Restoration of soil microbiome in various soil horizons after crown and surface wildfires

Cover Page
  • Authors: Gladkov G.V.1,2, Chebykina E.Y.1, Evdokimova E.V.1,2, Ivanova E.A.3, Kimeklis A.K.4,5, Zverev A.О.1,2, Kichko A.A.1,2, Andronov E.E.1,2,3, Abakumov E.V.1
  • Affiliations:
    1. St. Petersburg State University
    2. All-Russian Research Institute for Agricultural Microbiology
    3. V.V. Dokuchaev Soil Science Institute
    4. Saint-Petersburg State University
    5. All-Russia Research Insitute for Agricultural Microbiology
  • Issue: Vol 18, No 3 (2020)
  • Pages: 343-356
  • Section: Ecosystems metagenomics
  • URL: https://journals.eco-vector.com/ecolgenet/article/view/17641
  • DOI: https://doi.org/10.17816/ecogen17641
  • Cite item
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


Fires have a strong effect on soil microbiome, and the mechanisms of soil restoration after fires are currently not well understood. This study describes the characteristics of microbial communities in the Psamment Entisol soils of pine forests in the city of Togliatti after forest crown and surface fires. Geochemistry, soil respiration and microbial community structure via 16S rRNA gene sequencing were studied in different soil horizons. Both crown and surface fires resulted in the variations of microbial diversity and shifts in taxonomic composition. There is a tendency to an increase in the proportion of representatives from phyla Actinobacteria and Gemmatimonadetes for soil samples recovering after fires. An increase in the proportion of bacteria (Micrococcaceae, Blastocatellaceae) associated with the degradation of substances formed after combustion also has been shown. The research has shown that the crown fire has a smaller effect on the soil microbiome than the surface fire, the largest changes in the microbiome structure were found in the intermediate horizon. At the same time, differences in the structure of the soil microbiome between horizons are intensified after exposure to the soil of a surface fire.


Full Text

Restricted Access

About the authors

Grigory V. Gladkov

St. Petersburg State University; All-Russian Research Institute for Agricultural Microbiology

Author for correspondence.
Email: ruginodis@gmail.com
ORCID iD: 0000-0002-5248-9018
SPIN-code: 6677-1380
Scopus Author ID: 57214066592

Russian Federation, Saint Petersburg

Research Engineer, Department of Applied Ecology; Research Engineer, Laboratory of Rhizosphere Microflora

Ekaterina Yu. Chebykina

St. Petersburg State University

Email: doublemax@yandex.ru
ORCID iD: 0000-0002-2449-2180
SPIN-code: 4242-2483
Scopus Author ID: 52163901800
ResearcherId: O-8872-2014

Russian Federation, Saint Petersburg

PhD, Junior Researcher, Department of Applied Ecology

Elizaveta V. Evdokimova

St. Petersburg State University; All-Russian Research Institute for Agricultural Microbiology

Email: microbioliza@gmail.com
ORCID iD: 0000-0003-0834-3211
SPIN-code: 5082-3493
Scopus Author ID: 55025444700
ResearcherId: N-2985-2015

Russian Federation, Saint Petersburg

PhD, Senior Lecturer, Department of Microbiology, Department of Applied Ecology; Senior Researcher, Laboratory of Microbiological Monitoring and Bioremediation of Soils

Ekaterina A. Ivanova

V.V. Dokuchaev Soil Science Institute

Email: katriell@mail.ru
ORCID iD: 0000-0003-1589-9875
SPIN-code: 1641-3923
Scopus Author ID: 56640659000
ResearcherId: F-9279-2017

Russian Federation, Moscow

PhD, Senior Researcher, Department of Soil Biology and Biochemistry

Anastasiia K. Kimeklis

Saint-Petersburg State University;
All-Russia Research Insitute for Agricultural Microbiology

Email: kimeklis@gmail.com
ORCID iD: 0000-0003-0348-7021
SPIN-code: 9410-7854

Russian Federation, Saint Petersburg

Research Engineer, Department of Applied Ecology; Research Engineer, Laboratory of Microbiological Monitoring and Mioremediation of Soils

Alexey О. Zverev

St. Petersburg State University; All-Russian Research Institute for Agricultural Microbiology

Email: azver.bio@gmail.com

Russian Federation, Saint Petersburg

Research Engineer, Department of Applied Ecology; Research Engineer, Laboratory of Microbiological Monitoring and Mioremediation of Soils

Arina A. Kichko

St. Petersburg State University; All-Russian Research Institute for Agricultural Microbiology

Email: 2014arki@gmail.com
ORCID iD: 0000-0002-8482-6226

Russian Federation, Saint Petersburg

Research Engineer, Department of Applied Ecology; Research Engineer, Laboratory of Microbiological Monitoring and Bioremediation of Soils

Evgeny E. Andronov

St. Petersburg State University; All-Russian Research Institute for Agricultural Microbiology; V.V. Dokuchaev Soil Science Institute

Email: eeandr@gmail.com
ORCID iD: 0000-0002-5204-262X
SPIN-code: 5547-4243
Scopus Author ID: 13605813400
ResearcherId: S-1688-2016

Russian Federation, Saint Petersburg; Saint Petersburg; Moscow

PhD, Senior Researcher, Department of Genetics and Biotechnology; Head of Laboratory, Laboratory of Microbiological Monitoring and Bioremediation of Soils; Leading Researcher, Department of Soil Biology and Biochemistry

Evgeny V. Abakumov

St. Petersburg State University

Email: e_abakumov@mail.ru
ORCID iD: 0000-0002-5248-9018
SPIN-code: 8878-4010
Scopus Author ID: 8660197600
ResearcherId: B-5291-2013

Russian Federation, Saint Petersburg

Doctor of Science, Head of Department, Department of Applied Ecology

References

  1. Sun H, Santalahti M, Pumpanen J, et al. Bacterial community structure and function shift across a northern boreal forest fire chronosequence. Sci Rep. 2016;6:32411. https://doi.org/10.1038/srep32411.
  2. Neary DG, Klopatek CC, DeBano LF, Ffolliott PF. Fire effects on belowground sustainability: A review and synthesis. For Ecol Manage. 1999;122(1-2):51-71. https://doi.org/10.1016/s0378-1127(99)00032-8.
  3. Mataix-Solera J, Guerrero C, García-Orenes F, et al. Fire effects on soils and restoration strategies. In: Forest Fire Effects on Soil Microbiology. Science Publishers, Inc., Enfield, New Hampshire, USA; 2009. Р. 133-175. https://doi.org/10.1201/9781439843338-c5.
  4. Zhalnina K, de Quadros PD, Gano KA, et al. Ca. Nitrososphaera and Bradyrhizobium are inversely correlated and related to agricultural practices in long-term field experiments. Front Microbiol. 2013;4:104. https://doi.org/10.3389/fmicb.2013.00104.
  5. Khodadad CL, Zimmerman AR, Green SJ, et al. Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments. Soil Biol Biochem. 2011;43(2):385-392. https://doi.org/10.1016/j.soilbio.2010.11.005.
  6. Song M, Peng WX, Zeng FP, et al. Spatial patterns and drivers of microbial taxa in a karst broadleaf forest. Front Microbiol. 2018;9:1691. https://doi.org/10.3389/fmicb.2018.01691.
  7. Maksimova EY, Kudinova AG, Abakumov EV. Functional activity of soil microbial communities in post-fire pine stands of Tolyatti, Samara Oblast. Soil Biology. 2017;50(2):249-255. https://doi.org/10.1134/s1064229317020119.
  8. Xiang X, Shi Y, Yang J, et al. Rapid recovery of soil bacterial communities after wildfire in a Chinese boreal forest. Sci Rep. 2014;4:3829. https://doi.org/10.1038/srep03829.
  9. Fernández-González AJ, Martínez-Hidalgo P, Cobo-Díaz JF, et al. The rhizosphere microbiome of burned holm-oak: Potential role of the genus Arthrobacter in the recovery of burned soils. Sci Rep. 2017;7(1):6008. https://doi.org/10.1038/s41598-017-06112-3.
  10. Weber CF, Lockhart JS, Charaska E, et al. Bacterial composition of soils in ponderosa pine and mixed conifer forests exposed to different wildfire burn severity. Soil Biol Biochem. 2014;69:242-250. https://doi.org/10.1016/j.soilbio.2013.11.010.
  11. Dymov AA, Abakumov EV, Bezkorovaynaya IN, et al. Impact of forest fire on soil properties (review). Theoretical and applied ecology. 2018;(4):13-23. https://doi.org/10.25750/1995-4301-2018-4-013-023.
  12. Bates ST, Berg-Lyons D, Caporaso JG, et al. Examining the global distribution of dominant archaeal populations in soil. ISME J. 2010;5(5): 908-917. https://doi.org/10.1038/ismej.2010.171.
  13. Lane DJ. 16S/23S rRNA Sequencing. In: Stackebrandt E., Goodfellow M., eds. Nucleic acid techniques in bacterial systematic. John Wiley and Sons, New York; 1991.
  14. Muyzer G, de Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1993;59(3):695-700. https://doi.org/10.1128/aem.59.3.695-700.1993.
  15. Yu Y, Lee C, Hwang S. Analysis of community structures in anaerobic processes using quantitative real-time PCR method. Water Sci Technol. 2005;52(1-2):85-91.
  16. The R Project for Statistical Computing. Getting Started [cited 2020 June 22]. Available from: https://www.R-project.org/.
  17. Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME. Nat Biotechnol. 2019:37(8):852-857. https://doi.org/10.1038/s41587-019-0209-9.
  18. RStudio Team. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA; 2016. Available from: http://www.rstudio.com/.
  19. Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7): 581-583. https://doi.org/10.1038/nmeth.3869.
  20. Nearing JT, Douglas GM, Comeau AM, Langille MGI. Denoising the denoisers: an independent evaluation of microbiome sequence error-correction approaches. Peer J. 2018;6:e5364. https://doi.org/10.7717/peerj.5364.
  21. Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41 (Database issue): D590-D596. https://doi.org/10.1093/nar/gks1219.
  22. Janssen S, McDonald D, Gonzalez A, et al. Phylogenetic placement of exact amplicon sequences improves associations with clinical information. mSystems. 2018;3(3): e00021-e00018. https://doi.org/10.1128/mSystems.00021-18.
  23. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8.
  24. Anderson MJ. Permutational multivariate analysis of variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online. 2017;1-15. https://doi.org/10.1002/9781118445112.stat07841.
  25. Oksanen FJ. Blanchet G, Friendly M, et al. vegan: Community Ecology Package. R package version [cited 2019 September 01]. 2019. Available from: https://CRAN.R-project.org/package=vegan.
  26. McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8(4):e61217. https://doi.org/10.1371/journal.pone.0061217.
  27. Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York; 2016.
  28. Kassambara A. ggpubr: «ggplot2»; Based Publication Ready Plots. R, 2019; package version 0.2.3. Available from: https://CRAN.R-project.org/package=ggpubr.
  29. Wickham H, François R, Henry L, Müller K. dplyr: A Grammar of Data Manipulation. R package version 0.8.3. 2019. Available from: https://CRAN.R-project.org/package=dplyr.
  30. Müller K, Wickham H. tibble: Simple Data Frames. R package version 2.1.3. 2019. Available from: https://CRAN.R-project.org/package=tibble.
  31. Breiman L. Random Forests. Mach Learn. 2001;45(1):5-32. https://doi.org/10.1023/ a:1010933404324.
  32. Ashley Shade, Stuart E. Jones, J. Gregory Caporaso,, et al. Conditionally Rare Taxa Disproportionately Contribute to Temporal Changes in Microbial Diversity. Am Soc Microbiol. 2014;21(4):3-11. https://doi: 10.1128/mBio.01371-14.Editor
  33. Kaminsky R, Morales SE. Conditionally Rare Taxa Contribute but Do Not Account for Changes in Soil Prokaryotic Community Structure. 2018;9(April): 1-6. https://doi: 10.3389/fmicb.2018.00809
  34. Dawson W, Hör J, Egert M, et al. A small number of low-abundance bacteria dominate plant species-specific responses during rhizosphere colonization. Front Microbiol. 2017;8:975. https://doi.org/10.3389/fmicb.2017.00975.
  35. Bay SK, Mcgeoch MA, Gillor O, et al. Soil Bacterial Communities Exhibit Strong Biogeographic Patterns at Fine Taxonomic Resolution. Msystems. 2020; doi: 10.1128/mSystems.00540-20.
  36. Kaminsky R, Morales SE. Conditionally rare taxa contribute but do not account for changes in soil prokaryotic community structure. Front Microbiol. 2018;9:809. https://doi.org/10.3389/fmicb.2018.00809.
  37. Weber CF, Lockhart JS, Charaska E, et al. Bacterial composition of soils in ponderosa pine and mixed conifer forests exposed to different wildfire burn severity. Soil Biol Biochem. 2014;69:242-250. https://doi.org/10.1016/j.soilbio.2013.11.010.
  38. Ghosal D, Ghosh S, Dutta TK, Ahn Y. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Front Microbiol. 2016. https://doi: 10.3389/fmicb.2016.01369.
  39. Peng RH, Xiong AS, Xue Y, et al. Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev. 2008;32(6):927-955. https://doi.org/10.1111/j.1574-6976.2008.00127.x.
  40. Stahl DA, de la Torre JR. Physiology and diversity of ammonia-oxidizing archaea. Annu Rev Microbiol. 2012;66(1):83-101. https://doi.org/10.1146/annurev-micro-092611-150128.
  41. Wüst PK, Geppert A, Huber KJ, et al. Brevitalea aridisoli, B. deliciosa and Arenimicrobium luteum, three novel species of Acidobacteria subdivision 4 (class Blastocatellia) isolated from Namibian savanna soil and description of the novel family Pyrinomonadaceae. Int J Syst Evol Microbiol. 016;66: 3355-66. https://doi.org/10.1099/ijsem.0.001199.
  42. Foesel BU, Rohde M, Overmann J. Blastocatella fastidiosa gen. nov., sp. nov., isolated from semiarid savanna soil – the first described species of Acidobacteria subdivision 4. Syst Appl Microbiol. 2013;36:82-89.
  43. Dedysh SN, Ivanova AA. Planctomycetes in boreal and subarctic wetlands: Diversity patterns and potential ecological functions. FEMS Microbiol Ecol. 2019;95(2). https://doi.org/10.1093/femsec/fiy227.
  44. Gołebiewski M, Deja-Sikora E, Cichosz M, et al. 16S rDNA pyrosequencing analysis of bacterial community in heavy metals polluted soils. Microb Ecol. 2014;67(3):635-647. https://doi.org/10.1007/s00248-013-0344-7.
  45. Pershina E, Valkonen J, Kurki P, et al. Comparative analysis of prokaryotic communities associated with organic and conventional farming systems. PLoS One. 2015;10(12): e0145072. https://doi.org/10.1371/journal.pone.0145072.
  46. Delgado-Baquerizo M, Oliverio AM, Brewer TE, et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359(6373):320-325. https://doi.org/10.1126/science.aap9516.

Supplementary files

Supplementary Files Action
1.
Figure: 1. Distribution of the representation of phylotypes by their frequencies. The abscissa is the intervals of the relative abundance of phylotypes (as a percentage of the total number of phylotypes in the sample), the ordinate is the median value of the number of phylotypes for a given range

Download (163KB) Indexing metadata
2.
Figure: 2. Ordination of NMDS on the distance of Bray - Curtis beta diversity of the soil microbiome. Marker shape - type of fire, labels - horizon and sampling point

Download (105KB) Indexing metadata
3.
Figure: 3. Real-time polymerase chain reaction. Vertical - the number of ribosomal operons, mean error is noted

Download (55KB) Indexing metadata

Statistics

Views

Abstract - 98

PDF (Russian) - 0

Cited-By


Article Metrics

Metrics Loading ...

PlumX

Dimensions


Copyright (c) 2020 Gladkov G.V., Chebykina E.Y., Evdokimova E.V., Ivanova E.A., Kimeklis A.K., Zverev A.О., Kichko A.A., Andronov E.E., Abakumov E.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies