Genetic diversity of scots pine trees of different selection categories in plus stands of Karelia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


BACKGROUND: Genetic control is necessary at all stages of forest selection for the effective use of objects of unified genetic-selection complex (UGSC). This is particularly important for performing a breeding inventory. The aim of the present study was to evaluate the genetic variability of trees of different selection categories in several plus stands of Scots pine.

MATERIALS AND METHODS: 116 trees of Scots pine of various selection categories have been selected from four plus stands within the middle taiga subzone of Karelia. The analysis of the pine samples had been performed using four nuclear SSR loci tests. DNA fragments were separated on a sequencer CEQ 8000. The main criteria of the genetic diversity and F-statistics were calculated. The genetic structure of the selection groups was evaluated using the coefficient of genetic originality (CGO).

RESULTS: All the selection groups evaluated with CGO were characterized by a low content of alleles, which are rare for this part of the Scots pine areal. The plus trees were characterized by a reduced level of genetic diversity (Ho = 0.48–0.59; He = 0.47–0.59) as compared to minus (Ho = 0.46–0.64; He = 0.49–0.65) and normal trees (Ho = 0.50–0.69; He = 0.49–0.65). However, the observed differences between the breeding groups were not statistically significant.

CONCLUSION: The absence of significant differences between the selection groups indicates the need of a separate assessment of the genetic and economic value of plus trees according to their phenotype. The obtained data is necessary for the organization of objects of UGSC, testing of clonal and seed offspring of plus trees, certification of clones, etc.

Full Text

Restricted Access

About the authors

Aleksey A. Ilinov

Forest Research Institute of the Karelian Research Centre of the Russian Academy of Sciences

Author for correspondence.
ORCID iD: 0000-0003-3416-0312
SPIN-code: 2850-3404
Scopus Author ID: 57213158233
ResearcherId: L-5854-2013

PhD, Dr. Sci. (Agricul.), Senior Researcher

Russian Federation, 11 Pushkinskaya str., Petrozavodsk, 185910

Boris V. Raevsky

Forest Research Institute of the Karelian Research Centre of the Russian Academy of Sciences

SPIN-code: 2136-7785

Dr. Sci. (Agricul.), Head of laboratory, leading researcher

Russian Federation, 11 Pushkinskaya str., Petrozavodsk, 185910


  1. Kublik SV. Selection inventorying of oakeries in ulyanovsk region. Izvestija OGAU. 2008;19(1):265–267. (In Russ.)
  2. [Internet]. Brown AHD, Moran GF. Isozymes and the genetic resources of forest trees. Proc. of the Symp. on Isozymes of North American Forest Trees and Forest Insects 1981: P. 1–10. Available from:
  3. Ledig FT. Human Impacts on genetic diversity in forest ecosystems. Oikos. 1992;63:87–112. doi: 10.2307/3545518
  4. Stepanova EM, Goncharenko GG. Allel’noe i genotipicheskoe raznoobrazie v prirodnykh i iskusstvennykh nasazhdeniyakh sosny obyknovennoi (Pinus sylvestris). Molodoi uchenyi. 2009;12(12):122–124. (In Russ.)
  5. Sheikina OV. Selektsionno-geneticheskaya otsenka plyusovogo genofonda sosny obyknovennoi Chuvashskoi Respubliki [dissertation]. Ioshkar-Ola; 2004. 203 p. Available from: (In Russ.)
  6. Novikov PS, Sheikina OV, Milyutina TN. Variation of pinus sylvestris plus trees on the clone archive in accordance with ISSR markers. Vestnik of Volga State University of Technology Series: Forest Ecology Nature Management. 2011;(3):82–87. (In Russ.)
  7. Novikov PS, Sheikina OV. Issr analysis of pinus sylvestris trees appurtenant to different selection categories. Scientific Journal of KubSAU. 2012;(82):100–112. (In Russ.)
  8. Sheikina OV, Prokhorova AA, Novikov PS, Krivorotova TN. Developing of the methodology for the identification of picea abies l. Clones by using issr markers. Scientific Journal of KubSAU. 2012;(83):56–69. (In Russ.)
  9. Ivanovskaya SI. Ocenka genofonda sosny obyknovennoj (Pinus sylvestris L.) v pljusovyh nasazhdenijah Belarusi po dannym izofermentnogo analiza. Trudy BGTU Lesnoe khozyaistvo. 2014;(1):130–134. (In Russ.)
  10. Krivorotova TN. Fenotipicheskaya i geneticheskaya izmenchivost’ klonov plyusovykh derev’ev sosny obyknovennoi v Srednem Povolzh’e [dissertation]. Ioshkar-Ola; 2014. 22 p. Available from: (In Russ.)
  11. Rogozin MV. Selection of scotch pine for plantation cultivation. Perm State National Research University Natural Sciences Institute. Perm; 2013. 200 p. (In Russ.)
  12. Elsik CG, Minihan VT, Hall SE, et al. Low-copy microsatellite markers for Pinus taeda L. Genome. 2000;43(3):550–555. doi: 10.1139/g00-002
  13. Soranzo N, Provan J, Powell W. Characterization of microsatellite loci in Pinus sylvestris L. Mol Ecol. 1998;7(9):1260–1261.
  14. Ilinov AA, Raevsky BV, Chirva OV. The state of gene pool of the basic forest-forming species of the White Seawatershed (on the example of a Picea × fennica (Regel) Kom. and Pinus sylvestris L.). Ecological genetics. 2020;18(2):185–202. (In Russ.) doi: 10.17816/ecogen19006
  15. Peakall R, Smouse PE. Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes. 2006;6(1):288–295. doi: 10.1111/j.1471–8286.2005.01155
  16. Potokina EK, Aleksandrova TG. Metody klassifikatsii vnutrividovogo raznoobraziya po rezul’tatam molekulyarnogo markirovaniya. Fundamental’nye i prikladnye problemy botaniki v nachale XXI veka. (Conference proceedings). Petrozavodsk: KarNTs RAN; 2008: 62–65. Available from:–1.pdf. (In Russ.)
  17. Smirnov ES. Taksonomicheskii analiz. Moscow: Izd-vo Moskovskogo Universiteta; 1969. 187 p. (In Russ.)
  18. Smirnov ES. O kodirovanii priznakov dlya taksonomicheskogo analiza. Biology Bulletin Reviews. 1971;32(2):224–228. (In Russ.)
  19. Wasielewska M, Klemm M, Burczyk J. Genetic diversity and mating system of Scots pine plus trees. Dendrobiology. 2005;53:57–62.
  20. Milyutina TN, Novikov PS, Sheikina OV. Molekulyarno-geneticheskie issledovaniya plyusovykh derev’ev sosny na kollektsionno-matochnom uchastke. Lesnye ekosistemy v usloviyakh izmeneniya klimata: biologicheskaya produktivnost’, monitoring i adaptatsionnye tekhnologii (Conference proceedings). Ioshkar-Ola: Mariiskii GTU; 2010: P. 81–83. (In Russ.)
  21. Máchová P, Cvrčková H, Malá J. Evaluation of Norway spruce seed orchard using microsatellite markers. Zpravy Lesnickeho Vyzkumu. 2014;59(4):243–249.
  22. Bergmann F, Ruetz W. Isozyme genetic variation and heterozygosity in random tree samples and selected orchard clones from the same Norway spruce populations. Forest Ecology and Management. 1991;46(1–2):39–47. doi: 10.1016/0378–1127(91)90243-0
  23. Knowles P. Comparison of isozyme variation among natural stands and plantations: jack pine and black spruce. Can J For Res. 1985;15(5): 902–908. doi: 10.1139/x85-145
  24. Cheliak WM, Murray G, Pitel JA. Genetic effects of phenotypic selection in white spruce. For Ecol Manage. 1988;24(2):139–149. doi: 10.1016/0378-1127(88)90117-X
  25. Mitton JB, Jeffers RM. The genetic consequences of mass selection for growth rate in Engelmann spruce. Silvae Genet. 1989;38:6–12.
  26. Marshall DR, Brown AHD. Optimum sampling strategies in genetic conservation. In: Frankel OH, Hawkes JG, editors. Crop Genetic Resources for Today and Tomorrow. London: Cambridge University Press; 1975. P. 53–80. Available at: ReferenceID=1668184.
  27. Danusevicius D, Lindgren D. Two-stage selection strategies in tree breeding considering gain, diversity, time and cost. Forest Genetics. 2002;9(2):147–159.
  28. Funda T, Lstiburek M, Lachout P, et al. Optimization of combined genetic gain and diversity for collection and deployment of seed orchard crops. Tree Genetics and Genomes. 2009;5:583–593. doi: 10.1007/s11295-009-0211-3
  29. Muller-Starck G. Protection of genetic variability in forest trees. Forest Genetics 1995;2(3):121–124.
  30. Lewandowski A, Kowalczyk J, Litkowiec M, et al. Wybуr elitarnych drzew matecznych sosny zwyczajnej i modrzewia europejskiego do założenia plantacji nasiennych 1,5 generacji. Sylwan. 2017;161(11):917–926. (In Czech.). doi: 10.26202/sylwan.2017087
  31. Haapanen M, Hynynen J, Ruotsalainen S, et al. Realised and projected gains in growth, quality and simulated yield of genetically improved Scots pine in southern Finland. Eur J Forest Res. 2016;135:997–1009. doi: 10.1007/s10342-016-0989-0
  32. Ivanovskaya SI, Barsukova MM, Luferova NS, et al. Uroven’ geneticheskoi izmenchivosti u derev’ev sosny obyknovennoi razlichnykh selektsionnykh kategorii. In: Problemy lesovedeniya i lesovodstva. (Collection of scientific articles). Gomel’: 2008;68:178–186. (In Russ.)
  33. Koski V. A note on genetic diversity in natural populations and cultivated stands of Scots pine (Pinus sylvestris L.). Investigación agraria. Sistemas y recursos forestales. 2000;9(1):89–96.

Supplementary files

Supplementary Files
1. Fig. 2. Ratio of representatives of five classes (I–V) of alleles according to the genetic originality coefficient in the structure of groups of Scots pine trees of various breeding categories in plus stands of Karelia

Download (280KB)

Copyright (c) 2021 ООО "Эко-Вектор"

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies