Bacterial genera associated with nitrogen cycle in microbial communities of chernozems



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background: Reactions associated with the geochemical nitrogen cycle occurring in the soil have a decisive effect on the level of nitrogen availability for green plants. Microorganisms that catalize them are of interest from the point of view of developing mechanisms for managing soil fertility. In this paper, we focused on bacterial genera associated with nitrogen cycle processes in chernozem soils of the Belgorod region of Russia.

Materials and methods: Samples of arable and non-arable chernozems of three subtypes were collected in June and August 2022. Microbiological profiling based on high-throughput sequencing of amplicons of V3-V4 region of the 16S rRNA gene with subsequent computational processing of the results was used in the work.

Results: 6 genera of nitrogen-fixing bacteria were found, as well as a group undifferentiated by means of the method used, including genus Rhizobium. 8 genera involved in the first and 5 genera involved in the second stage of nitrification were also found. 7 genera have been found whose representatives are capable of denitrification, without taking into account nitrogen-fixing bacteria, which are also capable of carrying out this process.

Conclusions: Among the bacteria capable of fixing atmospheric nitrogen in the chernozems of the Belgorod region, the genus Bradyrhizobium dominates. Among the nitrifiers performing the first stage of nitrification, Ellin6067 and MND1 from the family Nitrosomonadaceae predominate. The second stage of nitrification is carried out mainly by bacteria of the genus Nitrospira. Of the potential denitrifiers, along with nitrogen-fixing genera possessing this ability, representatives of the genera Rubrobacter and Pseudomonas are the most numerous. The study does not claim to give a complete list of organisms that carry out key chemical transformations of nitrogen compounds in chernozems, however, it allows us to name their important participants.

Full Text

Restricted Access

About the authors

K. S. Boyarshin

Belgorod State University (BelSU)

Email: kboyarshin@mail.ru
ORCID iD: 0000-0002-2960-0670
SPIN-code: 6002-9327
Scopus Author ID: 57218822292
ResearcherId: HJZ-5162-2023

Senior Lecturer at the Department of Biotechnology and Microbiology

Russian Federation, 85 Pobedy str., Belgorod, Russia, 308015

V. V. Adamova

Belgorod State University (BelSU)

Email: adamova@bsu.edu.ru
ORCID iD: 0000-0001-8329-4670

Docent at the Department of Biology

Russian Federation, 85 Pobedy str., Belgorod, Russia, 308015

Wentao Zheng

Belgorod State University (BelSU)

Email: zhengwentaoo@126.com
ORCID iD: 0009-0003-3460-8401

Graduate student at the Department of Biotechnology and Microbiology

Russian Federation, 85 Pobedy str., Belgorod, Russia, 308015

E. V. Nikitinskaya

Cherepovets State University (ChGU)

Email: nikitinskajacat@yandex.ru
Russian Federation, 5 Lunacharskogo Ave., Cherepovets, Russia, 162600

O. Yu. Obukhova

Belgorod State University (BelSU)

Email: 1064261@bsu.edu.ru
ORCID iD: 0009-0007-5139-0394

Graduate student at the Department of Biotechnology and Microbiology

Russian Federation, 85 Pobedy str., Belgorod, Russia, 308015

M. V. Kolkova

Belgorod State University (BelSU)

Email: mvk3105@mail.ru
ORCID iD: 0009-0008-3849-3564

Student at the Department of Biotechnology and Microbiology

Russian Federation, 85 Pobedy str., Belgorod, Russia, 308015

O. S. Bespalova

Belgorod State University (BelSU)

Email: olga9078@mail.ru

Student at the Department of Biotechnology and Microbiology

Russian Federation, 85 Pobedy str., Belgorod, Russia, 308015

V. V. Kluyeva

Belgorod State University (BelSU)

Email: klyueva@bsu.edu.ru
ORCID iD: 0000-0002-9509-5115

Senior Lecturer at the Department of Biotechnology and Microbiology

Russian Federation, 85 Pobedy str., Belgorod, Russia, 308015

K. A. Degtyareva

Senior Lecturer at the Department of Biotechnology and Microbiology

Email: degtyareva@bsu.edu.ru
ORCID iD: 0000-0003-4474-0919

Senior Lecturer at the Department of Biotechnology and Microbiology

Russian Federation, 85 Pobedy str., Belgorod, Russia, 308015

L. V. Nesteruk

Belgorod State University (BelSU)

Email: nesteruk@bsu.edu.ru
ORCID iD: 0000-0003-3189-8178

Senior Lecturer at the Department of Biotechnology and Microbiology

Russian Federation, 85 Pobedy str., Belgorod, Russia, 308015

Yu. N. Kurkina

Belgorod State University (BelSU)

Email: kurkina@bsu.edu.ru
ORCID iD: 0000-0001-9180-1257

Docent at the Department of Biotechnology and Microbiology

Russian Federation, 85 Pobedy str., Belgorod, Russia, 308015

O. A. Makanina

Belgorod State University (BelSU)

Email: makanina@bsu.edu.ru
ORCID iD: 0009-0006-7571-2493

Docent at the Department of Biotechnology and Microbiology

Russian Federation, 85 Pobedy str., Belgorod, Russia, 308015

E. S. Ivanova

Cherepovets State University (ChGU)

Email: stepinaelena@yandex.ru
ORCID iD: 0000-0002-6976-1452

Head of the Ecological and Analytical Laboratory

Russian Federation, 5 Lunacharskogo Ave., Cherepovets, Russia, 162600

I. V. Batlutskaya

Belgorod State University (BelSU)

Author for correspondence.
Email: bat@bsu.edu.ru
ORCID iD: 0000-0003-0068-6586

Head of the Department of Biotechnology and Microbiology

Russian Federation, 85 Pobedy str., Belgorod, Russia, 308015

References

  1. Osipov A.I. Biological circulation of atmospheric nitrogen // Izvestiya of St. Petersburg State Agrarian University. 2016. No. 42. P. 97-103. (In Russ.)
  2. Kosolapova A.V. The doctrine of the biosphere. Part II. Biogeochemical cycles. Voronezh: VSPU, 2007. 48 p. (In Russ.)
  3. Ter-Gazaryan G.G. Fixation of atmospheric nitrogen. Tiflis: Publication of the Gosplan of the TSFSR, 1926. 159 p. (In Russ.)
  4. Brey S.M. Nitrogen metabolism in plants. Moscow: Agropromizdat, 1986. 199 p. (In Russ.)
  5. Kolosov A.E., Zhdanova O.B., Martusevich A.K., Ashikhmin S.P. Nitrogen compounds in biomedical sciences. Moscow: Academy of Natural Sciences, 2012. 87 p. (In Russ.)
  6. Kidin V.V. Agrochemistry. Moscow: Prospekt, 2015. 1033 p. (In Russ.)
  7. Umarov M.M., Kurakov A.V., Stepanov A.L. Microbiological transformation of nitrogen in soil. Moscow: GEOS, 2007. 138 p. (In Russ.)
  8. Alexander M. Denitrifying Bacteria / Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9.2. Madison: American Society of Agronomy, Soil Science Society of America, 2016. P. 1484–1486. doi: 10.2134/agronmonogr9.2.c52
  9. Shtark O.Yu., Borisov A.Yu., Zhukov V.A. et al. Multi-component symbiosis of legumes with beneficial soil microbes: genetic and evolutionary basis of application in sustainable crop production //Ecological genetics. 2011. Vol. 9, No. 2. P. 80-94. (In Russ.)
  10. Avdeenkov P.P., Chistyakov N.E. Mechanism of denitrification // Science, technology and education. 2019. No.4 (57). P. 19-22. (In Russ.)
  11. Zavalin A.A., Alferov A.A., Chernova L.S. Associative nitrogen fixation and the practice of using biological products in agricultural crops // Agrochemistry. 2019. No. 8. P. 83-96. (In Russ.)
  12. Subbarao G.V., Rao I.M., Nakahara K. et al. Potential for biological nitrification inhibition to reduce nitrification and N2O emissions in pasture crop-livestock systems // Animal. 2013. Vol. 7, Suppl. 2. P. 322-332. doi: 10.1017/S1751731113000761
  13. Bozal-Leorri A., Corrochano-Monsalve M., Arregui L.M. et al. Biological and synthetic approaches to inhibiting nitrification in non-tilled Mediterranean soils // Chem. Biol. Technol. Agric. 2021. Vol. 8, No. 51. doi: 10.1186/s40538-021-00250-7
  14. McCormic S. Rhizobial strain-dependent restriction of nitrogen fixation in a legume-Rhizobium symbiosis // Plant Journal. 2018. Vol. 93. Issue 1. P. 3-4. doi: 10.1111/tpj.13791
  15. Sheudzhen A.H., Koltsov S.A., Gutorova O.A. and others. Microflora of leached chernozem with prolonged use of mineral fertilizers // International Scientific Research Journal. 2008. Vol. 56. No. 2. pp. 89-94.doi: 10.23670/IRJ.2017.56.067 (In Russ.)
  16. Blagoveshchenskaya G.G., Zavalin A.A., Lukin S.M. Microbocenosis of the nitrogen cycle in soil when using a new form of nitrogen fertilizer // Fertility No. 1. 2009. p. 30. (In Russ.)
  17. Krutilo D.V., Zotov V.S. Genotypic analysis of nodule bacteria nodulating soybeans in soils of Ukraine // Ecological genetics. 2013. Vol. 11. No. 4. pp. 86-95. (In Russ.)
  18. Semenov M.V. Biomass and taxonomic structure of archaea and bacteria in soils of natural and agricultural ecosystems: dissertation. Mount Pleasant. Moscow, 2016. (In Russ.)
  19. Artamonova V.S., Bortnikova S.B. On the state of soil nitrogen-fixing bacteria in the urban forest // Bulletin of the Perm University. 2016. No. 2. pp. 150-159. (In Russ.)
  20. Ilyinova M.I. Changing the properties of chernozems and salt deposits of the Stavropol upland in agricultural use: dissertation. Mount Pleasant. Krasnodar, 2016. (In Russ.)
  21. Panchishkina M.B. Dynamics of various bacterial populations in soils: dissertation. Mount Pleasant. Moscow, 1987 (In Russ.)
  22. Wei W., Isobe K., Nishizawa T. et al. Higher diversity and abundance of denitrifying microorganisms in environments than considered previously // The ISME Journal. 2015. Vol. 9. P. 1954-1965. doi: 10.1038/ismej.2015.9
  23. Rosch C., Mergel A. and Bothe H. Biodiversity of denitrifying and dinitrogen-fixing bacteria in anacid forest soil // Appl.Environ.Microbiol. 2002. Vol. 68. P. 3818–3829. doi: 10.1128/AEM.68.8.3818
  24. Shaw L.J., Nicol G.W., Smith Z.et al. Nitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway // Environ.Microbiol. 2006. Vol. 8 P. 214–222. doi: 10.1111/j.1462-2920.2005.00882.x
  25. Автор 2023
  26. Derzhavin L.M., Samokhvalov S.G., Sokolova N.V. et al. Soil. Determination of the pH of salt extract, exchange acidity, exchange cations, nitrate content, exchangeable ammonium and mobile sulfur by TSINAO methods. GOST 26483-85—GOST 26490-85 / State Standards of the USSR. Moscow: USSR State Committee on Standards, Publishing House of Standards, 1985. 6 p. (In Russ.)
  27. Soils. Methods for the determination of organic matter. GOST 26213-2021. / ed. Nakhimova L.I. Moscow: Russian Institute of Standardization, 2021. 8 p. (In Russ.)
  28. Derzhavin L.M., Samokhvalov S.G., Sokolova N.V. et al. Soil. Determination of mobile phosphorus and potassium compounds by the Chirikov method in the modification of TSINAO. GOST 26204-91. The state standard of the USSR. Moscow: Committee of Standardization and Metrology of the USSR, 1991. 5 p. (In Russ.)
  29. L.M. Derzhavin, S.G. Samokhvalov, N.V. Sokolova, etc. Soil. Determination of nitrates by ionometric method. GOST 26951-86. The state standard of the USSR. Moscow: USSR State Committee on Standards, Publishing House of Standards, 1986. 10 p. (In Russ.)
  30. Kruskal W.H., Wallis W.A. Use of Ranks in One-Criterion Variance Analysis // J. Am. Stat. Assoc. 1952. Vol. 47, No. 260. P. 583–621. doi: 10.2307/2280779
  31. Hayatsu M., Tago K., Saito M. Various players in the nitrogen cycle: Diversity and functions of the microorganisms involved in nitrification and denitrification // Soil Science and Plant Nutrition. 2008. Vol. 54. No. 1. P. 33-45. doi: 10.1111/j.1747-0765.2007.00195.x
  32. Reed S.C., Townsend A.R., Cleveland C.C. and Nemergut D.R. Microbial community shifts influence patterns in tropical forest nitrogen fixation // Oecologia. 2010. Vol. 164 P. 521–531. doi: 10.1007/s00442-010-1649-6
  33. Mirza B.S., Potisap C., Nüsslein K. et al. Response of free-living nitrogen-fixing microorganisms to land use change in the Amazon rainforest // Appl. Environ. Microbiol. 2014. Vol. 80. P. 281–288. doi: 10.1128/AEM.02362-13
  34. Sarkar A., Reinhold-Hurek B. Transcriptional Profiling of Nitrogen Fixation and the Role of NifA in the Diazotrophic Endophyte Azoarcus sp. Strain BH72 // PLoS ONE. 2013. Vol. 9 No. 2: e86527. doi: 10.1371/journal.pone.0086527
  35. Dobrovolsky G.V., Chernov I.Yu., Bobrov A.A. et al. The role of soil in the formation and conservation of biological diversity. Moscow: Association of Scientific Publications of the KMC, 2011. 273 p. (In Russ.)
  36. Li Y., Zou N., Liang X. et al. Effects of nitrogen input on soil bacterial community structure and soil nitrogen cycling in the rhizosphere soil of Lycium barbarum L. // Front. Microbiol. 2023. Vol. 13. doi: 10.3389/fmicb.2022.1070817
  37. Jordan D.C. Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants // Int. J. Syst. Bacteriol. 1982. Vol. 32. P. 136-139. doi: 10.1099/00207713-32-1-136
  38. Frank B. Ueber die Pilzsymbiose der Leguminosen // Ber.Deut. Bot. Ges. 1889. Vol. 7. P. 332–346.
  39. Jarvis B.D.W., Van Berkum P., Chen W.X. et al. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. // Int. J. Syst. Bacteriol. 1997. Vol. 47. P. 895-898.
  40. Mousavi S.A., Österman J., Wahlberg N. et al. Phylogeny of the Rhizobium–Allorhizobium–Agrobacterium clade supports the delineation of Neorhizobium gen. nov. // Systematic and Applied Microbiology. 2014. Vol. 37, No. 3. P. 208-215. doi: 10.1016/j.syapm.2013.12.007
  41. Beijerinck M.W. Über oligonitrophile Mikroben // Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. 1901. Vol. 7 P. 561-582.
  42. Xie C.H., Yokota A. Reclassification of Alcaligenes latus strains IAM 12599T and IAM 12664 and Pseudomonas saccharophila as Azohydromonas lata gen. nov., comb. nov., Azohydromonas australica sp. nov. and Pelomonas saccharophila gen. nov., comb. nov., respectively // Int J Syst Evol Microbiol. 2005. Vol. 55. P. 2419-2425. doi: 10.1099/ijs.0.63733-0
  43. Hippe H. Leptospirillum gen. nov. (ex Markosyan 1972), nom. rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. rev. and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al. 1992) // Int J Syst Evol Microbiol. 2000. Vol. 50. P. 501-503. doi: 10.1099/00207713-50-2-501
  44. Prosser J., Head I., Stein L. The Family Nitrosomonadaceae / The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Berlin, Heidelberg: Springer Berlin/Heidelberg, 2013. P. 901-918. doi: 10.1007/978-3-642-30197-1_372
  45. Watson S.W., Bock E., Valois F.W. et al. Nitrospira marina gen. nov., sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium // Arch. Microbiol. 1986. Vol. 144. P. 1-7. doi: 10.1007/BF00454947
  46. Hippe H. Leptospirillum gen. nov. (ex Markosyan 1972), nom. rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. rev. and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al. 1992) // Int J Syst Evol Microbiol. 2000. Vol. 50. P. 501-503. doi: 10.1099/00207713-50-2-501
  47. Sly L.I., Stackebrandt E. Description of Skermanella parooensis gen. nov., sp. nov. to accommodate Conglomeromonas largomobilis subsp. parooensis following the transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum // Int. J. Syst. Bacteriol. 1999. Vol. 49. P. 541-544. doi: 10.1099/00207713-49-2-541
  48. Stieglmeier M., Klingl A., Alves R.J. et al. Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota // Int J Syst Evol Microbiol. 2014. Vol. 64. P. 2738-2752. doi: 10.1099/ijs.0.063172-0
  49. Wu F., Zhang Y., He D. et al. Community structures of bacteria and archaea associated with the biodeterioration of sandstone sculptures at the Beishiku Temple // International Biodeterioration & Biodegradation. 2021. Vol. 164. 105290. doi: 10.1016/j.ibiod.2021.105290
  50. Holmes A.J., Tujula N.A., Holley M. et al. Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia // Environ. Microbiol. 2001. Vol. 3. P. 256–264. doi: 10.1046/j.1462-2920.2001.00187.x
  51. Sorokin D.Y., Vejmelkova D., Lucker S. et al. Nitrolancea hollandica gen. nov., sp. nov., a chemolithoautotrophic nitrite-oxidizing bacterium isolated from a bioreactor belonging to the phylum Chloroflexi // Int J Syst Evol Microbiol. 2014. Vol. 64. P. 1859-1865. doi: 10.1099/ijs.0.062232-0
  52. Winogradsky S. Contributions à la morphologie des organismes de la nitrification // Arkhiv Biologicheskikh Nauk (St. Petersbourg). 1892. No. 1 P. 87-137.
  53. Pranamuda H., Tokiwa Y., Tanaka H. Polylactide degradation by an Amycolatopsis sp. // Appl. Environ. Microbiol. 1997. Vol. 63. P. 1637–1640. doi: 10.1128/AEM.63.4.1637-1640.1997
  54. Horsley R.W., Roscoe J.V., Talling I.B. Nitrate reduction by Pseudomonas spp.: antagonism by fermentative bacteria // Journal of Applied Bacteriology. Vol. 52, No. 1. 1982. P. 57–66. doi: 10.1111/j.1365-2672.1982.tb04373.x
  55. Mantelin S., Desbrosses G., Larcher M. et al. Nitrate-dependent control of root architecture and N nutrition are altered by a plant growth-promoting Phyllobacterium sp. // Planta. 2006. Vol. 223, No. 3. P. 591-603. doi: 10.1007/s00425-005-0106-y
  56. Cho Y., Lee I., Yang Y.Y. et al. Aureimonas glaciistagni sp. nov., isolated from a melt pond on Arctic sea ice // Int J Syst Evol Microbiol. 2015. Vol. 65, No. 10. P. 3564-3569. doi: 10.1099/ijsem.0.000453
  57. Torres M.J., Rubia M.I., de la Peña T.C. et al. Genetic basis for denitrification in Ensifer meliloti // BMC Microbiol. 2014. Vol. 14. 142. doi: 10.1186/1471-2180-14-142
  58. Bambauer A., Rainey F.A., Stackebrandt E., Winter J. Characterization of Aquamicrobium defluvii gen. nov. sp. nov., a thiophene-2-carboxylate-metabolizing bacterium from activated sludge // Arch Microbiol. 1998. Vol. 169, No. 4. P. 293-302. doi: 10.1007/s002030050575
  59. Beijerinck M.W., Minkman D.C.J. Bildung und verbrauch von stickoxydul durch bakterien // Zentbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. II. 1910. Vol. 25. P. 30-63.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies