Genetic structure of the water frog (Pelophylax esculentus complex) populations in the south of the Central Russian Upland

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


BACKGROUND: The water frog (Pelophylax esculentus complex) is hybrid in composition. In view of the fact that a large number of data on the species composition of the water frog and very scarce material on the genetic structure of populations are available in the literature, we aimed to analyze the genetic structure of populations of the water frog in the southern part of the Middle Russian upland, which was one of the refugia for many species during the glacial epoch and the center of dispersion in the postglacial time, based on DNA microsatellite markers.

MATERIALS AND METHODS: The study involved 36 local populations. DNA variability was analyzed by multiplex SSR-PCR. Seven loci (Res 14, Res 15, Res 17, Res 22, Rrid059A, Rrid082A, and Rrid171A) were used for amplification. Fragment analysis of PCR products was performed on an ABI PRISM 3500 automated capillary DNA sequencer (Applied Biosystems, USA).

RESULTS: The total number of alleles detected ranged from 13 to 41. The effective number of alleles (Ae) averaged 4.569 ± 0.219, the Chenon index (I) 1.567 ± 0.04, level of expected heterozygosity (Не) 0.68 ± 0.01. According to Wright’s model, the greatest contribution to genetic variability is made by the heterogeneity of individuals within populations, some of which are of a hybrid nature (Fis = 0.281 ± 0.069, Fit = 0.413 ± 0.053, Fst = 0.180 ± 0.017). The average indicator of the intensity of gene exchange between populations (Nm) was 1.212 ± 0.142 individuals per generation. The calculation of the effective abundance using the LD method indicates a high level of viability of the studied groups of the frogs.

CONCLUSION: The results demonstrated a high level of genetic diversity and viability of most of the studied groups, which, due to the intense gene exchange between them, can represent a single panmictic population. The data of the genetic analysis support the active adaptation of P. esculentus complex to living in an urbanized environment.

Full Text

Restricted Access

About the authors

Anatoliy S. Barkhatov

Belgorod National Research University

Author for correspondence.
ORCID iD: 0000-0001-9996-7251
SPIN-code: 3833-2940

graduate student

Russian Federation, 85 Pobedy str., Belgorod, 308015

Eduard A. Snegin

Belgorod National Research University

ORCID iD: 0000-0002-7574-6910
SPIN-code: 5655-7828

Dr. Sci. (Biol.)

Russian Federation, 85 Pobedy str., Belgorod, 308015

Sergeu R. Yusupov

Belgorod National Research University


graduate student

Russian Federation, 85 Pobedy str., Belgorod, 308015


  1. Pillsbury FC, Miller JR. Habitat and landscape characteristics underlying anuran community structure along an urban-rural gradient. Ecol Appl. 2008;18(5):1107–1118. doi: 10.1890/071899.1
  2. Shijan AA. Changes of population characteristics of lake frog (Rana ridibunda Pall.) At dwelling in ponds-evaporators of sugar factories. Scientific Journal of KubSAU. 2011;67(3):47–54. (In Russ.)
  3. Ryzhov MK. Zemnovodnye i presmykajushhiesja respubliki Mordovija: rasprostranenie, raspredelenie, troficheskie svjazi i sostojanie ohrany. [dissertation] Tol’jatti; 2007. 19 p. (In Russ.)
  4. Kuzovenko AE. Jekologo-faunisticheskaja harakteristika amfibij urbanizirovannyh territorij Samarskoj oblasti. [dissertation abstract] Tol’jatti; 2018. 19 p. (In Russ.)
  5. Berger L. Morphology of the F1 Generation of various crosses within Rana esculenta-complex. Acta Zool Cracoviensia. 1968;13:301–324.
  6. Plötner J, Uzzell T, Beerli P, et al. Genetic divergence and evolution of reproductive isolation in eastern Mediterranean water frogs. In: Evolution in Action. Glaubrecht M, Schneider H, eds. Springer-Verlag Berlin Heidelberg; 2010. P. 373–403. doi: 10.1007/978-3-642-12425-9_18
  7. Ermarov OA, Fayzulin AI, Zaks MM, et al. Distribution “western” and “eastern” forms of marsh frog Pelophylax ridibundus s. l. in the samara and Saratov Region (on data of analysis of mtDNA and nDNA). Izvestija Samarskogo Nauchnogo Centra RAN. 2014;16(5):409–412. (In Russ.)
  8. Lada GA. Sredneevropejskie zelenye ljagushki (gibridogennyj kompleks Rana esculenta): vvedenie v problem. Flora i fauna Chernozem’ja. Tambov; 1995. P. 88–109. (In Russ.)
  9. Plötner J. Die westpaläarktischen Wasserfrösche: von Märtyrern der Wissenschaft zur biologischen Sensation. Bielefeld: Laurenti; 2005. 160 p. (In Germ.)
  10. Fayzulin AI, Zamaletdinov RI, Litvinchuk SN et al. Species composition and distributional peculiarities of green frogs (Pelophylax esculentus complex) in protected areas of the middle Volga Region (Russia). Nature Conservation Research. Zapovednaja Nauka. 2018;3(S1):1–16 (In Russ.) doi: 10.24189/ncr.2018.056
  11. Zamaletdinov RI, Pavlov AV, Zaks MM, et al. Molecular-genetic characteristic of Pelophylax esculentus complex from the eastern range of distribution (Volga Region, Tatarstan Republic). Tomsk State University Journal of Biology. 2015;(3):54–66. (In Russ.) doi: 10.17223/19988591/31/5
  12. Ermakov OA, Simonov EP, Ivanov AJu, et al. Genetic characteristics of marsh frog (Рelophylax ridibundus complex) from the Western Caucasus based on mitochondrial and nuclear DNA data. Transactions of Papanin Institute for Biology of Inland Waters Ras. 2016;(73):70–76 (In Russ.) doi: 10.24411/0320-3557-2016-10006
  13. Faizulin AI, Kukushkin OV, Ivanov Ayu, et al. Preliminary Data on the Molecular Genetic Structure of Pelophylax ridibundus (Amphibia: Anura: Ranidae) from the Southern Part of the Crimean Peninsula, Based on Mitochondrial and Nuclear DNA Analysis. Current Studies in Herpetology. 2017;17(1–2):56–65. (In Russ.) doi: 10.18500/1814-6090-2017-17-1-2-56-65
  14. Ermakov O, Ivanov A, Titov S, et al. New multiplex PCR method for identification of East European green frog species and their hybrids. Russian Journal of Herpetology. 2019;26(6):367–370. doi: 10.30906/1026-2296-2019-26-6-367-370
  15. Lipatov VA, Severinov DA, Kryukov AA, Saakyan AR. Ethical and legal aspects of in vivo experimental biomedical research of the conduct. I.P. Pavlov Russian Medical Biological Herald. 2019;27(2): 245–257. (In Russ.) doi: 10.23888/PAVLOVJ2019272245-257
  16. Zeisset I, Rowe G, Beebee TJ. Polymerase chain reaction primers for microsatellite loci in the north European water frogs Rana ridibunda and R. lessonae. Mol Ecol. 2000;9(8):1173–1174. doi: 10.1046/j.1365-294x.2000.00954-2.x
  17. Hotz H, Uzzell T, Guex G, et al. Microsatellites: A tool for evolutionary genetic studies of western Palearctic water frogs. Mitt Mus Nat kd Berl Zool. 2001;77(1):43–50. doi: 10.1002/mmnz.20010770108
  18. Mikulíček P, Pišút P. Genetic structure of the marsh frog (Pelophylax ridibundus) populations in urban landscape. Eur J Wildl Res. 2012;58:833–845. doi: 10.1007/s10344-012-0631-5
  19. Peakall R, Smouse PE. GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research – an update. Mol Ecol Notes. 2006;6(1):288–295. doi: 10.1111/j.1471-8286.2005.01155.x
  20. Sundqvist L, Keenan K, Zackrisson M, et al. Directional genetic differentiation and relative migration. Ecol Evol. 2016;6(11):3461–3475. doi: 10.1002/ece3.2096
  21. Do C, Waples RS, Peel D, et al. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour. 2014;14(1):209–214. doi: 10.1111/1755-0998.12157
  22. Zhivotovskij LA. Populjacionnaja biometrija. Moscow: Nauka; 1991. 271p. (In Russ.)
  23. Hill WG. Estimation of effective population size from data on linkage disequilibrium. Genetics Research. 1981;38(3):209–216. doi: 10.1017/S0016672300020553
  24. Snegin EA, Barkhatov AS. Morphogenetic structure of marsh frog populations of Pelophylax ridibundus (Amphibia, Anura) under conditions of urban environment. Theoretical and Applied Ecology. 2019;(1):47–53 (In Russ.) doi: 10.25750/1995-4301-2019-1-047-053
  25. Wright S. Random drift and shifting balance theory of evolution. Mathematical topics in population genetics. Berlin: Springer Verlag; 1970. 31 p.
  26. Kuz’min SL. Zemnovodnye byvshego SSSR. Moscow: Tovarishhestvo nauchnyh izdanij KMK; 2012. 370 p. (In Russ.)
  27. Zeisset I, Beebee TJ. Population genetics of a successful invader: the marsh frog Rana ridibunda in Britain. Mol Ecol. 2003;12(3):639–646. doi: 10.1046/j.1365-294x.2003.01775.x
  28. Hoffmann A, Plötner J, Pruvost NBM, et al. Genetic diversity and distribution patterns of diploid and polyploid hybrid water frog populations (Pelophylax esculentus complex) across Europe. Mol Ecol. 2015;24(17):4371–4391. doi: 10.1111/mec.13325
  29. Mil’kov FN. Lesostep’ Russkoj ravniny. Moscow: Izd-vo AN SSSR; 1950. 292p. (In Russ.)

Supplementary files

Supplementary Files
1. Fig. 3. Linear regression of the logarithm of gene flow (Nm) between pairs of populations with the logarithm of the geographic distance between them (Dg)

Download (133KB)
2. Fig. 5. The level of gene flow between populations living in different rivers. P1, Pena; P2, Vorskla; P3, Seim; P4, Seversky Donets; P5, Oskol; P6, Aydar; P7, Tikhaya Sosna; P8, Don

Download (93KB)
3. Fig. 1. Collection points for the Pelophylax esculentus complex. A description of items is presented in Table 1

Download (357KB)
4. Fig. 2. Results of the principal component (PC) analysis. The populations in the basins are denoted by icons: ♦, river Pena; ●, river Vorskla; ■, river Seim; ▲, river Seversky Donets; ӿ, river Oskol; +, river Aydar; ×, river Tikhaya Sosna; –, river Don

Download (59KB)
5. Fig. 4. Results of the PC analysis of the combined localities: A, Dnieper basin (Seim, Vorskla, and Pena rivers). B, Don basin (Seversky Donets, Oskol, Aydar, Tikhaya Sosna, and Don rivers)

Download (79KB)



Abstract: 198

PDF (Russian): 4

PDF (English): 3


Article Metrics

Metrics Loading ...


Copyright (c) 2021 Barkhatov A.S., Snegin E.A., Yusupov S.R.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies