Studying the genotoxic effects of the working environment on the workers of a coal-fired power plant using a micronuclear test on blood lymphocytes

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Background: The micronucleus test of peripheral blood lymphocytes provides a qualitative assessment of the state of the genome. A study was carried out aimed at studying the influence of factors of the working environment of coal-fired power plants on the state of the DNA of working data of enterprises.

Materials and methods: Using a micronucleus test with a cytochalasin block on human blood lymphocytes in vitro, 116 men were examined: 45 employees of the Novo-Kemerovo coal-fired power plant and 71 healthy residents of the Kemerovo region.

Results: An increase in the frequency of occurrence of cells with micronuclei, bridges and protrusions in the blood lymphocytes of workers of a coal-fired power plant in comparison with healthy residents of the same area was found.

Conclusion: The data confirm the existing idea of the potential danger of combustion products for human health.

Full Text

Restricted Access

About the authors

Vladislav I. Fedoseev

Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
ORCID iD: 0000-0002-5359-3845
SPIN-code: 1473-4062

Russian Federation, 18 Sovetski av., 650000 Kemerovo

An engineer-technologist of the cytogenetics laboratory

Danil D. Stepanov

Kemerovo State University

SPIN-code: 3649-1860

Russian Federation, Kemerovo


Varvara I. Minina

Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences; Kemerovo State University

ORCID iD: 0000-0003-3485-9123
SPIN-code: 5153-8594

Russian Federation, 18 Sovetski av., 650000 Kemerovo; Kemerovo

Dr. Sci. (Biol.)


  1. Kocaman A, Güzelkokar M. The genotoxic and antigenotoxic potential of the methanolic root extract of Glycyrrhiza glabra L. on human peripheral blood lymphocytes. Drug Chem Toxicol. 2018;41(3):368–375. doi: 10.1080/01480545.2018.1435686
  2. Speit G, Linsenmeyer R, Schütz P, et al. Insensitivity of the in vitro cytokinesis-block micronucleus assay with human lymphocytes for the detection of DNA damage present at the start of the cell culture. Mutagenesis. 2012;27(6):743–747. doi: 10.1093/mutage/ges041
  3. Ardito F, Giuliani M, Perrone D, et al. The crucial role of proteinphosphorylation in cell signaling and its use as targeted therapy. Int J Mol Med. 2017;40(2):271–280. doi: 10.3892/ijmm.2017.3036
  4. Pavão G, Venâncio V, de Oliveira A, et al. Differential genotoxicity and cytotoxicity of phomoxanthoneA isolated from the fungus Phomopsis longicolla in HL60 cells and peripheral blood lymphocytes. Toxicol in Vitro. 2016;37:211–217. doi: 10.1016/j.tiv.2016.08.010
  5. Gül S, Demirci B, Başer K, et al. Chemical composition and in vitro cytotoxic, genotoxic effects of essential oil from Urticadioica L. Bull Environ Contam Toxicol. 2012;88(5):666–771. doi: 10.1007/s00128-012-0535-9
  6. Pavlov VV, Aleschenko AV, Antoschina MM, et al. Molecular-Cellular Characteristic of Blood Lymphocytes in Hodgkin Lymphoma. Radiation biology. Radioecology. 2010;50(5):508–513. (In Russ.)
  7. Vorobyeva NYu, Antoshina MM, Pelevina II, et al. The investigation of DNA damage level in lymphocytes of prostate cancer patients. Bulletin of the Russian Scientific Center of Roentgenoradiology. 2012;(12):24. (In Russ.)
  8. Kalaev VN, Skamrova GB, Ignatova IV. The evaluation of genetic material stability of male patients with paranoid schizophrenia at different stages of treatment using the micronucleus test in buccal epithelium. Ecological genetics. 2015;13(3):3–14. (In Russ.) doi: 10.17816/ecogen1333-14
  9. DeForge L, Preston A, Takeuchi E, et al. Regulation of interleukin 8 gene expression by oxidant stress. J Biol Chem. 1993;268: 25568–25576.
  10. Bilban M, Jakopin CB. Incidence of cytogenetic damage in lead-zinc mine workers exposed to radon. Mutagenesis. 2005;20(3): 187–191. doi: 10.1093/mutage/gei024
  11. Mastrangelo G, Fadda E, Marzia V. Polycyclic aromatic hydrocarbons and cancer in man. Envirion Health Perspect. 1996;104(11):1166–1170. doi: 10.1289/ehp.961041166
  12. León-Mejía G, Quintana M, Debastiani R, et al. Genetic damage in coal miners evaluated by buccal micronucleus cytome assay. Ecotoxicol Environ Saf. 2014;107:133–139. doi: 10.1016/j.ecoenv.2014.05.023
  13. Rohr P, Kvitko K, da Silva FR, et al. Genetic and oxidative damage of peripheral blood lymphocytes in workers with occupational exposure to coal. Mutat Res. 2013;758(1–2):23–28. doi: 10.1016/j.mrgentox.2013.08.006
  14. Minina VI, Sinitsky MYu, Kulemin JE, et al. Genotoxic effects of coal dust on Kuzbass workers. Himiya v interesakh ustojchivogo razvitiya. 2016;24(4):545–548. doi: 10.15372/khur20160414
  15. Beckman KB, Ames BN. Oxidative decay of DNA. Biol Chem. 1997;272(32):19633–19636. doi: 10.1074/jbc.272.32.19633
  16. Schins RP, Schilderman PA, Borm PJ. Oxidative DNA damage in peripheral blood lymphocytes of coal workers. Int Arch Occup Environ Health. 1995;67(3):157–157. doi: 10.1007/BF00626346
  17. Sinitsky MY, Minina VI, Asanov MA, et al. Association of DNA repair gene polymorphisms genotoxic stress in underground coal miners. Mutagenesis. 2017;32(5):501–509. doi: 10.1093/mutage/gex018
  18. Sinitsky MY, Minina VI, Gafarov NI, et al. Assessment of DNA damage in underground coal miners using the cytokinesis-block micronucleus assay in peripheral blood lymphocytes. Mutagenesis. 2016;31(6):669–675. doi: 10.1093/mutage/gew038
  19. León-Mejía G, Quintana M, Rohr P, et al. Occupational exposure to coal, genotoxicity, and cancer rick. Environmental Health Risk Hazaradous Factors for Living Species. Croatia; 2016. P. 191–209. doi: 10.5772/62486
  20. Ross MH. Occupational respiratory disease in mining. Occup Med. 2004:54(5):304–310. doi: 10.1093/occmed/kqh073
  21. Ryzhkova AV, Minina VI, Sokolova AO, et al. Polymorphisms of genes of DNA repair enzymes and indicators of genome instability in coal mine workers. Russian Journal of Occupational Health and Industrial Ecology. 2020;60(1):12–18. (In Russ.) doi: 10.31089/1026-9428-2020-60-1-12-18
  22. Timofeeva AA, Minina VI, Soboleva OA, et al. Level of chromosomal aberrations, active ribosomal gene dose and polymorphism of DNA repair genes in miners of the Kemerovo region. Medicine in Kuzbass. 2018;17(3):34–41. (In Russ.)
  23. Savchenko YA, Minina VI, Bakanova ML, et al. Role of Gene-Gene Interactions in the Chromosomal Instability in Workers at Coal Thermal Power Plants. Russian Journal of Genetics. 2018;54(1): 96–108. (In Russ.) doi: 10.7868/S0016675818010101
  24. Minina VI, Nelybova YA, Savchenko YA, et al. Estimation of chromosome disorders in workers at coal thermal power plant. Russian Journal of Occupational Health and Industrial Ecology. 2019;59(3):149–154. (In Russ.) doi: 10.31089/1026-9428-2019-59-3-149-154
  25. Minina VI, Savchenko YA, Bakanova ML, et al. Chromosomal Instability and Genetic Polymorphism in Miners and Workers of Coal Thermal Power Plants. Russian Journal of Genetics. 2020;56(4): 451–462. (In Russ.) doi: 10.31857/S0016675820040074
  26. Fenech M, Chang WP, Kirsch-Volders M, et al. HUMN project: detailed description of the scoring criteria for the cytokinesisblock micronucleus assay using isolated human lymphocyte cultures. Mutat Res. 2003;534(1–2):65–75. doi: 10.1016/s1383-5718(02)00249-8
  27. Ingel FI. Perspectives of micronuclear test in human lymphocytes cultivated in cytogenetic block conditions. Part 2. Environmental factors and individual features in system of evaluation of human genome instability. Additional capability of the test. Ecological genetics. 2006;4(4):38–54. (In Russ.) doi: 10.17816/ecogen4438-54
  28. Meyer AV, Tolochko TA, Minina VI, et al. Influence of DNA repair gene polymorphism on karyology of buccal epithelium in humans exposed to radon. Ecological genetics. 2014;12(1):28–38. (In Russ.) doi: 10.17816/ecogen12128-38
  29. Akhmadullina YuR, Vozilova AV, Akleyev AV. Study of the DNA Damage in Peripheral Blood Lymphocytes Using Micronucleus Test in Residents of the Techa Riverside Villages Who Were Chronically Exposed in Utero and Postnatally. Russian Journal of Genetics. 2020;56(4):463–470. (In Russ.) doi: 10.31857/S0016675820040025
  30. Pozharskaja VV, Petrashova DA. Citogeneticheskie narushenija v limfocitah perifericheskoj krovi u gornorabochih Murmanskoj oblasti v vozraste do tridcati let. Vestnik nauki i obrazovanija. 2016;(10):1519. (In Russ.) doi: 10.20861/2312-8089-2016-22-001
  31. Mohammed AM, Hussen DF, Rashad H, et al. The Micronuclei Scoring as a Biomarker for Early Detection of Genotoxic Effect of Cigarette Smoking. Asian Pacific Journal of Cancer Prevention. 2019;21(1):87–92. doi: 10.31557/APJCP.2020.21.1.87
  32. Santovito A, Gendusa C. Micronuclei frequency in peripheral blood lymphocytes of healthy subjects living in turin (North-Italy): contribution of body mass index, age and sex. Annals of Human Biology. 2020;47(1):48–54. doi: 10.1080/03014460.2020.1714728
  33. Hamurcu Z, Donmez H, Saraymen R, et al. Micronucleus Frequencies in Workers Exposed to Lead, Zinc, and Cadmium. Biol Trace Elem Res. 2001;83(2):97–102. doi: 10.1385/bter:83:2:097
  34. Ada AO, Demiroglu C, Yilmazer M, et al. Cytogenetic damage in Turkish coke oven workers exposed to polycyclic aromatic hydrocarbons: association with CYP1A1, CYP1B1, EPHX1, GSTM1, GSTT1, and GSTP1 gene polymorphisms. Arh Hig Rada Toksikol. 2013;64(3):359–369. doi: 10.2478/10004-1254-64-2013-2328
  35. Hoffelder DR, Luo L, Burk NA, et al. Resolution of anaphase bridges in cancer cells. Chromosoma. 2004;112(8):389–397. doi: 10.1007/s00412-004-0284-6
  36. Panchenko SV, Arakelyan AA, Vedernikova MV, et al. Comparative assessment of radiation and chemical risks in the city of Angarsk. Radiation and risk. 2017;26(2):83–96. (In Russ.) doi: 10.21870/0131-3878-2017-26-2-83-96.
  37. Mateuca RA, Lombaert N, Aka PV, et al. Chromosomal changes: induction, detection methods and applicability in human biomonitoring. Biochimie. 2006;88(11):1515–1531. doi: 10.1016/j.biochi.2006.07.004
  38. Fenech M. The lymphocyte cytokinesis-block micronucleus cytome assay and its application in radiation biodosimetry. Health Phys. 2010;98(2):234–243. doi: 10.1097/hp.0b013e3181b85044
  39. Kimura M, Umegaki K, Higuchi M, et al. Methylenetetrahydrofolate Reductase C677T Polymorphism, Folic Acid and Riboflavin Are Important Determinants of Genome Stability in Cultured Human Lymphocytes. J Nutr. 2004;134(1):48–56. doi: 10.1093/jn/134.1.48
  40. Utani K, Kohno Y, Okamoto A, et al. Emergence of Micronuclei and Their Effects on the Fate of Cells under Replication Stress. PLoS ONE. 2010;5(4): e10089. doi: 10.1371/journal.pone.0010089
  41. Celik M, Donbak L, Unal F, et al. Cytogenetic damage in workers from a coal-fired power plant. Mutation Research Genetic Toxicology and Environmental Mutagenesis. 2007;627(2):158–163. doi: 10.1016/j.mrgentox.2006.11.003
  42. Stepanov DD, Fedoseev VI, Minina VI. The frequency of a micronucleus in workers of coal thermal power plant. In: Kuzbass: education, science, innovations: sbornik materialov innovatsionnogo konventa, 14 Dec 2018, Kemerovo. 2019;350–352. (In Russ.)
  43. León-Mejía G, Espitia-Pérez L, Hoyos-Giraldo L, et al. Assessment of DNA damage in coal open-cast mining workers using the cytokinesis-blocked micronucleus test and the comet assay. Sci Total Environ. 2011;409(4):686–691. doi: 10.1016/j.scitotenv.2010.10.049
  44. Kubiak R, Belowski J, Szczeklik J, et al. Biomarkers of carcinogenesis in humans exposed to polycyclic aromatic hydrocarbons. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 1999;445(2):175–180. doi: 10.1016/s1383- 5718(99)00124-2
  45. Sureshkumar S, Balachandar V, Devi S, et al. Estimation of cytogenetic risk among coke oven workers exposed to polycyclic aromatic hydrocarbons. Acta Biochim Pol. 2013;60(3):375–379. doi: 10.18388/abp.2013_1995
  46. Donbak L, Rencuzogulları E, Yavuz A, et al. The genotoxic risk of underground coal miners from Turkey. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2005;588(2):82–87. doi: 10.1016/j.mrgentox.2005.08.014
  47. Savchenko YA, Minina VI, Bakanova ML, et al. Role of Gene-Gene Interactions in the Chromosomal Instability in Workers at Coal Thermal Power Plants. Russian Journal of Genetics. 2018;54(1): 96–108. (In Russ.) doi: 10.7868/S0016675818010101
  48. El-Zein R, Abdel-Rahman S, Santee K, et al. Identification of small and non-Small cell lung cancer markers in peripheral blood using cytokinesis-blocked micronucleus and spectral karyotyping assays. Cytogenet Genome Res. 2017;152(3):122–131. doi: 10.1159/000479809
  49. Peddireddy V, Badabagni S, Gundimeda S, et al. Genetic instability in peripheral lymphocytes as biological 23 marker for non-small cell lung cancer patients in the South Indian state of Andhra Pradesh. Int J Biol Markers. 2014;29(4):345–353. doi: 10.5301/jbm.5000085
  50. Iarmarcovai G, Ceppi M, Botta A, et al. Micronuclei frequency in peripheral blood lymphocytes of cancer patients: a meta-analysis. Mutat Res. 2008;659(3):274–283. doi: 10.1016/j.mrrev.2008.05.006
  51. Bonassi S, El-Zein R, Bolognesi C, et al. Micronuclei frequency in peripheral blood lymphocytes and cancer risk: evidence from human studies. Mutagenesis. 2010;26(1):93–100. doi: 10.1093/mutage/geq075
  52. Gadek J, Fells G, Crystal R. Cigarette smoking induces functional antiprotease deficiency in the lower respiratory tract of humans. Science. 1979;206(4424):1315–1316. doi: 10.1126/science. 316188.
  53. Rossnerova A, Spatova M, Rossner P, et al. Factors affecting the frequency of micronuclei in asthmatic and healthy children from Ostrava. Mutat Res. 2011;708(1–2):44–49. doi: 10.1016/j.mrfmmm.2011.01.004
  54. Tomaskova H, Splichalova A, Slachtova H, et al. Mortality in Miners with Coal-Workers’ Pneumoconiosis in the Czech Republic in the period 1992–2013. Int J Environ Res Public Health. 2017;14(3):1–12. doi: 10.3390/ijerph14030269
  55. Savchenko YA. Hromosomnye aberracii v limfocitah rabochih teplojenergeticheskogo proizvodstva i ih associacii s polimorfnymi variantami genov fermentov biotransformacii ksenobiotikov i reparacii DNK. [dissertation] Ufa; 2015. 24 p. (In Russ.)

Supplementary files

Supplementary Files Action
Fig. 1. Frequency of cells with protrusions in groups of smokers and non-smokers at thermal power plants. * p = 0.002; hereinafter, the edges of the box are the 1st and 3rd quartiles (the distance between the 1st and 3rd quartiles is the interquartile time), the line inside the box is the median; "Mustache" - minimal and maximum values, dots are individual values

Download (92KB) Indexing metadata
Fig. 2. Frequency of 3- and 4-nuclear cells in the studied groups. * p = 0.001; ** p = 0.0001

Download (104KB) Indexing metadata
Fig. 3. Replication index in the studied groups. * p = 0.0001

Download (74KB) Indexing metadata
Fig. 4. The frequency of cells at the stage of mitosis in the studied groups. * p = 0.0001

Download (78KB) Indexing metadata
Fig. 5. Frequency of 1- and 2-nuclear cells in individuals of the control group of different ages. * p = 0.001; ** p = 0.0001

Download (101KB) Indexing metadata
Fig. 6. Frequency of 2-nuclear cells in smokers and nonsmokers individuals of the control group. * p = 0.01

Download (66KB) Indexing metadata



Abstract - 94

PDF (Russian) - 6


Article Metrics

Metrics Loading ...



Copyright (c) 2021 Fedoseev V.I., Stepanov D.D., Minina V.I.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies