate immunity in plants. Mol Biol. 2011;45(1):16-23. https://doi.org/10.1134/S0026893311010146.
  113. Krattinger SG, Keller B. Molecular genetics and evolution of disease resistance in cereals. New Phytol. 2016;212(2):320-332. https://doi.org/10.1111/nph.14097.
  114. Keller B, Wicker T, Krattinger SG. Advances in wheat and pathogen genomics: implications for disease control. Annu Rev Phytopathol. 2018;56(1):67-87. https://doi.org/10.1146/annurev-phyto-080516-035419.
  115. Lu X, Kracher B, Saur IM, et al. Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen. Proc Natl Acad Sci USA. 2016;113(42): E6486-E6495. https://doi.org/10.1073/pnas.1612947113.
  116. Srichumpa P, Brunner S, Keller B, Yahiaoui N. Allelic series of four powdery mildew resistance genes at the Pm3 locus in hexaploid bread wheat. Plant Physiology. 2005;139(2):885-895. https://doi.org/10.1104/pp.105.062406.
  117. Bhullar NK, Zhang Z, Wicker T, Keller B. Wheat gene bank accessions as a source of new alleles of the powdery mildew resistance gene Pm3: a large scale allele mining project. BMC Plant Biol. 2010;10(1):88. https://doi.org/10.1186/1471-2229-10-88.
  118. Wicker T, Oberhaensli S, Parlange F, et al. The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nat Genet. 2013;45(9): 1092-1096. https://doi.org/10.1038/ng.2704.
  119. Smirnova O, Shumny VK, Kochetov AV. Gene network and database for genes of wheat’s resistance to pathogenic fungi. Russ J Plant Physiol. 2018;65(3):319-332. https://doi.org/10.1134/S102 144371803007X.
  120. Sánchez-Martín J, Steuernagel B, Ghosh S, et al. Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol. 2016;17(1):221. https://doi.org/10.1186/s13059-016-1082-1.
  121. Yahiaoui N, Srichumpa P, Dudler R, Keller B. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J. 2004;37(4):528-538. https://doi.org/10.1046/j.1365-313X.2003.01977.x.
  122. Hurni S, Brunner S, Buchmann G, et al. Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew. Plant J. 2013;76(6):957-969. https://doi.org/10.1111/tpj.12345.
  123. Cao A, Xing L, Wang X, et al. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA. 2011;108(19):7727-7732. https://doi.org/10.1073/pnas.1016981108.
  124. Krattinger SG, Lagudah ES, Spielmeyer W, et al. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science. 2009;323(5919):1360-1363. https://doi.org/10.1126/science.1166453.
  125. Moore JW, Herrera-Foessel S, Lan C, et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet. 2015;47(2):1494-1498. https://doi.org/10.1038/ng. 3439.
  126. Jordan T, Seeholzer S, Schwizer S, et al. The wheat Mla homologue TmMla1 exhibits an evolutionarily conserved function against powdery mildew in both wheat and barley. Plant J. 2011;65(4):610-621. https://doi.org/10.1111/j.1365-313X.2010.04445.x.
  127. Wan P, Ling L, Cao S, et al Isolation, chromosomal location, and expression analysis of putative powdery mildew resistance genes in wheat (Triticum aestivum L.). Euphytica. 2007;155(1):125-133. https://doi.org/10.1007/s10681-006-9313-2.
  128. Wei F, Wing RA, Wise RP. Genome dynamics and evolution of the Mla (powdery mildew) resistance locus in barley. Plant Cell. 2002;14(8):1903-1917. https://doi.org/10.1105/tpc.002238.
  129. Buschges R, Hollricher K, Panstruga R, et al. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell. 1997;88(5):695-705. https://doi.org/10.1016/S0092-8674(00)81912-1.
  130. Piffanelli P, Zhou F, Casais C, et al. The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiol. 2002;129(3):1076-1085. https://doi.org/10.1104/pp.010954.
  131. Piffanelli P, Ramsay L, Waugh R, et al. A barley cultivation-associated polymorphism conveys resistance to powdery mildew. Nature. 2004;430(7002): 887-891. https://doi.org/10.1038/nature02781.
  132. Ge X, Deng W, Lee ZZ, et al. Tempered mlo broad-spectrum resistance to barley powdery mildew in an Ethiopian landrace. Sci Rep. 2016;6(1): 29558. https://doi.org/10.1038/srep29558.
  133. Deppe JP, Rabbat R, Hörtensteiner S, et al. The wheat ABC transporter Lr34 modifies the lipid environment at the plasma membrane. J Biol Chem. 2018;293(48):18667-18679. https://doi.org/10.1074/jbc.RA118.002532.
  134. Milne RJ, Dibley KE, Schnippenkoetter W, et al. The wheat Lr67 gene from the sugar transport protein 13 family confers multipathogen resistance in barley. Plant Physiol. 2019;179(4):1285-97. https://doi.org/10.1104/pp.18.00945.
  135. Huckelhoven R, Fodor J, Preis C, Kogel KH. Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with hydrogen peroxide but not with salicylic acid accumulation. Plant Physiol. 1999;119(4):1251-1260. https://doi.org/10.1104/pp.119.4.1251.
  136. Shen QH, Zhou F, Bieri S, et al. Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus. Plant Cell. 2003;15(3): 732-744. https://doi.org/10.1105/tpc.009258.
  137. Maekawa T, Kracher B, Saur IM, et al. Subfamily-specific specialization of RGH1/MLA immune receptors in wild barley. Mol Plant Microbe Interact. 2019;32(1):107-119. https://doi.org/10.1094/MPMI-07-18-0186-FI.
  138. Andersen EJ, Ali S, Reese RN, et al. Diversity and evolution of disease resistance genes in barley (Hordeum vulgare L.). Evol Bioinform Online. 2016; 12:99-108. https://doi.org/10.4137/EBO.S38085.
  139. Liu J, Cheng X, Liu D, et al. The miR9863 family regulates distinct Mla alleles in barley to attenuate NLR receptor-triggered disease resistance and cell-death signaling. PLoS Genet. 2014;10(12): e1004755. https://doi.org/10.1371/journal.pgen.1004755.
  140. Mahadevappa M, De Scenzo RA, Wise RP. Recombination of alleles conferring specific resistance to powdery mildew at the Mla locus in barley. Genome. 1994;37(3):460-468. https://doi.org/10.1139/g94-064.
  141. Periyannan S, Moore J, Ayliffe M, et al. The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science. 2013;341(6147):786-788. https://doi.org/10.1126/science.1239028.
  142. Mago R, Tabe L, Vautrin S, et al. Major haplotype divergence including multiple germin-like protein genes, at the wheat Sr2 adult plant stem rust resistance locus. BMC Plant Biol. 2014;14(1):379. https://doi.org/10.1186/s12870-014-0379-z.
  143. Jørgensen IH. Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica. 1992;63(1-2):141-152. https://doi.org/10.1007/BF00023919.
  144. Kim MC, Panstruga R, Elliott C, et al. Calmodulin interacts with MLO to regulate defence against mildew in barley. Nature. 2002;416(6879): 447-450. https://doi.org/10.1038/416447a.
  145. Freialdenhoven A, Peterhansel C, Kurth J, et al. Identification of genes required for the function of non-race-specific mlo resistance to powdery mildew in barley. Plant Cell. 1996;8:5-14. https://doi.org/10.1105/tpc.8.1.5.
  146. Wolter M, Hollricher K, Salamini F, Schulze-Lefert P. The mlo resistance alleles to powdery mildew infection in barley trigger a developmentally controlled defence mimic phenotype. Mol Gen Genet. 1993;239(1-2):122-128. https://doi.org/10.1007/bf00281610.
  147. Kokina A, Legzdina L, Bеrzina I, et al. Molecular marker-based characterization of barley powdery mildew MLO resistance locus in European varieties and breeding lines. Agronomijas Vestis (Latvian Journal of Agronomy). 2008;11:77-82.
  148. Acevedo-Garcia J, Kusch S, Panstruga R. Magic mistery tour: MLO proteins in plant immunity and beyond. New Phytol. 2014;204(2):273-281. https://doi.org/10.1111/nph.12889.
  149. Алпатьева Н.В., Абдуллаев Р.А., Анисимова И.Н., и др. Устойчивые к мучнистой росе образцы местного ячменя из Эфиопии // Труды по прикладной ботанике, генетике и селекции. – 2016. – Т. 177. – № 4. – С. 70–78. [Alpatyeva NV, Abdullaev RA, Anisimova IN, et al. Local barley accessions from Ethiopia resistant to powdery mildew. Works on applied botany, genetics and plant breeding. 2016;177(4):70-78. (In Russ.)]. https://doi.org/10.30901/2227-8834-2016-4-70-78.
  150. Абдуллаев Р.А., Алпатьева Н.В., Яковлева О.В., и др. Генетическое разнообразие образцов ячменя из Эфиопии по устойчивости к мучнистой росе // Российская сельскохозяйственная наука. – 2019. – № 2. – С. 7–10. [Abdullaev RA, Alpatyeva NV, Yakovleva OV, et al. Genetic diversity of barley accessions from Ethiopia for the powdery mildew resistance. Russian Agricultural Science. 2019;(2):7-10. (In Russ.)]. https://doi.org/10.31857/S2500-2627201927-10.
  151. Elliott C, Zhou F, Spielmeyer W, et al. Functional conservation of wheat and rice Mlo orthologs in defense modulation to the powdery Mildew fungus. Mol Plant Microbe Interact. 2002;159(10):1069-1077. https://doi.org/10.1094/MPMI.2002.15.10.1069.
  152. Nguyen VN, Vo KT, Park H, et al. A systematic view of the MLO family in rice suggests their novel roles in morphological development, diurnal responses, the light-signaling pathway, and various stress responses. Front Plant Sci. 2016;7:1413. https://doi.org/10.3389/fpls.2016.01413.
  153. Ablazov A, Tombuloglu H. Genome-wide identification of the mildew resistance locus O (MLO) gene family in novel cereal model species Brachypodium distachyon. Eur J Plant Pathol. 2015;145(2): 239-53. https://doi.org/10.1007/s10658-015-0833-2.
  154. Appiano M, Catalano D, Martínez MS, et al. Monocot and dicot MLO powdery mildew susceptibility factors are functionally conserved in spite of the evolution of class-specific molecular features. BMC Plant Biol. 2015;15(1): 257. https://doi.org/10.1186/s12870-015-0639-6.
  155. Acevedo-Garcia J, Spencer D, Thieron H, et al. mlo‐based powdery mildew resistance in hexaploid bread wheat generated by a non‐transgenic TILLING approach. Plant Biotechnol J. 2017;15(3):367-378. https://doi.org/10.1111/pbi.12631.
  156. Reinstadler A, Muller J, Czembor J, et al. Novel induced mlo mutant alleles in combination with site-directed mutagenesis reveal functionally important domains in the heptahelical barley Mlo protein. BMC Plant Biol. 2010;10(1):31. https://doi.org/10.1186/1471-2229-10-31.
  157. Ingvardsen CR, Massange-Sánchez JA, Borum F, et al. Development of mlo-based resistance in tetraploid wheat against wheat powdery mildew. Theor Appl Genet. 2019;132(11):3009-22. https://doi.org/10.1007/s00122-019-03402-4.
  158. Zhang Y, Bai Y, Wu G, et al. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J. 2017;91(4):714-724. https://doi.org/10.1111/tpj.13599.
  159. Вавилов Н.И. Законы естественного иммунитета растений к инфекционным заболеваниям. (Ключи к нахождению иммунных форм) // Вавилов Н.И. Избранные труды. Т. 4. – М.; Л.: Наука, 1964. – С. 430–488. [Vavilov NI. Zakony yestestvennogo immuniteta rasteniy k infektsionnym zabolevaniyam. Klyuchi k nakhozhdeniyu immunnykh form. In: Vavilov NI. Izbrannye trudy. Vol. 4. Moscow; Leningrad: Nauka; 1964. P. 430-488. (In Russ.)]
  160. Wolfe MS, McDermott JM. Population genetics of plant pathogen interactions: the example of the Erysiphe graminis — Hordeum vulgare pathosystem. Annu Rev Phytopathol. 1994;32(1):89-113. https://doi.org/10.1146/annurev.py.32.090194.000513.

Supplementary files

There are no supplementary files to display.

Statistics

Views

Abstract - 220

PDF (Russian) - 12

PDF (简体中文) - 1

Cited-By


PlumX


Copyright (c) 2020 Radchеnko E.E., Abdullaev R.A., Anisimova I.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies