Among the many bacteria present on and around the root, Pseudomonas bacteria are (among) the best root colonizers and therefore very suitable to apply for beneficial purposes. In this chapter, we discuss the possibilities to use such bacteria for the following purposes: fertilization of the plant, stimulation of plant growth and yield, reduction of plant stress, and reduction of plant diseases. This research was supported by numerous grants, especially from the Dutch Organization for scientific research (NWO), EET, the European Commission and INTAS.

Ben Lugtenberg

Leiden University, Institute of Biology,, Leiden, , The Netherlands

Faina D Kamilova

Leiden University, Institute of Biology,, Leiden, , The Netherlands

  1. Achouak W., Conrod S., Cohen V., Heulin T., 2004. Phenotypic Variation of Pseudomonas brassicacearum as a Plant Root-Colonization Strategy//Mol. Plant-Microbe Interact. Vol. 17. P. 872-879.
  2. Audenaert K., Pattery T., Cornelis P., Hoefte M., 2002. Induction of Systemic Resistance to Botrytis cinerea in Tomato by Pseudomonas aeruginosa 7NSK2: Role of Salicylic Acid, Pyochelin, and Pyocyanin//Mol. Plant-Microbe. Interact. Vol. 15. P. 1147-1156.
  3. Bangera M.G., Thomashow L.S., 1999. Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2, 4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87//J. Bacteriol. Vol. 181. P. 3155-3163.
  4. Baron S.S., Rowe J.J., 1981. Antibiotic action of pyocyanin. Antimicrob. Agents//Chemother. Vol. 20. P. 814.
  5. Bassler B.L., 1999. How bacteria talk to each other: Regulation of gene expression by quorum sensing//Curr. Opin. Microbiol. Vol. 2. P. 582-587.
  6. Belimov A.A., Dodd I.C., Safronova V.I. et al., 2007. Pseudomonas brassicacearum strain Am3 containing 1-aminocyclopropane-1-carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato//J. Experimental Botany. Vol. 58. P. 1485-1495.
  7. Berg G., Eberl L., Hartmann A., 2005. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria//Envirinm. Microbiol. Vol. 7. P. 1673-1685.
  8. Bloemberg G.V., O'Toole G.A., Lugtenberg B.J.J., 1997. Green fluorescent protein as a marker for Pseudomonas spp.//Appl. Environ. Microbiol. Vol. 63. P. 4543-4551.
  9. Bloemberg G.V., Wijfjes A.H.M., Lamers G.E.M., et al., 2000. Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: new perspectives for studying microbial communities//Mol. Plant-Microbe Interact. V. 13. P. 1170-1176.
  10. Bloemberg G.V., Lugtenberg B.J.J., 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria//Curr. Opin. Plant Biol. Vol. 4. P. 343-350.
  11. Bloemberg G.V., Lugtenberg B.J.J., 2004. Bacterial biofilm on plants: relevance and phenotypic aspects//Microbial biofilms/Eds. Ghannoum, M. and O'Toole G. A., Washington D. C: ASM Press., P. 141-159.
  12. Bloemberg G.V., Lagopodi A.L., de Bruijn F.J. et al., 2004. Visualisation of microbes and their interactions in the rhizosphere using auto fluorescent proteins as markers//Molecular Microbial Ecology Manua/Eds. Kowalchuk, G. A.; Bruijn, F. J.; Head, I. M.; Akkermans, A.D.; van Elsas, J.D. Berlin Heidelberg, Germany: Springer, P. 1257-1280.
  13. Bolwerk A. Lagopodi A.L., Wijfjes A.H.M. et al., 2003. Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicislycopersici//Mol. Plant-Microbe Interact. Vol. 16. P. 983-993.
  14. Bolwerk A., Lagopodi A.L., Wijfjes A.H.M., et al., 2004. Interactions between Pseudomonas biocontrol strains and Fusarium oxysporum f. sp. radicis-lycopersici in the tomato rhizosphere.//Biology of Plant Microbe Interactions, Vol. 4./Eds. Tikhonovich I., Lugtenberg B.J.J., Provorov St. Paul, Minnesota, USA: International Society for Molecular Plant-Microbe Interactions, P. 323-326.
  15. Bolwerk A., Lagopodi A.L., Lugtenberg B.J.J., Bloemberg G.V., 2005. Visualization of interactions between the tomato root, a pathogenic and a beneficial Fusarium strain during biocontrol of tomato foot and root rot//Mol. Plant-Microbe Interact. Vol. 18. P. 710-721.
  16. Bolwerk A., Lugtenberg B.J.J., 2006. Visualization of interactions of microbial biocontrol agents and phytopathogenic fungus Fusarium oxysporum f. sp. radicislycopersici on tomato roots//PGPR: Biocontrol and Biofertilization/Ed. Siddiqui Z.A., Verlag, Dordrecht, The Netherlands: Springer, P. 217-231.
  17. Cazorla F.M., Duckett S.B., Bergström E.T., et al., 2006. Biocontrol of avocado Dematophora root rot by the antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol//Mol. Plant Microbe Interact. Vol. 19. P. 418-428.
  18. Chin-A-Woeng T.F.C., de Priester W., van der Bij A.J., Lugtenberg B.J. J., 1997. Description of the colonization of a gnotobiotic tomato rhizosphere by Pseudomonas fluorescens biocontrol strain WCS365, using scanning electron microscopy//Mol. Plant Microbe Interact. Vol. 10. P. 79-86.
  19. Chin-A-Woeng T.F.C., Bloemberg G.V., van der Bij A.J. et al., 1998. Biocontrol by phenazine-1-carboxamideproducing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersic//Mol. Plant Microbe Interact. Vol. 11. P. 1069-1077.
  20. Chin-A-Woeng T.F.C., Bloemberg G.V., Mulders I.H.M. et al., 2000. Root colonization is essential for biocontrol of tomato foot and root rot by the phenazine1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391//Mol. Plant-Microbe Interact. Vol. 13. P. 1340-1345.
  21. Chin-A-Woeng T.F.C., van den Broek D., de Voer G. et al., 2001. Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium//Mol. Plant-Microbe Interact. Vol. 14. P. 969-979.
  22. Chin-A-Woeng T.F.C., Bloemberg G.V., and Lugtenberg B.J.J., 2003 a. Phenazines and their role in biocontrol by Pseudomonas bacteria//New. Phytol. Vol. 157. P. 503-523.
  23. Chin-A-Woeng T.F.C., Bloemberg G.V., Lugtenberg B.J.J., 2003 b. Mechanisms of biological control of phytopathogenic fungi by Pseudomonas spp//Plant-Microbe Interactions Vol 6./Eds. Stacey G. & Keen N.T., St. Paul, M.N: The American Phytopathologial Society, P. 173-225.
  24. Chin-A-Woeng T.F.C., Lagopodi A.L., Mulders I.H.M., et al., 2004-a. Visualisation of interactions of Pseudomonas and Bacillus biocontrol strains//Plant surface microbiology/Eds. Varma A., Abott L., Werner D., Hamps R., Berlin Heidelberg, Germany: Springer, P. 431-448.
  25. Chin-A-Woeng T.F.C., Lugtenberg B.J.J., 2004-b. Root colonisation following seed inoculation//Plant surface microbiology/Eds. Varma, A., Abott, L., Werner, D., and Hamps, R., Berlin Heidelberg, Germany: Springer, P. 13-33.
  26. Costerton J.W., Lewandowski Z., Caldwell D.E. et al., 1995, Microbial biofilms//Annu. Rev. Microbiol. Vol. 49. P. 711-745.
  27. De Bruijn I., de Kock M.J.D., Yang M. et al., 2007. Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species//Mol. Microbiol. Vol. 63. P. 417-428.
  28. Dekkers L.C., Phoelich C.C., van der Fits L., Lugtenberg B.J.J., 1998. A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365//Proc. Natl. Acad. Sci. Vol. 95. P. 7051-7056.
  29. Dekkers L.C., Mulders C.H.M., Phoelich C.C. et al., 2000. The sss colonization gene of the tomato-Fusarium f. sp. radicis-lycopersici biocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild type Pseudomonas spp. Bacteria//Mol. Plant-Microbe Interact. Vol. 13. P. 1177-1183.
  30. De Meyer G., Capiau K., Audenaert K. et al., 1999. Nanogram amounts of salicilic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean//Mol. Plant Microbe. Interact. V. 12. P. 450-459.
  31. De Souza J.T., de Boer M., de Waard P. et al., 2003. Biochemical, genetic and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens//Appl. Environ. Microbiol. Vol. 69. P. 7161-7172.
  32. De Weert S., Vermeiren H., Mulders I.H.M. et al., 2002. Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens//Mol. Plant Microbe. Interact. Vol. 15. P. 1173-1180.
  33. De Weert S., Kuiper I., Lagendijk E.L. et al., 2003. Role of chemotaxis toward fusaric acid in colonization of hyphae of Fusarium oxysporum f. sp. radicis-lycopersici by Pseudomonas fluorescens WCS365//Mol. Plant-Microbe Interact. Vol. 16. P. 1185-1191.
  34. De Weert S., Kuiper I., Kamilova F. et al., 2007. The role of competitive root tip colonization in the biological control of tomato foot and root rot//Biological control of plant diseases/Eds. Chincolkar S.B., Mukerji K.G., New York, London, Oxford: The Haworth Press, Inc., P. 103-122.
  35. Dong Y.H., Xu J.L., Li X.C., Zhang L.H., 2000. AiiA, a novel enzyme inactivates acyl homoserine-lactone quorum-sensing signal and attenuates the virulence of erwinia carotovora//Proc. Natl. Acad. Sci. Vol. 97. P. 3526-3531.
  36. Dong Y.H., Wang L.H., Xu J.L. et al., 2001. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase//Nature. Vol. 411. P. 813-817.
  37. Dong Y.H., Zhang X.F., Xu J.L., Zhang L.H., 2004. Insecticidal Bacillus thuringiensis silences erwinia carotovora virulence by a new form of microbial antagonism, signal interference//Appl. Environ. Microbiol. Vol. 70. P. 954-960.
  38. Dow M., Newman M.A., von Roepenack E., 2000. The Induction and Modulation of Plant Defense Responses by Bacterial Lipopolysaccharides//Annu. Rev. Phytopathol. Vol. 38. P. 241-261.
  39. Dowling D.N., O'Gara F., 1994. Metabolites of Pseudomonas involved in the biocontrol of plant disease//TIBTECH. Vol. 12. P. 133-141.
  40. Dubern J-F., Bloemberg G.V., 2006 a. Influence of environmental conditions on putisolvins I and II production in Pseudomonas putida strain PCL1445//FEMS Microbiol Lett. Vol. 263. P. 169-175.
  41. Dubern J-F., Lugtenberg B.J.J. and Bloemberg G.V., 2006 b. The ppuI-rsaL-ppuR quorum sensing system regulates biofilm formation of Pseudomonas putida PCL1445 by controlling biosynthesis of the cyclic lipopeptides putisolvin I and II//J. Bacteriol. Vol. 188. P. 2898-2906.
  42. Duffy B.K., Defago G., 1997. Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis//Phytopathology. Vol. 87. P. 1250-1257.
  43. Duffy B.K. Defago G., 1999. Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains//Appl. Environ. Microbiol. Vol. 65. P. 2429-2438.
  44. Egamberdiyeva D., Kamilova F., Validov S. et al., 2007. High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown in salinated soil in Uzbekistan//Environmental Microbiol., in press.
  45. Girard G., van Rij E.T., Lugtenberg B.J.J. Bloemberg G. V., 2006 a. Regulatory roles of psrA and rpoS in phenazine-1-carboxamide synthesis by Pseudomonas chlororaphis PCL1391//Microbiology. Vol. 152. P. 43-58.
  46. Girard G., Barends S., Riqali S. et al., 2006 b. Pip, a novel activator of phenazine biosyntehsis of Pseudomonas chlororaphis PCL1391//J. Bacteriol. Vol. 188. P. 8283-8293.
  47. Glick B.R., Jacobson C.B., Schwarze, Pasternak, J.J., 1994. 1-aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR-12-2 do not stimulate canola root elongation//Can.J. Microbiol. Vol. 40. P. 911-915.
  48. Haas D., Defago G., 2005. Biological control of soilborne pathogens by fluorescent pseudomonads//Nat. Rev. Microbiol. Vol. 3. P. 307-319.
  49. Harman G.E., Howell C.H., Viterbo A. et al., 2004. Trichoderma species -opportunistic, avirulent plant symbionts//Nature Rev. Microbiol. Vol. 2. P. 43-56.
  50. Hiltner L., 1904. Über neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter bessonderer Berücksichtigung der Gründung und Brache//Arb. Dtsch. Landwirtsch. Ges. Berl. Vol. 98. P. 59-78.
  51. Kamilova F., Validov S., Azarova T. et al., 2005. Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria//Environ. Microbiol. Vol. 7. P. 1809-1817.
  52. Kamilova F., Kravchenko L.V., Shaposhnikov A.I. et al., 2006 a. Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria//Mol. Plant Microbe Interact. Vol. 19. P. 250-256.
  53. Kamilova F., Kravchenko L.V., Shaposhnikov A.I. et al., 2006 b. Effects of the tomato pathogen Fusarium oxysporum f. sp. radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudates//Mol. Plant Microbe Interact. Vol. 19. P. 1121-1126.
  54. Kamilova F., Leveau J.H.J., Lugtenberg B., 2007. Collimonas fungivorans, an unpredicted in vitro but efficient in vivo biocontrol agent for the suppression of tomato foot and root rot//Environ. Microbiol. Vol. 9. P. 1597-1603.
  55. Koch B., Nielsen T.H., Sørensen D. et al., 2002. Lipopeptide production in Pseudomonas sp. strain DSS73 is regulated by components of sugar beet exudate via the Gac two-component regulatory system//Appl. Environ. Microbiol. Vol. 68. P. 4509-4516.
  56. Kuiper I., Bloemberg G.V., Noreen S. et al., 2001 a. Increased uptake of putrescine in the rhizosphere inhibits competitive root colonization by Pseudomonas fluorescens strain WCS365//Mol. Plant Microbe Interact. Vol. 14. P. 1096-1104.
  57. Kuiper I., Bloemberg G.V., Lugtenberg B.J.J., 2001 b. Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbondegrading bacteria//Mol. Plant Microbe Interact. Vol. 14. P. 1197-1205.
  58. Kuiper I., Kravchenko L., Bloemberg G.V., Lugtenberg B.J.J., 2002. Pseudomonas putida strain PCL1444, selected for efficient root colonization and naphthalene degradation, effectively utilizes root exudates components//Mol. Plant Microbe Interact. Vol. 15. P. 734-741.
  59. Kuiper I., Lagendijk E.L., Pickford R. et al., 2004 a. Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms//Mol. Microbiol. Vol. 51. P. 97-113.
  60. Kuiper I., Lagendijk E.L., Bloemberg G.V., Lugtenberg, B.J.J., 2004 b. Rhizoremediation: A beneficial plant-microbe interaction//Mol. Plant-Microbe Interact. Vol. 17. P. 6-15.
  61. Lagopodi A.L., Ram A.F. J., Lamers G.E.M. et al., 2002. Confocal laser scanning microscopical analysis of tomato root colonization and infection by Fusarium oxysporum f. sp. radicis-lycopersici using the green fluorescent protein as a marker//Mol. Plant Microbe Interact. Vol. 15. P. 172-179.
  62. Lin Y.H., Xu J.L., Hu J.Y. et al., 2003. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes//Mol. Microbiol. Vol. 47. P. 849-860.
  63. Lugtenberg B.J.J. Dekkers L.C., 1999. What makes Pseudomonas bacteria rhizosphere competent?//Environ. Microbiol. Vol. 1. P. 9-13.
  64. Lugtenberg B.J.J., Kravchenko L.V., Simons M., 1999. Tomato seed and root exudate sugars: Composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization//Environ. Microbiol. Vol. 1. P. 439-446.
  65. Lugtenberg B.J.J., Dekkers L.C., Bloemberg G.V., 2001. Molecular determinants of rhizosphere colonization by Pseudomonas//Annu. Rev. Phytopathol. Vol. 39. P. 461-490.
  66. Lugtenberg B.J.J., Bloemberg G.V., 2004. Life in the rhizosphere.//Pseudomonas Vol. 1./Ed. Ramos J.L., Plenum Publishers, New York: Kluwer Academic, P. 403-430.
  67. Lugtenberg B.J.J., Kamilova F.D., 2004. Rhizosphere management: microbial manipulation for biocontrol//Encyclopedia of plant and crop science, Marcel Dekker, Inc., New York, N. Y., P. 1098-1101.
  68. Lugtenberg B., Leveau J., 2007. Biocontrol of plant pathogens: principles, promises and pitfalls//The rhizosphere. Biochemistry and organic substances at the soil-plant interface/Eds. Pinton R., Varanini Z. and Nannipieri P. Second edition, CRC press, Taylor and Francis Group, Boca Raton, FL, USA. P. 267-296.
  69. Lynch J.M., 1990. The Rhizosphere. John Wiley & Sons Ltd., England.
  70. Meharg A.A., Killham K., 1995. Loss of exudates from the roots of perennial ryegrass inoculated with a range of microorganisms//Plant Soil, Vol. 170. P. 345-349.
  71. Nielsen T.H., Christophersen C., Anthoni U., Sørensen J., 1999. Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54//J. Appl. Microbiol. Vol. 87. P. 80-90.
  72. Nielsen T.H., Thrane, C., Christophersen C. et al., 2000. Structure, production characteristics and fungal antagonism of tensin-a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96. 578//J. Appl. Microbiol. Vol. 89. P. 992-1001.
  73. Nielsen T.H., Sørensen D., Tobiasen C. et al., 2002. Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere//Appl. Environ. Microbiol. Vol. 68. P. 3416-3423.
  74. Notz R., Maurhofer M., Dubach H. et al., 2002. Fusaric acid producing strains of Fusarium oxysporum alter 2,4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat//Appl. Environ. Microbiol. Vol. 68. P. 2229-2235.
  75. Nowak-Thompson B., Chaney N., Wing J.S. et al., 1999. Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5.//J. Bacteriol, Vol. 181. P. 2166-2174.
  76. Nürnberger T., Brunner F., 2002. Innate immunity in plants and animals: Emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns//Curr. Opin. Plant Biol. Vol. 5. P. 318-324.
  77. Ongena M., Jourdan E., Adam A. et al., 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants//Environm. Microbiol. Vol. 9. P. 1084-1090.
  78. Piper K.R., Beck von Bodman S., Farrand S.K., 1993. Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction//Nature. Vol. 362. P. 448-450.
  79. Pinton R., Varanini Z., Nannipieri P. (Eds). 2007. The rhizosphere. Biochemistry and organic substances at the soil-plant interface. Second edition, CRC Press, Taylor and Francis Group, Boca Raton, FL, USA.
  80. Rovira A., 1956. A study of the development of the root surface microflora during the initial stages of plant growth//J. Applied Bacteriol. Vol. 19. P. 72-79.
  81. Ryu C.M., Farag M.A., Hu C.H. et al, 2004. Bacterial volatiles induce systemic resistance in Arabidopsis//Plant Physiol. Vol. 134. P. 1017-1026.
  82. Sánchez-Contreras M., Martín M., Villacieros M. et al., 2001. Phenotypic selection and phase variation occur during alfalfa root colonization by Pseudomonas fluorescens F113//J. Bacteriol. Vol. 184. P. 1587-1596.
  83. Schnider-Keel U., Seematter A., Maurhofer M. et al., 2000. Autoinduction of 2, 4-Diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin//J. Bacteriol. Vol. 182. P. 1215-1225.
  84. Schouten A., Van den Berg G., edel-Hermaan V. et al., 2004. Defense responses of Fusarium oxysporum to 2,4-diacetylphloroglucinol, a broad-spectrum antibiotic produced by Pseudomonas fluorescens//Mol. Plantmicrobe Interact. Vol. 17. P. 1201-1211.
  85. Simons M., van der Bij A., Brand I. et al., 1996. Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria//Mol. Plant Microbe Interact. Vol. 9. P. 600-607.
  86. Simons M., Permentier H.P., de Weger L.A. et al., 1997. Amino acid synthesis is necessary for tomato root colonization by Pseudomonas fluorescens strain WCS365//Mol. Plant Microbe Int. Vol. 10. P. 102-106.
  87. Spaink H.P., Kondorosi A., Hooykaas P.J.J. (Eds). 1998, The Rhizobiaeceae. Kluwer Academic Publishers, Dordrecht, The Netherlands.
  88. Stanghellini M.E., Tomlinson J.A., 1987. Inhibitory and lytic effects of a nonionic surfactant on various asexual stages in the life cycle of Pythium and Phytophthora species//Phytopathol. Vol. 77. P. 112-114.
  89. Thomashow L.S., Weller D.M., 1996. Current concepts in the use of introduced bacteria for biological disease control: Mechanisms and antifungal metabolites//Plant-Microbe Interact., Vol 1./Eds G. Stacey, N.T. Keen. P. 187-235.
  90. Uren N.C., 2007. Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants//The rhizosphere. Biochemistry and organic substances at the soil-plant interface/Eds. Pinton, R., Varanini, Z., Nannipieri, P. Second edition, CRC press, Taylor and Francis Group, Boca Raton, FL, USA. P. 1-21.
  91. Validov S., Kamilova F., Qi, S. et al., 2007. Selection of bacteria able to control Fusarium oxysporum f. sp. radicis-lycopersici in stonewool substrate//J. Appl. Microbiol. Vol. 102. P. 461-471.
  92. Van den Broek D., Chin-A-Woeng T.F.C., eijckemans K., et al., 2003. Biocontrol traits of Pseudomonas spp. are regulated by phase variation//Mol. Plant-Microbe Interact. Vol. 16. P. 1003-1012.
  93. Van den Broek D., Chin-A-Woeng T.F., Bloemberg G.V. et al., 2005 a. Molecular nature of spontaneous modifications in gacS which cause colony phase variation in Pseudomonas sp. strain PCL1171//J. Bacteriol. Vol. 187. P. 593-600.
  94. Van den Broek D., Bloemberg G.V., Lugtenberg B.J.J., 2005 b. The role of phenotypic variation in rhizosphere Pseudomonas bacteria//Environ. Microbiol. Vol. 7. P. 1686-97.
  95. Van elsas J.D., Trevors J.T., Starodub M.E., 1988. Bacterial conjugation between pseudomonads in the rhizosphere of wheat//FEMS Microbiol. Ecol. Vol. 54. P. 299-306.
  96. Van Loon L.C., Bakker P.A.H. M., 2006. Induced systemic resistance as a mechanism of disease suppression by rhizobacteria//PGPR: Biocontrol and biofertilization/Ed Siddiqui Z.A., Dordrecht, The Netherlands: Springer, P. 39-66.
  97. Van Peer R., Niemann G.J., Schippers B., 1991. Induced resistance and phytoalexin accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. strain WCS417r//Phytopathology. Vol. 81. P. 728-734.
  98. Van Rij E.T., Wesselink M., Chin-A-Woeng T.F.C. et al., 2004. Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391//Mol. Plant-Microbe Interact. Vol. 17. P. 557-566.
  99. Van Rij E.T., Girard G., Lugtenberg B.J. J., Bloemberg G. V., 2005. Influence of fusaric acid on phenazine1-carboxamide synthesis and gene expression of Pseudomonas chlororaphis strain PCL1391//Microbiology. Vol. 151. P. 2805-2814.
  100. Van Wees S.C. M., De Swart E.A. M., Van Pelt J.A. et al., 2000. Enhancement of induced disease resistance by simultaneous activation of salicylate-and jasmonate-dependant defense pathways in Arabidopsis thaliana//Proc. Natl. Acad. Sci. USA. Vol. 97. P. 8711-8716.
  101. Wei G., Kloepper J.W., Tuzun S., 1991. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria//Phytopathology. Vol. 81. P. 1508-1512.
  102. Weller D.M., 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria//Annu. Rev. Phytopathol. Vol. 26. P. 379-407.
  103. Zhang L., Murphy P.J., Kerr A., Tate M.E., 1993. Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones//Nature. Vol. 362. P. 446-448.


Abstract - 250

PDF (Russian) - 137


CrossRef     1 citations

  • Kamilova F, Lamers G, Lugtenberg B. Biocontrol strainPseudomonas fluorescensWCS365 inhibits germination ofFusarium oxysporumspores in tomato root exudate as well as subsequent formation of new spores. Environmental Microbiology. 2008;10(9):2455. doi: 10.1111/j.1462-2920.2008.01638.x


Copyright (c) 2008 Lugtenberg B., Kamilova F.D.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.