Genome destabilization under stress in cells of the prefrontal cortex, hippocampus and bone marrow of rats with contrast excitability of the nervous system

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

We studied changes in the stability of the genome in cells of two brain regions (prefrontal cortex and hippocampus), as well as in the bone marrow of rats with a hereditary high and low thresholds of excitability of the nervous system (strains HT and LT, respectively) after prolonged exposure with emotional-pain stressor. To study the reactivity of the brain cells genome, phosphorylated histone γ-H2AX (γ-H2AX phospho Ser139) was used. The level of mitotic disturbances in bone marrow cells was also assessed. Between the animals of the control groups, there were no interstrain differences in the studied parameters. Stress exposure increases the immunoreactivity to γ-H2AX phospho Ser139 of the prefrontal cortex cells and the level of chromosomal aberrations in bone marrow cells in animals of both strains. In cells of the dentate gyrus of the hippocampus, a specific increase in immunoreactivity to γ-H2AX phospho Ser139 was revealed in rats of the low-excitable HT strain. The relationship between the reaction of cells of this zone of hippocampus to the stressor exposure with the hereditary level of excitability of the nervous system of animals is discussed.

Full Text

Restricted Access

About the authors

Marina B. Pavlova

Pavlov Institute of Physiology, Russian Academy of Sciences

Email: pavlova@infran.ru
SPIN-code: 6457-5630

PhD, Junior Researcher, Laboratory of Higher Nervous Activity Genetics

Russian Federation, Saint Petersburg

Alexander I. Vaido

Pavlov Institute of Physiology, Russian Academy of Sciences

Email: vaidoai@infran.ru
ORCID iD: 0000-0002-6209-9902
SPIN-code: 1323-5153

Dr Sci., Main Researcher, Laboratory of Higher Nervous Activity Genetics

Russian Federation, Saint Petersburg

Diana A.-A. Khlebaeva

Pavlov Institute of Physiology, Russian Academy of Sciences

Email: dibair@yandex.ru

Junior Researcher, Laboratory of Higher Nervous Activity Genetics

Russian Federation, Saint Petersburg

Eugene V. Daev

Saint Petersburg State University

Email: mouse_gene@mail.ru
ORCID iD: 0000-0003-2036-6790

Dr. Sci. (Biol.), Professor

Russian Federation, Saint Petersburg

Natalia A. Dyuzhikova

Pavlov Institute of Physiology, Russian Academy of Sciences

Author for correspondence.
Email: dyuzhikova@infran.ru
ORCID iD: 0000-0002-7550-118X
Scopus Author ID: 6603486439
ResearcherId: J-7202-2018

Dr. Sci. (Biol.), Head of the Laboratory of Higher Nervous Activity Genetics

Russian Federation, Saint Petersburg

References

  1. Вайдо А.И., Ширяева Н.В., Павлова М.Б., и др. Селектированные линии крыс с высоким и низким порогом возбудимости: модель для изучения дезадаптивных состояний, зависимых от уровня возбудимости нервной системы // Лабораторные животные для научных исследований. – 2018. – № 3. – С. 12–23. [Vaido AI, Shiryaeva NV, Pavlova MB, et al. Selected rat strains HT, LT as a model for the study of dysadaptation states dependent on the level of excitability of the nervous system. Laboratornye zhivotnye dlya nauchnykh issledovanii. 2018;(3):12-23. (In Russ.)]. https://doi.org/10.29296/2618723X-2018-03-02.
  2. Вайдо А.И., Дюжикова Н.А., Ширяева Н.В., и др. Системный контроль молекулярно-клеточных и эпигенетических механизмов долгосрочных последствий стресса // Генетика. – 2009. – Т. 45. – № 3. – С. 342–348. (In Russ.). [Vaido AI, Dyuzhikova NA, Shiryaeva NV, et al. Systemic control of molecular, cell, and epigenetic mechanisms of long-term consequences of stress. Russian Journal of Genetics. 2009;45(3): 298-303. (In Engl.)]. https://doi.org/10.1134/s1022795409030065.
  3. Дюжикова Н.А., Скоморохова Е.Б., Вайдо А.И. Эпигенетические механизмы формирования постстрессорных состояний // Успехи физиологических наук. – 2015. – Т. 46. – № 1. – С. 47–75. [Dyuzhikova NA, Skomorokhova EB, Vaido AI. Epigenetic mechanisms in post-stress states. Uspekhi fiziologicheskikh nauk. 2015;46(1):47-75. (In Russ.)]
  4. Insel TR. Disruptive insights in psychiatry: transforming a clinical discipline. J Clin Invest. 2009;119(4):700-705. https://doi.org/10.1172/JCI38832.
  5. Шалагинова И.Г., Шеремет В.В., Хлебаева Д.А., и др. Влияние длительного эмоционально-болевого стрессорного воздействия на лейкоцитарный состав крови у крыс с различным уровнем возбудимости нервной системы // Медицинский академический журнал. – 2019. – Т. 19. – № 4. – С. 67–74. [Shalaginova IG, Sheremet VV, Khlebaeva DA, et al. Effect of long-term emotional-painful stress on the leukocyte composition of blood in rats with different levels of excitability of the nervous system. Medical academic journal. 2019;19(4):67-74. (In Russ.)]. https://doi.org/10.17816/MAJ19079.
  6. Быковская Н.В., Дюжикова Н.А., Вайдо А.И., и др. Частота хромосомных аберраций, индуцированных стрессорным воздействием и циклофосфаном в клетках костного мозга крыс, селектированных по порогу возбудимости нервной системы // Генетика. – 1994. – Т. 30. – № 9. – С. 1224–1228. [Bykovskaya NV, Dyuzhikova NA, Vaido AI, et al. Frequency of chromosomal aberrations induced by stress and cyclophosphamide in bone marrow cells of rats selected on the excitability threshold of the nervous system. Russian Journal of Genetics. 1994;30(9):1224-1228. (In Russ.)]
  7. Hare BD, Thornton TM, Rincon M, et al. Two weeks of variable stress increases Gamma-H2AX levels in the mouse bed nucleus of the stria terminalis. Neuroscience. 2018;373:137-144. https://doi.org/10.1016/j.neuroscience.2018.01.024.
  8. Kuo LJ, Yang LX. γ-H2AX-A novel biomarker for DNA double-strand breaks. In Vivo. 2008;22(3):305-309.
  9. Макаров В.Б., Сафронов В.В. Цитогенетические методы анализа хромосом. – М.: Наука, 1978. – 85 с. [Makarov VB, Saphronov VV. Tsitogeneticheskie metody analiza khromosom. Moscow: Nauka; 1978. 85 р. (In Russ.)]
  10. Даев Е.В., Казарова В.Э., Выборова А.М., Дукельская А.В. Влияние «феромоноподобных» пиразинсодержащих соединений на стабильность генетического аппарата в клетках костного мозга самцов домовой мыши Mus. musculus L. // Журнал эволюционной биохимии и физиологии. – 2009. – Т. 45. – № 5. – С. 486–491. [Daev EV, Kazarova VE, Vyborova AM, Dukel’skaya AV. Effects of “Pheromone-Like” pyrazine-containing compounds on stability of genetic apparatus in bone marrow cells of the male house mouse Mus musculus L. Journal of Evolutionary Biochemistry and Physiology. 2009;45(5):486-491. (In Russ.)]. https://doi.org/10.1134/s0022093009050053.
  11. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 6th edition. Elsevier, Academic Press; 2007. 456 р.
  12. Даев Е.В. Генетические последствия ольфакторных стрессов у мышей: Автореф. дис. … д-ра биол. наук. – СПб., 2006. – 34 с. [Daev EV. Geneticheskie posledstviya ol’faktornykh stressov u myshei. [dissertation abstract] Saint Petersburg; 2006. 34 р. (In Russ.)]
  13. Дюжикова Н.А., Даев Е.В. Геном и стресс-реакция у животных и человека // Экологическая генетика. – 2018. – Т. 16. – № 1. – С. 4–26. [Dyuzhikova NA, Daev EV. Genome and stress-reaction in animals and humans. Ecological genetics. 2018;16(1):4-26. (In Russ.)]. https://doi.org/10.17816/ecogen1614-26.
  14. Liu G, Stevens JB, Horne SD, et al. Genome chaos: survival strategy during crisis. Cell Cycle. 2014;13(4):528-537. https://doi.org/10.4161/cc.27378.
  15. Suberbielle E, Sanchez PE, Kravitz AV, et al. Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nat Neurosci. 2013;16(5):613-621. https://doi.org/10.1038/nn.3356.
  16. Паткин Е.Л., Вайдо А.И., Кустова М.Е., и др. Однонитевые разрывы ДНК в отдельных клетках мозга различных линий крыс в норме и при стрессорном воздействии // Цитология. – 2001. – Т. 43. – № 3. – С. 269–272. [Patkin EL, Vaido AI, Kustova ME, et al. Single-strand DNA breaks in brain cells of different rat strains under normal condition and during exposure to stress. Tsitologiia. 2001;43(3):269-273. (In Russ.)].
  17. Дмитриева Н.И., Гоццо С. Структурные особенности головного мозга крыс, селектированных по порогу возбудимости // Архив анатомии, гистологии и эмбриологии. – 1985. – Т. 88. – № 2. – С. 5–10. [Dmitriyeva NI, Gozzo S. Strukturnye osobennosti golovnogo mozga krys, selektirovannykh po porogu vozbudimosti. Arkhiv anatomii, gistologii i ehmbriologii. 1985;88(2):5-10. (In Russ.)]
  18. Дюжикова Н.А., Быковская Н.В., Вайдо А.И., и др. Частота хромосомных нарушений, индуцированных однократным стрессорным воздействием у крыс, селектированных по возбудимости нервной системы // Генетика. – 1996. – Т. 32. – № 6. – С. 742–743. (In Russ.). [Dyuzhikova NA, Bykovskaya NV, Vaido AI, et al. Rate of chromosomal aberrations induced by short-term stress in rats selected by excitability of the nervous system. Russian Journal of Genetics. 1996;32(6):851-853. (In Engl.)]
  19. Chaudhuri A. Pathophysiology of Stress: A Review. Int J Res Rev. 2019;6(5):199-213.
  20. Lambert MW. The functional importance of lamins, actin, myosin, spectrin and the LINC complex in DNA repair. Exp Biol Med (Maywood). 2019;244(15):1382-1406. https://doi.org/10.1177/1535370219876651.
  21. Даев Е.В. О стрессе, хемокоммуникации у мышей и физиологической гипотезе мутационного процесса // Генетика. – 2007. – Т. 43. – № 10. – С. 1299–1310. (In Russ.). [Daev EV. Stress, chemocommunication, and the physiological hypothesis of mutation. Russian Journal of Genetics. 2007;43(10): 1082-1092. (In Engl.)]. https://doi.org/10.1134/S102279540710002X.
  22. Fragkos M, Naim V. Rescue from replication stress during mitosis. Cell Cycle. 2017;16(7): 613-633. https://doi.org/10.1080/15384101.2017.1288322.
  23. Wilhelm T, Said M, Naim V. DNA replication stress and chromosomal instability: dangerous liaisons. Genes. 2020;11(6):642. https://doi.org/10.3390/genes11060642.
  24. Даев Е.В., Петрова М.В., Онопа Л.С., и др. Повреждение ДНК в клетках костного мозга самцов мышей in vivo после феромонального воздействия методом ДНК-комет // Генетика. – 2017. – Т. 53. – №10. – С. 1170–1178. (In Russ.). [Daev EV, Petrova MV, Onopa LS, et al. DNA damage in bone marrow cells of mouse males in vivo after exposure to the pheromone: comet assay. Russian Journal of Genetics. 2017;53(10):1105-1112. (In Engl.)]. https://doi.org/10.1134/S1022795417100027.
  25. Mateuca R, Lombaert N, Aka PV, et al. Chromosomal changes: induction, detection methods and applicability in human biomonitoring. Biochimie. 2006;88(11):1515-1531. https://doi.org/10.1016/j.biochi.2006.07.004.
  26. Zhao H, Tanaka T, Halicka HD. Cytometric assessment of DNA damage by exogenous and endogenous oxidants reports aging-related processes. Cytometry A. 2007;71(11):905-914. https://doi.org/10.1002/cyto.a.20469.
  27. Halicka HD, Zhao H, Li J, et al. Attenuation of constitutive DNA damage signaling by 1,25-dihydroxyvitamin D3. Aging (Albany NY). 2012;4(4):270-278. https://doi.org/10.18632/aging.100450.
  28. Torres-Berrío A, Hernandez G, Nestler EJ, Flores C. The Netrin-1/DCC guidance cue pathway as a molecular target in depression: Translational evidence. Biol Psychiatry. 2020;88(8):611-624. https://doi.org/10.1016/j.biopsych.2020.04.025.
  29. Hoffmann AA, Hercus MJ. Environmental stress as an evolutionary force. BioScience. 2000;50(3):217-226. https://doi.org/10.1641/0006-3568(2000)050[0217: esaaef]2.3.co;2.
  30. Zachepilo TG, Kalendar R, Schulman AH, Vaido A. Emotionally painful stress causes changes in L1 insertion pattern in the hippocampus in rats with different nervous system excitability. [Conference Paper] 27th ECNP Congress. European Neuropsychopharmacology. 2014;24(Suppl 2):163. https://doi.org/10.1016/s0924-977x(14)70247-0.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure: 1. Immunoreactivity to γ-H2AX phospho Ser139 of cells of the medial prefrontal cortex of rats of EP and NP lines 2 h after prolonged emotional pain stress (DEBS) exposure. The graphs show the mean, median, maximum and minimum values, interquartile ranges; * - significant difference from the corresponding control (Mann-Whitney U-test, p <0.05)

Download (20KB)
3. Figure: 2. Immunoreactivity to γ-H2AX phospho Ser139 of cells of the dentate gyrus of the hippocampus of EP and NP rats 2 h after prolonged emotional pain stress (DEBS) exposure. The graphs show the mean, median, maximum and minimum values, interquartile ranges; * - significant difference from the corresponding control (Mann-Whitney U-test, p <0.05)

Download (20KB)
4. Figure: 3. Frequency of chromosomal aberrations in bone marrow cells of rats of the CAP and NP lines 24 h after prolonged emotional pain stress (DEBS) exposure. The graphs show the mean, median, maximum and minimum values, interquartile ranges; * - the difference from the corresponding control is reliable (Fisher's exact test, p <0.0001)

Download (22KB)
5. Figure: 4. Frequency of cells with different types of chromosomal abnormalities in bone marrow cells of rats of the CAP and NP lines 24 h after prolonged emotional painful stress exposure. The graphs show the mean, median, maximum and minimum values, interquartile ranges; the lines indicate reliably different values. The significance of differences between the variants was assessed using Fisher's exact test or χ2 test adjusted for Yates continuity

Download (103KB)

Copyright (c) 2021 Pavlova С., Vaido A.I., Khlebaeva K., Daev E.V., Dyuzhikova N.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies