Hereditary determined diving behaviour in rats as a factor of fitness

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


Background. Rats’ natural ability to swim and dive provides adaptation in the wildlife and is widely applied as an instrument in experimental physiology. Nevertheless there’s little scientific evidence on diving behaviour in rats itself. Meanwhile this behavioural pattern might be a notable trait to shed light on functional features of the nervous system, the higher nervous activity structure and evolutional adaptability in animals, including inherited ones.

Materials and methods. In the present work we compared the performance of the spontaneous diving behaviour in the Morris water maze and forced diving behaviour in the “Extrapolation escape task” in two selected rat strains genetically differing in the nervous system excitability threshold.

Results. We found a greater extent and adaptive pattern of both types of the diving behaviour in the high-excitable LT strain. This may be due to such basic features of this strain as high exploratory activity and an increased level of fear reactions. It was also shown that the second, low-excitable HT rat strain, demonstrates maladaptive jumping behaviour in the “Extrapolation escape task” due to higher anxiety level in the stress conditions.

Conclusion. Observed differences between two strains allow us to consider the diving behaviour performed by high-excitable rats an inherited strain characteristic resembling adaptive rat behaviours in the wild and look forward to investigate its genetic mechanisms.


Full Text

Restricted Access

About the authors

Anna S. Levina

Pavlov Institute of Physiology, Russian Academy of Sciences

Author for correspondence.
Email: anna.avia@gmail.com
ORCID iD: 0000-0002-1082-1801
SPIN-code: 8662-7227
Scopus Author ID: 57196823274
ResearcherId: AAE-1425-2020

Russian Federation, Saint Petersburg

Junior Researcher, Laboratory of Higher Nervous Activity Genetics

Nina A. Bondarenko

RPC OpenScience Ltd

Email: pochinok30@rambler.ru
ORCID iD: 0000-0002-1141-2620

Russian Federation, Moscow

PhD, Scientific Advisor

Natalia V. Shiryaeva

Pavlov Institute of Physiology, Russian Academy of Sciences

Email: shiryaevanv@infran.ru
ORCID iD: 0000-0001-9940-9575
SPIN-code: 6291-7682

Russian Federation, Saint Petersburg

PhD, Senior Researcher, Laboratory of Higher Nervous Activity Genetics

Alexander I. Vaido

Pavlov Institute of Physiology, Russian Academy of Sciences

Email: vaidoai@infran.ru
ORCID iD: 0000-0002-6209-9902
SPIN-code: 1323-5153

Russian Federation, Saint Petersburg

Doctor of Science, Main Researcher, Laboratory of Higher Nervous Activity Genetics

Natalia A. Dyuzhikova

Pavlov Institute of Physiology of the RAS

Email: dyuzhikova@mail.ru
ORCID iD: 0000-0003-3617-5948
SPIN-code: 6206-3889

Russian Federation, Saint Petersburg

Doctor of Science, Head of the Laboratory of Higher Nervous Activity Genetics

References

  1. Cottam C. Aquatic habits of the Norway rat. J Mammal. 1948;29: 299. doi: 10.1093/jmammal/29.3.299.
  2. Galef BG. Diving for food: Analysis of a possible case of social learning in wild rats (Rattus norvegicus). J Comp Physiol Psychol. 1980;94(3):416–425. doi: 10.1037/h0077678.
  3. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984;11(1):47-60. doi: 10.1016/0165-0270(84)90007-4.
  4. Vorhees C, Williams M. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 2006;1(2):848–858. doi: 10.1038/nprot.2006.116.
  5. Porsolt RD, Anton G, Blavet N, Jalfre M. Behavioural despair in rats: A new model sensitive to antidepressant treatments. Eur J Pharmacol. 1978;47(4):379–391. doi: 10.1016/0014-2999(78)90118-8.
  6. Lino-De-Oliveira C, Lima T, Carobrez A. Structure of the rat behaviour in the forced swimming test. Behav Brain Res.. 2005;158(2):243–250. doi: 10.1016/j.bbr.2004.09.004.
  7. Yankelevitch-Yahav R, Franko M, Huly A, Doron R. The forced swim test as a model of depressive-like behavior. J Vis Exp. 2015;97:art.e52587. doi: 10.3791/52587.
  8. Boyko M, Kutz R, Grinshpun J, et al. The effect of depressive-like behavior and antidepressant therapy on social behavior and hierarchy in rats. Behav Brain Res. 2019;370:111953. doi: 10.1016/j.bbr.2019.111953.
  9. Colin C, Desor D. Différenciations comportementales dans des groupes de rats soumis à une difficulté d'accès à la nourriture [Behavioral differences in groups of rats subjected to difficulty attaining food]. Behav Processes. 1986;13:85-100. doi: 10.1016/0376-6357(86)90019-7.
  10. Grasmuck V, Desor D. Behavioural differentiation of rats confronted to a complex diving-for-food situation. Behav Processes. 2002;58(1-2):67–77. doi: 10.1016/s0376-6357(01)00209-1.
  11. Panneton WM, Gan Q, Juric R. The rat: a laboratory model for studies of the diving response. J Appl Physiol (1985). 2010;108(4):811-820. doi: 10.1152/japplphysiol.00600.2009.
  12. McCulloch PF. Training rats to voluntarily dive underwater: investigations of the mammalian diving response. J Vis Exp. 2014;93:art.e52093. doi: 10.3791/52093.
  13. Mason WA, Stone CP. Maze performance of rats under conditions of surface and underwater swimming. J Comp Physiol Psychol. 1953;46(3):159–65. doi: 10.1037/h0059146.
  14. Wilcock J. Water-escape in weanling rats: A link between behaviour and biological fitness. Anim Behav. 1972;20(3):543–547. doi: 10.1016/s0003-3472(72)80019-8.
  15. Stryjek R, Modlińska K, Pisula W. Species specific behavioural patterns (digging and swimming) and reaction to novel objects in wild type, Wistar, Sprague-Dawley and Brown Norway rats. PLoS One. 2012;7(7):art.e40642. doi: 10.1371/journal.pone.0040642.
  16. Ogawa S, Okuyama S, Araki H, et al. A rat model of phencyclidine psychosis. Life Sci. 1994;55(21):1605-1610. doi: 10.1016/0024-3205(94)00326-2.
  17. Ogawa S-I, Okuyama S, Tsuchida K, et al. The sigma-selective ligand NE-100 attenuates the effect of phencyclidine in a rat diving model. Gen Pharmacol. 1995;26(1):177–182. doi: 10.1016/0306-3623(94)00151-c.
  18. Enomoto T, Ishibashi T, Tokuda K, et al. Lurasidone reverses MK-801-induced impairment of learning and memory in the Morris water maze and radial-arm maze tests in rats. Behav Brain Res. 2008;186(2):197–207. doi: 10.1016/j.bbr.2007.08.012.
  19. Вайдо А.И., Ситдиков М.Х. Селекция линий крыс по долгосрочному порогу возбудимости нервно-мышечного аппарата // Генетика. – 1979. – Т. 15. – № 1. –С. 144-148. [Vaĭdo AI, Sitdikov MKh. Selekcija linij krys po dolgosrochnomu porogu vozbudimosti nervno-myshechnogo apparata. Russ J Genet. 1979;15(1):144-148. (In Russ.)]
  20. Вайдо А.И., Дюжикова Н.А., Ширяева Н.В., и др. Системный контроль молекулярно-клеточных и эпигенетических механизмов долгосрочных последствий стресса // Генетика. – 2009. – Т. 45. – № 3. – С. 342–348. [Vaido AI, Dyuzhikova NA, Shiryaeva NV, et al. Systemic control of the molecular, cell, and epigenetic mechanisms of long-lasting consequences of stress. Russ J Genet. 2009;45(3):298–303. (In Russ.)] doi: 10.1134/s1022795409030065.
  21. Левина А. С., Захаров Г. А., Ширяева Н. В., Вайдо А. И. Сравнительная характеристика поведения крыс двух линий, различающихся по порогу возбудимости нервной системы, в модели пространственного обучения в водном лабиринте Морриса // Журнал высшей нервной деятельности им. И.П. Павлова. – 2018. – Т. 68. – № 3. – С. 366-377. [Levina AS, Zakharov GA, Shiryaeva NV, Vaido AI. Comparative behavioral characteristics of two rat strains differing in the nervous system excitability threshold in a spatial learning task in the Morris water maze. Zh. Vyssh. Nerv. Deiat. Im. I.P. Pavlova. 2018;68(3):366-377. (In Russ.)]. doi: 10.7868/S0044467718030097.
  22. Бондаренко Н.А. Изучение стресс-протективного действия психотропных средств и нейропептидов в зависимости от индивидуальной реактивности животных: Дис. ... канд. биол. наук. – Москва, 1982. [Bondarenko NA. Izuchenie stress-protektivnogo dejstvija psihotropnyh sredstv i nejropeptidov v zavisimosti ot individual'noj reaktivnosti zhivotnyh. [dissertation] Moscow; 1982. (In Russ.)]
  23. Бондаренко Н.А. Изучение возможности формирования целенаправленного поведения у крыс с «одной пробы» в тесте «Экстраполяционное избавление». В кн.: Эволюционная и сравнительная психология в России: традиции и перспективы / Под ред. А.Н. Харитонова. – М., 2013. – С. 122-130. [Bondarenko NA. Izuchenie vozmozhnosti formirovanija celenapravlennogo povedenija u krys s «odnoj proby» v teste «Jekstrapoljacionnoe izbavlenie». In: Kharitonov AN, editor. Jevoljucionnaja i sravnitel'naja psihologija v Rossii: tradicii i perspektivy. Moscow; 2013. p.122-130. (In Russ.)]
  24. Гланц С. Медико-биологическая статистика. – М.: Практика, 1998. [Glantz SA. Primer of biostatistics. Moscow: Praktika, 1998. (in Russ.)]
  25. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995;57(1):289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x.
  26. Гржибовский А.М. Доверительные интервалы для частот и долей // Экология человека. – 2008. – № 5. – С. 57-60. [Grjibovski AM. Confidence intervals for proportions. Jekologija cheloveka. 2008;5:57-60. (In Russ.)]
  27. Sauro J. Confidence interval calculator for a completion rate. In: measuringu.com [Internet]. Denver, Colorado: MeasuringU; c2004-2019 [cited 2020 Mar 22] Available from: http://www.measuringusability.com/wald.htm.
  28. Бондаренко Н. А., Бондаренко Н. А. Индивидуальные различия поведения крыс в тесте «экстраполяционное избавление»: возможность выявления «тревожного» фенотипа // конф. «Инновации в фармакологии: от теории к практике». – Санкт-Петербург, 2014. – С. 28-30. [Bondarenko NA, Bondarenko NA. Individual'nye razlichija povedenija krys v teste «jekstrapoljacionnoe izbavlenie»: vozmozhnost' vyjavlenija «trevozhnogo» fenotipa. Conf. «Innovacii v farmakologii: ot teorii k praktike». (Conference proceedings) Saint-Petersburg; 2014. P. 28-30. (In Russ.)]
  29. Бондаренко Н.А. Чему учатся крысы с разной эмоциональной реактивностью в тесте «Экстраполяционное избавление»? // конф. «Когнитивная наука в Москве». – Москва, 2015. – С. 47-52. [Bondarenko NA. What do rats learn in an «Extrapolatory escape test»? Conf. «Kognitivnaja nauka v Moskve». (Conference proceedings) Moscow; 2015. P. 47-52. (In Russ.)]
  30. Вайдо А.И., Дмитриев Ю.С., Кулагин Д.А., Ситдиков М.Х. Сравнительно-генетический анализ возбудимости нервной системы и некоторых видов двигательной активности у крыс // Генетика. – 1983. – Т. 19. – № 9. – С. 1446-1449. [Vaĭdo AI, Dmitriev IuS, Kulagin DA, Sitdikov MKh. Comparative genetic analysis of the excitability of the nervous system and of certain types of motor activity in rats. Russ J Genet. 1983;19(9):1446-1450. (In Russ.)]
  31. Вайдо А.И., Жданова И.В., Ширяева Н.В. Реакция «эмоционального резонанса» у крыс с различным уровнем возбудимости нервной системы // Журнал высшей нервной деятельности им. И.П. Павлова. – 1987. – Т. 37. – № 3. – С. 575-580. [Vaĭdo AI, Zhdanova IV, Shiriaeva NV. "Emotional resonance" responses of rats with different levels of nervous system excitability. Zh. Vyssh. Nerv. Deiat. Im. I.P. Pavlova. 1987;37(3):575-577. (In Russ.)]
  32. Ширяева Н.В., Вайдо А.И., Лопатина Н.Г., и др. Дифференциальная чувствительность к невротизирующему воздействю линий крыс, различающихся по порогу возбудимости нервной системы // Журнал высшей нервной деятельности им. И.П. Павлова. – 1992. – Т. 42. – № 1. – С. 137-143. [Shiriaeva NV, Vaĭdo AI, Lopatina NG, et al. The differential sensitivity to a neurotigenic exposure of rat strains differing by the threshold of nervous system excitability. Zh. Vyssh. Nerv. Deiat. Im. I.P. Pavlova. 1992;42(1):137-143. (In Russ.)]
  33. Вайдо А.И., Ширяева Н.В., Павлова М.Б., и др. Селектированные линии крыс с высоким и низким порогом возбудимости: модель для изучения дезадаптивных состояний, зависимых от уровня возбудимости нервной системы // Лабораторные животные для научных исследований. – 2018. – Т. 3. – С. 12-22. [Vaido A, Shiryaeva N, Pavlova M, et al. Selected rat strains Ht, Lt as a model for the study of dysadaptation states dependent on the level of excitability of the nervous system. Laboratory Animals for Science. 2018;3:12-22. (In Russ.)]. doi: 10.29296/2618723X-2018-03-02.
  34. Левина А.С, Бондаренко Н.А., Ширяева Н.В., Вайдо А.И. Стратегии поведения крыс двух линий, различающихся по порогу возбудимости нервной системы, в ситуациях новизны и краткосрочного стресса // Международный конгресс «VII съезд Вавиловского общества генетиков и селекционеров, посвященный 100-летию кафедры генетики СПбГУ, и ассоциированные симпозиумы». – Санкт-Петербург, 2019. – С. 1051. [Levina AS, Bondarenko NA, Shiryaeva NV, Vaido AI. Behavioural strategies in two rat strains differing in the nervous system excitability threshold in the situations of novelty and short-term stress. Intern. Congress «VII Congress and Associate Symposiums of Vavilov Society of Geneticists and Breeders on the 100th Anniversary of the Department of Genetics of Saint-Petersburg State University». (Conference proceedings) Saint-Petersburg, 2019. P. 1051. (In Russ.)]

Supplementary files

Supplementary Files Action
1.
Figure: 1. Diagram of the "Test of extrapolation disposal" setup: 1 - external reservoir; 2 - water; 3 - fastening of the inner cylinder; 4 - inner hollow cylinder

Download (52KB) Indexing metadata
2.
Figure: 2. Comparison of the percentage ratios of the number of rats demonstrating different forms of diving behavior in the VP (n = 75) and NP (n = 76) lines: a - deep diving; b - shallow diving; c - immersion of the head under water; statistically significant interlinear differences: * p = 0.0092; ** p = 0.0001 (Chi-square test with Yates correction). 95% confidence intervals in square brackets

Download (74KB) Indexing metadata
3.
Figure: 3. Distribution of deep diving acts in the experiment with the Morris water maze in EP (n = 5) and LP (n = 26) rats in the temporal and spatial aspects: a is the number of EP rats that dived and the number of over 20 experiment attempts; b - the number of NP rats that dived and the number of dives they made during 20 experiment attempts; c - localization and direction of dives in the water maze in VP rats; d - localization and direction of diving in the water maze in NP rats; Figures c and d show the complete set of single deep diving events recorded in rats of two strains during the experiment, the localization and direction of the dives are indicated by black arrows: the point where the dive starts is indicated by the base of the arrow, the direction is indicated by the head of the arrow; light gray indicates the zone of thigmotaxis, dark gray indicates the hidden platform

Download (143KB) Indexing metadata
4.
Figure: 4. Correlation between the duration of thigmotaxis and the number of spontaneous deep dives in NP rats (n = 41) in the first attempt at a spatial learning experiment in the Morris water maze. The relationship between the variables is described by a nonlinear regression model, Spearman's rank correlation coefficient is 0.37 at a significance level of p = 0.0178, which indicates the presence of a reliable weak positive relationship between the variables

Download (64KB) Indexing metadata
5.
Figure: 5. Parameters of behavior of rats of the EP (n = 7) and NP (n = 6) lines in two successive exposures in the "Extrapolation release" test: a - duration of jumping activity; b - diving latency; medians with confidence intervals are presented; significant interlinear differences: * p = 0.0026; ** p = 0.0034

Download (63KB) Indexing metadata

Statistics

Views

Abstract - 40

PDF (Russian) - 0

Cited-By


Article Metrics

Metrics Loading ...

PlumX

Dimensions


Copyright (c) 2020 Levina A.S., Bondarenko N.A., Shiryaeva N.V., Vaido A.I., Dyuzhikova N.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies