Determinate growth habit of grain legumes: role in domestication and selection, genetic control

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


This review is devoted to the analysis of molecular genetic mechanisms of controlling the type of growth habit of grain legumes (pea, soybean, common bean, vigna); it provides information about known homologous genes TFL1, LFY, AP1, FUL, FT, and FD. Significant changes in plant architecture were during domestication of grain legumes. Many wild relatives of legumes are characterized by an indeterminate growth habit type, cultivated plants are characterized by indeterminate and determinate types. In plants with a determinate growth habit type, terminal inflorescence is formed at transition from the vegetative phase to the reproductive phase. These plants are characterized by a complex of features: simultaneous maturation of beans, resistance to lodging, etc. In indeterminate type of growth habit, the apical shoot meristem remains active during plant life. The main genes responsible for the plant transition to flowering are the homologs of the Arabidopsis genes LFY, TFL1, AP1. TFL1 gene is responsible for maintenance of growth of the shoot apical meristem; its homologs were identified in pea (PsTFL1a), soybean (Dt1/GmTFL1), common bean (PvTFL1y), cowpea (VuTFL1). The identification and characterization of the genes responsible for the type of stem growth habit are necessary for the successful selection of modern varieties suitable for mechanized cultivation. Design of molecular markers that diagnose this important breeding trait at early plant development stages, will help to determine the type of stem growth habit.


Full Text

Restricted Access

About the authors

Ekaterina A. Krylova

Federal Research Center “N.I. Vavilov All-Russian Institute of Plant Genetic Resources”

Author for correspondence.
Email: ea.krylova@bk.ru
ORCID iD: 0000-0002-4917-6862
SPIN-code: 5424-9513
Scopus Author ID: 35800046500

Russian Federation, St. Petersburg

Researcher, Laboratory of Postgenomic Researches

Elena K. Khlestkina

Federal Research Center “N.I. Vavilov All-Russian Institute of Plant Genetic Resources”

Email: director@vir.nw.ru
ORCID iD: 0000-0002-8470-8254
SPIN-code: 3061-1429
Scopus Author ID: 6603368411

Russian Federation, St. Petersburg

Doctor of Science, Director

Marina O. Burlyaeva

Federal Research Center “N.I. Vavilov All-Russian Institute of Plant Genetic Resources”

Email: m.burlyaeva@vir.nw.ru
ORCID iD: 0000-0002-3708-2594
SPIN-code: 7298-0174
Scopus Author ID: 6507877753

Russian Federation, St. Petersburg

PhD, Leading Researcher, Department of Grain Legumes Genetic Resources

Margarita A. Vishnyakova

Federal Research Center “N.I. Vavilov All-Russian Institute of Plant Genetic Resources”

Email: m.vishnyakova@vir.nw.ru
ORCID iD: 0000-0003-2808-7745
SPIN-code: 2802-9614
Scopus Author ID: 6603209207

Russian Federation, St. Petersburg

Professor, Chief Researcher, Head of the Department of Grain Legumes Genetic Resources

References

  1. Smýkal P, Coyne CJ, Ambrose MJ, et al. Legume crops phylogeny and genetic diversity for science and breeding. Crit Rev Plant Sci. 2015;34(1-3):43-104. https://doi.org/10.1080/07352689.2014.897904.
  2. FAO Departments and Offices. FAO; 2019 [cited 2019 July 7]. Available from: http://www.fao.org/faostat/ru/#data/QC.
  3. Hammer K. Das Domestikation syndrom. Die Kulturpflanze. 1984;32(1):11-34. https://doi.org/10.1007/bf02098682.
  4. Cober ER, Tanner JW. Performance of related indeterminate and tall determinate soybean lines in short-season areas. Crop Science. 1995;35(2):361-364. https://doi.org/10.2135/cropsci1995.0011183X003500020011x.
  5. Debouck DG, Toro O, Paredes OM, et al. Genetic diversity and ecological distribution of Phaseolus vulgaris (Fabaceae) in Northwestern South America. Econ Bot. 1993;47(4):408-423. https://doi.org/10.1007/bf02907356.
  6. Freyre R, Rios R, Guzman L, et al. Ecogeographic distribution of Phaseolus ssp. (Fabaceae) in Bolivia. Econ Bot. 1996;50(2):195-215. https://doi.org/10.1007/bf02861451.
  7. Harlan JR. Crops and Man. 2nd ed. American Society of Agronomy and Crop Science Society of America, Madison; 1992. 284 p. https://doi.org/10.1017/s0889189300004938.
  8. Вавилов Н.И. Ботанико-географические основы селекции. – М.; Л.: Сельхозгиз, 1935. – 60 с. [Vavilov NI. Botaniko-geograficheskie osnovi selekzii. Moscow; Leningrad: Sel’hozgiz; 1935. 60 p. (In Russ.)]
  9. De Candolle A. Origin of cultivated plants. London: K. Paul, Trench; 1884. 468 p. https://doi.org/10.5962/bhl.title.13795.
  10. Debouck DG. Biodiversity, ecology, and genetic resources of Phaseolus beans – Seven answered and unanswered questions. In: K. Oono, ed. Wild Legumes. MAFF International Workshop on Genetic Resources, Ministry of Agriculture, Forestry and Fisheries Research Council Secretariat and National Institute of Agrobiological Resources (NIAR), Tsukuba, Japan; 1999. Р. 95-123.
  11. De Ron AM, Papa R, Bitocchi E, et al. Common bean. In: Grain Legumes. 2015;1-36. https://doi.org/10.1007/978-1-4939-2797-5_1.
  12. Chacon MI, Gonzalez AV, Gutierrez JP, et al. Increased evidence for common bean (Phaseolus vulgaris L.) domestication in Colombia. Annu Rep Bean Improv Coop. 1996;39:201-202.
  13. Павлова А.М. Вигна. Каталог мировой коллекции ВИР. Вып. 80. – Л.: ВИР, 1972. – 29 с. [Pavlova AM. Vigna. Katalog mirovoy kollektsii VIR. Issue 80. Leningrad: VIR; 1972. 29 p. (In Russ.)]
  14. Kaga A, Isemura T, Tomooka N, et al. The genetics of domestication of the azuki bean (Vigna angularis). Genetics. 2008;178(2):1013-1036. https://doi.org/10.1534/genetics.107.078451.
  15. Kelly JD. Remaking bean plant architecture for efficient production. Advances in Agronomy. 2001;71:109-143. https://doi.org/10.1016/S0065-2113(01)71013-9.
  16. Singh SP. A key for identification of different growth habits of Phaseolus vulgaris L. Annu Rep Bean Improv Coop. 1982;25:92-94.
  17. Буданова В., Лагутина Л., Корнейчук В., и др. Международный классификатор СЭВ рода Phaseolus L. – Л., 1985. – 47 с. [Budanova V, Lagutina L, Kopneichuk V. Mezhdunarodnyy klassifikator SEV roda Phaseolus L. Leningrad; 1985. 47 p. (In Russ.)]
  18. Boukar O, Fatokun CA, Roberts PA, et al. Cowpea. In: Grain Legumes. Springer New York; 2015. Р. 219-50. https://doi.org/10.1007/978-1-4939-2797-5_7.
  19. Лутова Л.А., Ежова Т.А., Додуева И.Е., и др. Генетика развития растений. – СПб.: изд-во Н-Л, 2010. – 432 с. [Lutova LA, Ezhova TA, Dodueva IE, et al. Genetika razvitiya rasteniy. Saint Petersburg: izd-vo N-L; 2010. 432 p. (In Russ.)]
  20. Benlloch R, Berbel A, Serrano-Mislata A, et al. Floral initiation and inflorescence architecture: a comparative view. Mol Plant. 2007;100(3):659-676. https://doi.org/10.1093/aob/mcm146.
  21. Wickland DP, Hanzawa Y. The FLOWERING LOCUS T / TERMINAL FLOWER 1 gene family: functional evolution and molecular mechanisms. Mol Plant. 2015;8(7): 983-997. https://doi.org/10.1016/j.molp.2015.01.007.
  22. Ando E, Ohnishi M, Wang Y, et al. TWIN SISTER OF FT, GIGANTEA, and CONSTANS have a positive but indirect effect on blue light-induced stomatal opening in Arabidopsis. Plant Physiol. 2013;162(3):1529-38. https://doi.org/10.1104/pp.113.217984.
  23. Ryu JY, Park CM, Seo PJ. The floral repressor BROTHER OF FT AND TFL1 (BFT) modulates flowering initiation under high salinity in Arabidopsis. Mol Cells. 2011;32(3):295-303. https://doi.org/10.1007/s10059- 011-0112-9.
  24. Xi W, Liu C, Hou X, Yu H. MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. The Plant Cell. 2010;22(6):1733-1748. https://doi.org/10.1105/tpc.109.073072.
  25. Pnueli L, Carmel-Goren L, Hareven D, et al. The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development. 1998;125(11):1979-1989.
  26. Amaya I, Ratcliffe OJ, Bradley DJ. Expression of CENTRORADIALIS (CEN) and CEN-like genes in tobacco reveals a conserved mechanism controlling phase change in diverse species. The Plant Cell. 1999;11(8): 1405-1418. https://doi.org/10.1105/tpc.11.8.1405.
  27. Pnueli L, Gutfinger T, Hareven D, et al. Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. The Plant Cell. 2001;13(12):2687-2702. https://doi.org/10.1105/tpc.010293.
  28. Emerson RA. The inheritance of sizes and shapes in plants. A preliminary note. Am Natur. 1910;44(528): 739-746. https://doi.org/10.1086/279188.
  29. Norton JB. Inheritance of habit in the common bean. Am Natur. 1915;49(585):547-561. https://doi.org/10.1086/279499.
  30. Lamprecht H. Zur genetik von Phaseolus vulgaris. Hereditas. 2010;20(1-2):71-93. https://doi.org/10.1111/j.1601-5223.1935.tb03180.x.
  31. Lamprecht H. The inheritance of the slender-type of Phaseolus vulgaris and some other results. Agri Hort Genet. 1947;5:72-84.
  32. Koinange EM, Singh SP, Gepts P. Genetic control of the domestication syndrome in common bean. Crop Science. 1996;36(4):1037-1045. https://doi.org/10.2135/cropsci1996.0011183X003600040037x.
  33. Benlloch R, Berbel A, Ali L, et al. Genetic control of inflorescence architecture in legumes. Frontiers in Plant Sci. 2015;6:1-14. https://doi.org/10.3389/fpls.2015. 00543.
  34. Woodworth CM. Genetics and breeding in the improvement of the soybean. Illinois Agr Exp Sta Bull. 1932;384:297-404.
  35. Bernard RL. Two genes affecting stem termination in soybeans. Crop Science. 1972;12(2):235-239. https://doi.org/10.2135/cropsci1972.0011183X001200020028x.
  36. Thompson JA, Bernard RL, Nelson RL. A third allele at the soybean dt1 locus. Crop Science. 1997;37(3): 757-762. https://doi.org/10.2135/cropsci1997.0011183X003700030011x.
  37. Summerfield RJ, Wein HC. Effects of photoperiod and air temperature on growth and yield of economic legumes. In: R.J. Summerfield, A.H. Bunting, eds. Advances in legumes science. Kew, England: Royal Botanic Garden; 1981. Р. 17-36.
  38. Kim SE, Okubo H. Control of growth habit in determinate lablab bean (Lablab purpureus) by temperature and photoperiod. Scientia Horticulturae. 1995;61(3-4): 147-55. https://doi.org/10.1016/0304-4238(94)00740-7.
  39. Inouye J, Shanmugasundaram S, Masuyama T. Effects of of temperature and daylength soybean on the flowering some photo-insensitive varieties. Japan J Trop Agr. 1979;22(4):167-171.
  40. Gao J, Huang B-H, Wan Y-T, et al. Functional divergence and intron variability during evolution of angiosperm TERMINAL FLOWER1 (TFL1) genes. Scientific Reports. 2017;7(1):14830. https://doi.org/10.1038/s41598-017-13645-0.
  41. Ahn JH, Miller D, Winter VJ, et al. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J. 2006;25(3):605-614. https://doi.org/10.1038/sj.emboj.7600950.
  42. Hanzawa Y, Money T, Bradley D. A single amino acid converts a repressor to an activator of flowering. Proc National Acad Sci. 2005;102(21):7748-53. https://doi.org/10.1073/pnas.0500932102.
  43. Tahery Y, Abdul-Hamid H, Tahery E, et al. Terminal Flower 1 (TFL1) homolog genes in dicot plants. World Appl Sci J. 2011;12(4):545-551.
  44. Foucher F, Morin J, Courtiade J, et al. DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1 / CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea. Plant Cell Online. 2003;15(11): 2742-2754. https://doi.org/10.1105/tpc.015701.
  45. Singer SR, Hsiung LP, Huber SC. Determinate (det) mutant of Pisum sativum (Leguminosae: Papilionoideae) exhibits an indeterminate growth pattern. Am J Bot. 1990;77(10):1330-1335. https://doi.org/10.1002/j.1537-2197.1990.tb11384.x.
  46. Волчков Ю.А., Дрозд А.М. Наследование признака «тип роста стебля» у гороха // Селекционные и генетические исследования овощных и плодовых культур на Северном Кавказе: сб. науч. трудов по прикладной ботанике, генетике и селекции. Т. 101 / под ред. С.П. Дикого. – Л.: ВИР, 1986. – С. 46–48. [Volchkov YuA, Drozd AM. Nasledovaniye priznaka “tip rosta steblya” u gorokha. In: Selektsionnyye i geneticheskiye issledovaniya ovoshchnykh i plodovykh kul’tur na Severnom Kavkaze: sb. nauch. trudov po prikladnoi botanike, genetike i seleksii. Vol. 101. Ed by S.P. Dikiy. Leningrad: VIR; 1986. Р. 46-48. (In Russ.)]
  47. Синюшин А.А., Воловиков Е.А., Аш О.А., Хартина Г.А. Мутация determinate habit у гороха является полудоминантной // Зернобобовые и крупяные культуры. – 2016. – № 4. – С. 15–22. [Sinjushin AA, Volovikov EA, Ash OA, Khartina GA. Mutation determinate habit has a semidominant mode of inheritance in pea. Zernobobovye i krupyanye kultury. 2016;4:15-22. (In Russ.)]
  48. Кондыков И.В., Зотиков В.И., Зеленов А.Н., и др. Биология и селекция детерминантных форм гороха. – Орел: Картуш, 2006. – 120 с. [Kondykov IV, Zotikov VI, Zelenov AN, et al. Biologiya i selektsiya determinantnykh form gorokha. Orel: Kartush; 2006. 120 p. (In Russ.)]
  49. Kof EM, Kondykov IV. Pea (Pisum sativum L.) growth mutants. Int J Plant Dev Biol. 2007;1(1):141-146.
  50. Makasheva RKh, Drozd AM. Determinate growth habit (det) in peas: isolation, symbolization and linkage. PNL. 1987;19:31-32.
  51. Sinjushin A. Mutation genetics of pea (Pisum sativum L.): what is done and what is left to do. Ratar Povrt. 2013;50(2):36-43. http://doi.org/10.5937/ratpov50-4191.
  52. Berbel A, Ferrándiz C, Hecht V, et al. VEGETATIVE1 is essential for development of the compound inflorescence in pea. Nat Com. 2012;3(1):797. https://doi.org/10.1038/ncomms1801.
  53. Hecht V, Laurie RE, Vander Schoor JK, et al. The pea GIGAS gene is a FLOWERING LOCUS T homolog necessary for graft-transmissible specification of flowering but not for responsiveness to photoperiod. Plant Cell. 2011;23(1):147-61. https://doi.org/10.1105/tpc.110.081042.
  54. Weller JL, Ortega R. Genetic control of flowering time in legumes. Front Plant Sci. 2015;6:1-13. https://doi.org/10.3389/fpls.2015.00207.
  55. Sussmilch FC, Berbel A, Hecht V, et al. Pea VEGETATIVE2 is an FD homolog that is essential for flowering and compound inflorescence development. Plant Cell. 2015;27(4):1046-1060. https://doi.org/10.1105/tpc.115.136150.
  56. Liu B, Watanabe S, UchiyamaT, et al. The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol. 2010;153(1): 198-210. https://doi.org/10.1104/pp.109.150607.
  57. Tian Z, Wang X, Lee R, et al. Artificial selection for determinate growth habit in soybean. Proc Nat Acad Sci. 2010;107(19):8563-8568. https://doi.org/10.1073/pnas.1000088107.
  58. Ping J, Liu Y, Sun L, et al. Dt2 is a gain-of-function MADS-domain factor gene that specifies semideterminacy in soybean. Plant Cell. 2014;26(7):2831-42. https://doi.org/10.1105/tpc.114.126938.
  59. Xu M, Xu Z, Liu B, et al. Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biol. 2013;13(1):91. https://doi.org/10.1186/1471-2229-13-91.
  60. Kong F, Liu B, Xia Z, et al. Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol. 2010;154(3):1220-31. https://doi.org/10.1104/pp.110.160796.
  61. Nan H, Cao D, Zhang D, et al. GmFT2a and GmFT5a redundantly and differentially regulate flowering through interaction with and upregulation of the bZIP transcription factor GmFDL19 in soybean. PLoS ONE. 2014;9(5): e97669. https://doi.org/10.1371/journal.pone.0097669.
  62. Sun H, Jia Z, Cao D, et al. GmFT2a, a soybean homolog of FLOWERING LOCUS T, is involved in flowering transition and maintenance. PLoS ONE. 2011;6(12): e29238. https://doi.org/10.1371/journal.pone.0029238.
  63. Zhai H, Lü S, Liang S, et al. GmFT4, a homolog of FLOWERING LOCUS T, is positively regulated by E1 and functions as a flowering repressor in soybean. PLoS ONE. 2014;9(2): e89030. https://doi.org/10.1371/journal.pone.0089030.
  64. Kwak M, Velasco D, Gepts P. Mapping homologous sequences for determinacy and photoperiod sensitivity in common bean (Phaseolus vulgaris). J Heredity. 2008; 99(3):283-291. https://doi.org/10.1093/jhered/esn005.
  65. Kwak M, Toro O, Debouck DG, et al. Multiple origins of the determinate growth habit in domesticated common bean (Phaseolus vulgaris). Ann Botany. 2012;110(8):1573-1580. https://doi.org/10.1093/aob/mcs207.
  66. Repinski SL, Kwak M, Gepts P. The common bean growth habit gene PvTFL1y is a functional homolog of Arabidopsis TFL1. Theoret App Gen. 2012;124(8):1539-1547. https://doi.org/10.1007/s00122-012-1808-8.
  67. Kang YJ, Kim SK, Kim MY, et al. Genome sequence of mungbean and insights into evolution within Vigna species. Nat Com. 2014;5(1):5443. https://doi.org/10.1038/ncomms6443.
  68. Sakai H, Naito K, Takahashi Y, et al. The Vigna genome server, ‘VigGS’: a genomic knowledge base of the genus Vigna based on high-quality, annotated genome sequence of the azuki bean, Vigna angularis (Willd.) Ohwi & Ohashi. Plant Cell Physiol. 2016;57(1): e2 (1-9). https://doi.org/10.1093/pcp/pcv189.
  69. Dhanasekar P, Reddy KS. A novel mutation in TFL1 homolog affecting determinacy in cowpea (Vigna unguiculata). Mol Gen Genom. 2015;290(1):55-65. https://doi.org/10.1007/s00438-014-0899-0.
  70. Andargie M, Pasquet RS, Gowda BS, et al. Molecular mapping of QTLs for domestication-related traits in cowpea (V. unguiculata (L.) Walp.). Euphytica. 2014;200(3):401-412. https://doi.org/10.1007/s10681-014-1170-9.
  71. Dong Z, Zhao Z, Liu C, et al. Floral patterning in Lotus japonicus. Plant Physiol. 2005;137(4):1272-1282. https://doi.org/10.1104/pp.104.054288.
  72. Wang H, Chen J, Wen J, et al. Control of compound leaf development by FLORICAULA/LEAFY ortholog SINGLE LEAFLET1 in Medicago truncatula. Plant Physiol. 2008;146(4):1759-1772. http://doi.org//10.1104/pp.108.117044.
  73. Hofer JM, Noel Ellis T. Developmental specialisations in the legume family. Curr Opin Plant Biol. 2014;17(1):153-158. http://dx.doi.org/10.1016/j.pbi.2013.11.014.
  74. Jiao K, Li X, Su S, et al. Genetic control of compound leaf development in the mungbean (Vigna radiata L.). Hortic Res. 2019;6:23. doi: 10.1038/s41438-018-0088-0.
  75. Chi Y, Huang F, Liu H, et al. An APETALA1-like gene of soybean regulates flowering time and specifies floral organs. Plant Physiol. 2011;168(18):2251-2259. http://dx.doi.org/10.1016/j.jplph.2011.08.007.
  76. Benlloch R, D’Erfurth I, Ferrandiz C, et al. Isolation of mtpim proves Tnt1 a useful reverse genetics tool in Medicago truncatula and uncovers new aspects of AP1-like functions in legumes. Plant Physiol. 2006;142(3): 972-983. http://doi.org/10.1104/pp.106.083543.
  77. Berbel A, Navarro C, Ferrándiz C, et al. Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1-like genes controlling both floral meristem and floral organ identity in different plant species. Plant J. 2001;25(4): 441-451. http://doi.wiley.com/10.1046/j.1365-313x. 2001.00974.x.
  78. Taylor SA, Hofer JM, Murfet IC, et al. PROLIFERATING INFLORESCENCE MERISTEM, MADS-box gene that regulates floral meristem identity in pea. Plant Physiol. 2002;129(3):1150-1159. http://doi.org/10.1104/pp.001677.

Supplementary files

Supplementary Files Action
1.
Fig. 1. Plants with different types of growth. a - type of growth of bean plants [17]; b is a schematic representation. 1 - indeterminate, 2 - determinant

Download (323KB) Indexing metadata
2.
Fig. 2. Stages of the development of the flower Arabidopsis thaliana and the main control genes [19]

Download (189KB) Indexing metadata
3.
Fig. 3. The model of genetic control of the identity of the meristems of inflorescences in peas [33]

Download (91KB) Indexing metadata

Statistics

Views

Abstract - 204

PDF (Russian) - 10

PDF (简体中文) - 0

Cited-By


PlumX


Copyright (c) 2020 Krylova E.A., Khlestkina E.K., Burlyaeva M.O., Vishnyakova M.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies