Analysis of introgressive lines of inter-species pea hybrids by band composition of seed proteins

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Background. The reproductive incompatibility of cultivated (Pisum sativum) and wild (P. fulvum) pea species determines the difficulties of obtaining hybrids as well as the transfer of valuable wild parent alleles into interspecific hybrids and their use in the breeding process. The aim of the research was a comparative study of protein spectra of pea interspecific hybrids BC2F5 P. sativum × P. fulvum obtained by the authors and their parents.

Materials and methods. The band composition of seed proteins in the interspecific hybrids of peas BC2F5, variety Stabil (P. sativum) × accession from VIR collection I-609881 (P. fulvum) has been studied. Effectiveness of parent gene transfer determining each polymorphic position of electrophoretic spectrum were evaluated.

Results. The ratio of the actual frequencies of the bands of the cultivated and wild parents in the introgression lines corresponded to the expected level in 73% positions of the electrophoretic spectrum. The introgression rate of individual seed protein bands from wild parent into interspecific pea hybrids in the absence of selection significantly exceeded the expected level, which may indicate the adaptive value of alleles encoding unique seed protein isoforms.

Conclusion. The possibility of introgressive transfer of wild-type alleles to the cultivated genotypes of pea, as well as the presence of identified cultivated isoforms of storage proteins in all studied lines of BC2F5 interspecific hybrids in 88.2% of the polymorphic positions of the electrophoretic spectrum, indicates the possibility of using the wild species P. fulvum in pea breeding.

Full Text

Restricted Access

About the authors

Sergey V. Bobkov

Federal Scientific Center of Legumes and Groat Crops

ORCID iD: 0000-0002-8146-0791

Russian Federation, Orel

Candidate of Agricultural Sciences, Head of Laboratory, Plant Physiology and Biochemistry Laboratory

Ivan A. Bychkov

Federal Scientific Center of Legumes and Groat Crops


Russian Federation, Orel

Junior Scientist, Plant Physiology and Biochemistry Laboratory

Tatyana N. Selikhova

Federal Scientific Center of Legumes and Groat Crops


Candidate of Biological Sciences, Senior Scientist, Plant Physiology and Biochemistry Laboratory

Elena V. Semenova

Federal Research Center “N.I. Vavilov All-Russian Institute of Plant Genetic Resources”

Author for correspondence.
ORCID iD: 0000-0002-2637-1091

Russian Federation, Saint-Petersburg

Candidate of Biological Sciences, Lead Scientist, Department of Legumes Genetic Resources

Margarita A. Vishnyakova

Federal Research Center “N.I. Vavilov All-Russian Institute of Plant Genetic Resources”

ORCID iD: 0000-0003-2808-7745

Russian Federation, Saint-Petersburg

Doctor of Biological Sciences, Head of Department, Department of Legumes Genetic Resources


  1. McCouch S, Baute GJ, Bradeen J, et al. Agriculture: feeding the future. Nature. 2013;499(7456): 23-24.
  2. Dempewolf H, Baute G, Anderson J, et al. Past and future use of wild relatives in crop breeding. Crop Science. 2017;57:1070-1082.
  3. Smýkal P, Kenicer G, Flavell AJ, et al. Phylogeny, phylogeography and genetic diversity of the Pisum genus. Plant Genetic Resources. 2011;9(1):4-18.
  4. Костерин О.Э. Перспективы использования диких сородичей в селекции гороха (Pisum sativum L.) // Вавиловский журнал генетики и селекции. – 2015. – T. 19. – № 2. – C. 4–14. [Kosterin OE. Prospects of the use of wild relatives for pea (Pisum sativum L.) breeding. Vavilov journal of genetics and breeding. 2015;19(2):4-14. (In Russ.)].
  5. Ochatt SJ, Benabdelmouna A, Marget P, et al. Overcoming hybridization barriers between pea and some of its wild relatives. Euphytica. 2004;137(1):353-359. euph.0000040476. 57938.81.
  6. Byrne OM, Hardie DC, Khan TN, et al. Genetic analysis of pod and seed resistance to pea weevil in a Pisum sativum × P. fulvum interspecific cross. Austral J Agricultural Res. 2008;59(9):854-862.
  7. Clement SL, McPhee KE, Elberson LR, Evans MA. Pea weevil, Bruchus pisorum L. (Coleoptera: Bruchidae), resistance in Pisum sativum × Pisum fulvum interspecific crosses. Plant Breeding. 2009;128(5):478-485.
  8. Ali SM, Sharma B, Ambrose MJ. Current status and future strategy in breeding pea to improve resistance to biotic and abiotic stresses. Euphytica. 1994;73 (1-2):115-126.
  9. Fondevilla S, Avila CM, Cubero JI, Rubiales D. Response of Micosphaerella pinodes in a germplasm collection of Pisum ssp. Plant Breeding. 2005;124(3):313-315.
  10. Carrillo E, Rubiales D, Pérez-de-Luque A, Fondevilla S. Characterization of mechanisms of resistance against Didymella pinodes in Pisum spp. Eur J Plant Pathol. 2013;135(4):761-769.
  11. Fondevilla S, Torres AM, Moreno MT, Rubiales D. Identification of a new gene for resistance to powdery mildew in Pisum fulvum, a wild relative of pea. Breed Sci. 2007;57(2):181-184.
  12. Barilli E, Satovic Z, Rubiales D, Torres A. Mapping of quantitative trait loci controlling partial resistance against rust incited by Uromyces pisi (Pers.) Wint. in a Pisum fulvum L. intraspecific cross. Euphytica. 2010;175(2):151-159.
  13. Rubiales D, Moreno MT, Sillero JC. Search for resistance to crenata broomrape (Orobanche crenata Forsk.) in pea germplasm. Genet Res Crop Evol. 2005;52(7):853-861. 003-6116-3.
  14. Clement SL, Hardie DC, Elberson R. Variation among accessions of Pisum fulvum for resistance to pea weevil. Crop Science. 2002;42(6):2167-73.
  15. Fondevilla S, Cubero JI, Rubiales D. Confirmation that the Er3 gene, conferring resistance to Erysiphe pisi in pea, is a different gene from er1 and er2 genes. Plant Breeding. 2011;130(2):281-282.
  16. Aryamanesh N, Byrne O, Hardie DC, et al. Large-scale density-based screening for pea weevil resistance in advanced backcross lines derived from cultivated field pea (Pisum sativum) and Pisum fulvum. Crop Pasture Science. 2012;63(7):612-618.
  17. Baranyi M, Greilhuber J, Swiecicki WK. Genome size in wild Pisum species. Theor Appl Genet. 1996;93(5-6): 717-721.
  18. Errico A, Conicella C, Venora G. Karyotype studies on Pisum fulvum аnd Pisum sativum using a chromosome image analysis system. Genome. 1991;34(1):105-108.
  19. Bogdanova VS, Kosterin OE. Hybridization barrier between Pisum fulvum Sibth. et Smith and P. sativum L. is partly due to nuclear-chloroplast incompatibility. Pisum Genet. 2007;39:8-9.
  20. De Martino T, Errico A, Lassandro A, Conicella C. Distorting segregation resulting from pea chromosome reconstruction with alien segments from Pisum fulvum. J Heredity. 2000;91(4):322-325.
  21. Kosterin OE, Bogdanova VS, Galieva ER. Reciprocal compatibility within the genus Pisum L. as studied in F1 hybrids. 2. Crosses involving P. fulvum Sibth. et Smith. Gen Res Crop Evol. 2019;66(2):383-399.
  22. Weeden NF. Genetic changes accompanying the domestication of Pisum sativum: is there a common genetic basis to the ‘Domestication syndrome’ for legumes? Ann Botan. 2007;100(5):1017-1025.
  23. Бобков С.В., Селихова Т.Н. Получение межвидовых гибридов для интрогрессивной селекции гороха // Экологическая генетика. – 2015. – T. 13. – № 3. – С. 40–49. [Bobkov SV, Selikhova TN. Obtaining interspecific hybrids for introgressive pea breeding. Russ J Genet Appl Res. 2017;7:145-152. (In Russ.)].
  24. Государственный реестр селекционных достижений, допущенных к использованию. Т. 1. Сорта растений (официальное издание). – М.: ФГБНУ «Росинформагротех», 2019. – 516 с. [State register for selection achievements admitted for usage (national list). Vol. 1. Plant varieties (official publication). Moscow: Rosinformagrotekh; 2019. 516 p. (In Russ.)]
  25. Бобков С.В., Селихова Т.Н. Интрогрессия доминантного гена устойчивости к мучнистой росе из генома дикого вида гороха Pisum fulvum // Зернобобовые и крупяные культуры. – 2018. – № 4. – С. 20–24. [Bobkov SV, Selikhova TN. Introgression of a dominant gene conferring resistance to powdery mildew from genome of pea wild species Pisum fulvum. Zernobobovye i krupyanye kul’tury. 2018;(4):20-24. (In Russ.)].
  26. Конарев В.Г. Идентификация сортов и регистрация генофонда культурных растений по белкам семян. – СПб.: ВИР, 2000. – 186 с. [Konarev VG. Identifikatsiya sortov i registratsiya genofonda kul’turnykh rasteniy po belkam semyan. Saint Petersburg: All-Russian Institute of plant genetic resources. N.I. Vavilova; 2000. 186 p. (In Russ.)]
  27. Tzitzikas EN, Vincken JP, Groot J, et al. Genetic variation in pea seed composition. J Agric Food Chem. 2006;54(2):425-433.
  28. Szimanowska U, Jakubczyk A, Baraniak B, Kur A. Characterizaton of lipoxigenase from pea seeds (Pisim sativum var. Telephone L.). Food Chemistry. 2009;116(4):906-910.
  29. O’Kane FE, Happe PR, Vereijken JM, et al. Heat-induced gelation of pea legumin: comparison with soybean glycinin. J Agric Food Chem. 2004;52(16): 5071-5078.
  30. Бобков С.В., Лазарева Т.Н. Компонентный состав электрофоретических спектров запасных белков межвидовых гибридов гороха // Генетика. – 2012. – Т. 48. – № 1. – С. 56–61. [Bobkov SV, Lazareva TN. Band composition of electrophoretic spectra of storage proteins in interspecific pea hybrids. J Genet. 2012;48(1):47-52. (In Russ.)].
  31. Bourgeois M, Jacquin F, Savois V, et al. Dissecting the proteome of pea mature seeds reveals the phenotypic plasticity of seed protein composition. Proteomics. 2009;9(2):254-271.
  32. Rieseberg LH, Linder CR, Seiler GJ. Chromosomal and genic barriers to introgression in Helianthus. Genetics. 1995;141:1163-1171.
  33. Turner TL, Hahn MW, Nuzhdin SV. Genomic islands of speciation in Anopheles gambiae. PLoS Biol. 2005;3: e285.

Supplementary files

Supplementary Files Action
Fig. 1. Electrophoretic spectra of protein seeds of the parents of a hybrid combination of Stabil × i-609881 (P. fulvum) and seeds of introgressive pea lines. Introgressive lines: 1 - A1; 2 - A2; 4 - A3; 5 - A4; 6 - A5; 7 - A6; 8 - A7; 9 - A8; 10 - A9; 11 - A10; 12 - A11; 13 - A12; 14 - A13. Parents: 15, 16 - and-609881 (P. fulvum); 17, 18 - variety Stabil. Proteins of soybean seeds of the lanceolate variety are localized in the 3rd spectrum

Download (308KB) Indexing metadata
Fig. 2. Electrophoretic spectra of protein proteins of the Stabil cultivar: 1–3 — spectra obtained in the presence of mercaptoethanol, 4–9 — spectra without mercaptoethanol, 6 — soy spectrum. In the absence of mercaptoethanol, legumin is localized mainly in the region of 60–65 kDa. In the presence of mercaptoethanol, the legumin molecule dissociates into 2 subunits with molecular weights of 35–46 and 21–23 kDa

Download (243KB) Indexing metadata



Abstract - 94

PDF (Russian) - 13



Copyright (c) 2020 Bobkov S.V., Bychkov I.A., Selikhova T.N., Semenova E.V., Vishnyakova M.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies