Assotiation of total carotenoid level in maize grain (Zea mays L.) with polimorphic site InDel1 in PSY1 gene

Cover Page

Abstract


Background. The Maize is the only major cereal crop that can naturally accumulate appreciable levels of carotenoids which are the source of provitamin A. The estimation of assotiation of total carotenoid level in maize grain with polimorphism PSY1 InDel1 was made. 

Materials and Methods. We used collection of 54 maize genotypes of different eco-geographical origin, methods of PCR analysis, spectrophotometry, statistical analysis in this study. 

Results. Total carotenoid content of genotypes with favorable allele of InDel1 was 0,60 mg/100 g, which was significantly higher than that of the samples with unfavorable allele (0,43 mg/100 g). 

Conclusion. Thus, the use of PCR-based markers for the PSY1 InDel1 polymorphism is a reliable method for the identification of genotypes with high carotenoid accumulation in maize grain.

Olga A. Orlovskaya

Institute of Genetics and Cytology of the National Academy of Sciences of Belarus

Author for correspondence.
Email: O.Orlovskaya@igc.by

Russian Federation Leading researcher, laboratory of ecological genetics and biotechnology

Svetlana I. Vakula

Institute of Genetics and Cytology of the National Academy of Sciences of Belarus

Email: svettera@yandex.ru

Russian Federation Junior researcher, laboratory of ecological genetics and biotechnology

Lubov V. Khotyleva

Institute of Genetics and Cytology of the National Academy of Sciences of Belarus

Email: L.Khotyleva@igc.by

Russian Federation Main researcher, laboratory of ecological genetics and biotechnology

Alexander V. Kilchevsky

National Academy of Sciences of Belarus

Email: Kilchev@presidium.bas-net.by

Russian Federation Main scientific secretary

  1. Руководство по методам контроля качества и безопасности биологически активных добавок к пище. — М.: Федеральный центр госсанэпиднадзора Минздрава России, 2004. — 240 с. [Rukovodstvo po metodam kontrolya kachestva i bezopasnosti biologicheski ak tivnykh dobavok k pishche. Moscow: Federal’nyi tsentr gossanepidnadzora Minzdrava Rossii; 2004. P. 240 (In Russ.)]
  2. de Almelda Rios S, Paes MCD, Cardoso WS, et al. Colour of corn grains and carotenoid profile of importance for human health. American Journal of Plant Science. 2014;5:857-862. doi: 10.4236/aips.2014.56099.
  3. Azmach G, Gedil M, Menkir F, et al. Marker-trait association analysis of functional gene markers for provitamin A levels across diverse tropical yellow maize inbred lines. BMC Plant Biol. 2013;13(1):227-243. doi: 10.1186/1471–2229–13–227.
  4. Babu R, Rojas NP, Gao S, et al. Validation of the effects of molecular marker polymorphisms in LcyE and CrtRB1 on provitamin A concentrations for 26 tropical maize populations. Theor Appl Genet. 2013;126(2):389-399. doi: 10.1007/s00122–012–1987–3.
  5. Fraser PD, Bramley PM. The biosynthesis and nutritional uses of carotenoids. Progress in Lipid Research. 2004;43(3):228-265. doi: 10.1016/j.plipres.2003.10.002.
  6. Fu Z, Chai Y, Zhou Y, et al. Natural variation in the sequence of PSY1 and frequency of favorable polymorphisms among tropical and temperate maize germplasm. Theor Appl Genet. 2013;126(4):923-935. doi: 10.1007/s00122–012–2026–0.
  7. Fu ZY, Yan JB, Zheng YP, et al. Nucleotide diversity and molecular evolution of the PSY1 gene in Zea mays compared to some other grass species. Theor Appl Genet. 2010;120:709-720.
  8. Harjes CE, Rocheford TR, Bai L, et al. Natural Genetic Variation in Lycopene Epsilon Cyclase Tapped for Maize Biofortification. Science. 2008;319(5861):330-333. doi: 10.1126/science. 1150255.
  9. Krinsky NI, Johnson EJ. Carotenoid actions and their relation to health and disease. Mol Aspects Med. 2005;26(6):459-516. doi: 10.1016/j.mam.2005.10.001.
  10. Mishra P, Singh NK. Spectrophotometry and TLC based characterization of kernel carotenoids in short duration maize. Maydica. 2010;55:95-100.
  11. Owens BF, Lipka AE, Magallanes-Lundback M, et al. A foundation for provitamin A biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels. Genetics. 2014;198:1699-1716.
  12. Safawo T, Senthil N, Raveendran M, et al. Exploitation of natural variability in maize for β-carotene content using HPLC and gene specific markers. Electronic Journal of Plant Breeding. 2010;1(4):548-555.
  13. Yang XH, Gao SB, Xu ST, et al. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breeding. 2011;28:511-526.
  14. Zhu, CF, Naqvi S, Breitenbach J, et al. Combinational genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proceedings of the National Academy of Sciences. 2008;105(47):18232-18237.

Supplementary files

Supplementary Files Action
1. Fig. 1. Electrophoregram of amplification products with primers for PSY1 InDel1 polymorphism of Plant Breeding Institute of Polesye maize lines: M — molecular weight marker, 1 — BL 365, 2 — BL 333, 3 — Коs 28/07, 4 — BKR 710, 5 — DК 276, 6 — Со 124-1, (favorable allele 0: 870 bp, unfavorable allele 378: 1248 bp) View (68KB) Indexing metadata
2. Fig. 2. Total carotenoid content in samples of different color gradations maize grain View (41KB) Indexing metadata
3. Fig. 3. The effect of different alleles for PSY1 InDel1 on the carotenoid content in maize grain View (52KB) Indexing metadata

Views

Abstract - 1268

PDF (Russian) - 220

PlumX


Copyright (c) 2016 Orlovskaya O.A., Vakula S.I., Khotyleva L.V., Kilchevsky A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.