Обзор способов визуализации гетерозиготности в контексте природоохранных исследований

Обложка


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Оценка уровня гетерозиготности — одна из основных метрик в природоохранной биологии, поскольку она способствует корректной разработке программ по сохранению видов, находящихся под угрозой исчезновения. С развитием технологий полногеномного секвенирования появилась возможность более точно оценивать гетерозиготность не только на организменном уровне, но и на популяционно-видовом. Современные природоохранные исследования подразумевают обработку больших объемов полногеномных данных, что приводит к проблемам интерпретации и обусловливает необходимость изучения современных методов визуализации для наглядного и корректного представления результатов. В данном обзоре мы подробно рассматриваем основные типы визуализации оценок уровня гетерозиготности, полученных с использованием различных подходов. Мы подробно излагаем теорию, лежащую в основе каждого метода формирования изображения и обсуждаем их особенности на примере исследований немодельных видов с различным природоохранным статусом. Обзор позволяет получить представление об актуальных инструментах для оценки и последующей визуализации гетерозиготности, а также о текущих тенденциях в данной области.

Полный текст

Доступ закрыт

Об авторах

Андрей Александрович Томаровский

Институт молекулярной и клеточной биологии Сибирского отделения РАН; Новосибирский государственный университет

Автор, ответственный за переписку.
Email: andrey.tomarovsky@gmail.com
ORCID iD: 0000-0002-6414-704X
SPIN-код: 6727-8664
Scopus Author ID: 57264872500
Россия, Новосибирск; Новосибирск

Азамат Альбертович Тотиков

Институт молекулярной и клеточной биологии Сибирского отделения РАН; Новосибирский государственный университет

Email: a.totickov1@gmail.com
ORCID iD: 0000-0003-1236-631X
SPIN-код: 9767-3971
Scopus Author ID: 57265434800
Россия, Новосибирск; Новосибирск

Алия Рафиковна Якупова

Email: aliyah.yakupova@gmail.com
ORCID iD: 0000-0003-1486-0864
SPIN-код: 4292-0609
Scopus Author ID: 57264122200

независимый исследователь

Германия

Александр Сергеевич Графодатский

Институт молекулярной и клеточной биологии Сибирского отделения РАН

Email: graf@mcb.nsc.ru
ORCID iD: 0000-0002-8282-1085
SPIN-код: 4436-9033
Scopus Author ID: 7003878913

д-р биол. наук

Россия, Новосибирск

Сергей Федорович Кливер

Email: mahajrod@gmail.com
ORCID iD: 0000-0002-2965-3617
SPIN-код: 8635-4259
Scopus Author ID: 56449314300

независимый исследователь

Дания

Список литературы

  1. Soulé M.E. What is conservation biology? A new synthetic discipline addresses the dynamics and problems of perturbed species, communities, and ecosystems // BioSci. 1985. Vol. 35, No. 11. P. 727–734. doi: 10.2307/1310054
  2. Fuentes-Pardo A.P., Ruzzante D.E. Whole-genome sequencing approaches for conservation biology: Advantages, limitations and practical recommendations // Mol Ecol. 2017. Vol. 26, No. 20. P. 5369–5406. doi: 10.1111/mec.14264
  3. Hoban S., Kelley J.L., Lotterhos K.E., et al. Finding the genomic basis of local adaptation: Pitfalls, practical solutions, and future directions // Am Nat the University of Chicago Press. 2016. Vol. 188, No. 4. P. 379–397. doi: 10.1086/688018
  4. Hoban S., da Silva J.M., Mastretta-Yanes A., et al. Monitoring status and trends in genetic diversity for the Convention on Biological Diversity: An ongoing assessment of genetic indicators in nine countries // Conserv Lett. 2023. Vol. 16, No. 3. ID e12953. doi: 10.1111/conl.12953
  5. Ng P.C., Kirkness E.F. Whole genome sequencing. In: Genetic variation: methods and protocols / M.R. Barnes, G. Breen, editors. Totowa, NJ: Humana Press, 2010. P. 215–226. doi: 10.1007/978-1-60327-367-1_12
  6. Breed M.F., Harrison P.A., Blyth C., et al. The potential of genomics for restoring ecosystems and biodiversity: 10 // Nat Rev Genet. 2019. Vol. 20, No. 10. P. 615–628. doi: 10.1038/s41576-019-0152-0
  7. Кливер С.Ф. Полногеномный подход в природоохранной биологии и его перспективы // Экологическая генетика. 2021. Т. 19, № 3. С. 281–298. doi: 10.17816/ecogen65152
  8. Joop Ouborg N., Angeloni F., Vergeer P. An essay on the necessity and feasibility of conservation genomics // Conserv Genet. 2010. Vol. 11, No. 2. P. 643–653. doi: 10.1007/s10592-009-0016-9
  9. Dudchenko O., Shamim M.S., Batra S.S., et al. The Juicebox assembly tools module facilitates de novo assembly of mammalian genomes with chromosome-length scaffolds for under $1000 // bioRxiv. 2018. ID 254797. doi: 10.1101/254797
  10. Durand N.C., Robinson J.T., Shamim M.S., et al. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom // Cell Syst. 2016. Vol. 3, No. 1. P. 99–101. doi: 10.1016/j.cels.2015.07.012
  11. Luikart G., England P.R., Tallmon D., et al. The power and promise of population genomics: from genotyping to genome typing: 12 // Nat Rev Genet. 2003. Vol. 4, No. 12. P. 981–994. doi: 10.1038/nrg1226
  12. Campbell M.R., Vu N.V., LaGrange A.P., et al. Development and Application of single-nucleotide polymorphism (SNP) genetic markers for conservation monitoring of burbot populations // Trans Am Fish Soc. 2019. Vol. 148, No. 3. P. 661–670. doi: 10.1002/tafs.10157
  13. Bijlsma R., Loeschcke V. Genetic erosion impedes adaptive responses to stressful environments // Evol Appl. 2012. Vol. 5, No. 2. P. 117–129. doi: 10.1111/j.1752-4571.2011.00214.x
  14. Leroy G., Carrol E.L., Bruford M.W., et al. Next-generation metrics for monitoring genetic erosion within populations of conservation concern // Evol Appl. 2018. Vol. 11, No. 7. P. 1066–1083. doi: 10.1111/eva.12564
  15. Frankham R., Ballou J.D., Eldridge M.D., et al. Predicting the probability of outbreeding depression // Conserv Biol. 2011. Vol. 25, No. 3. P. 465–475. doi: 10.1111/j.1523-1739.2011.01662.x
  16. Charlesworth D., Willis J.H. The genetics of inbreeding depression: 11 // Nat Rev Genet. 2009. Vol. 10, No. 11. P. 783–796. doi: 10.1038/nrg2664
  17. Майр Э. Популяции, виды и эволюция. Москва: Мир, 1968. 398 с.
  18. Tomimatsu H., Ohara M. Genetic diversity and local population structure of fragmented populations of Trillium camschatcense (Trilliaceae) // Biol Conserv. 2003. Vol. 109, No. 2. P. 249–258. doi: 10.1016/S0006-3207(02)00153-2
  19. Hanski I. The Shrinking world: Ecological consequences of habitat loss // Excell Ecol. 2005. Vol. 14.
  20. Lande R., Barrowclough G. Effective population size, genetic variation, and their use in population management. In: Soulé M., editor. Viable populations for conservation. Cambridge: Cambridge University Press, 1987. P. 87–124. doi: 10.1017/CBO9780511623400.007
  21. Wright S. Random drift and the shifting balance theory of evolution. In: Kojima K., editor. Mathematical topics in population genetics. Berlin, Heidelberg: Springer, 1970. P. 1–31. doi: 10.1007/978-3-642-46244-3_1
  22. Nevo E. Genetic variation in natural populations: Patterns and theory // Theor Popul Biol. 1978. Vol. 13, No. 1. P. 121–177. doi: 10.1016/0040-5809(78)90039-4
  23. Левонтин Р. Генетические основы эволюции. Москва: Мир, 1978. 351 с.
  24. Steiner C.C., Putnam A.S., Hoeck P.E.A., Ryder A. Conservation genomics of threatened animal species // Annu Rev Anim Biosci. 2013. Vol. 1, No. 1. P. 261–281. doi: 10.1146/annurev-animal-031412-103636
  25. Weir B.S. Genetic data analysis II: Methods for discrete population genetic data. Oxford, New York: Oxford University Press, 1996. 445 p.
  26. Ritland K. Estimators for pairwise relatedness and individual inbreeding coefficients // Genet Res. 1996. Vol. 67, No. 2. P. 175–185. doi: 10.1017/S0016672300033620
  27. Nei M., Li W.H. Mathematical model for studying genetic variation in terms of restriction endonucleases // PNAS. 1979. Vol. 76, No. 10. P. 5269–5273. doi: 10.1073/pnas.76.10.5269
  28. Wright S. The interpretation of population structure by F-statistics with special regard to systems of mating // Evolution. 1965. Vol. 19, No. 3. P. 395–420. doi: 10.2307/2406450
  29. Shafer A.B.A., Wolf J.B.W., Alves P.C., et al. Genomics and the challenging translation into conservation practice // Trends Ecol Evol. 2015. Vol. 30, No. 2. P. 78–87. doi: 10.1016/j.tree.2014.11.009
  30. Hoffmann A., Griffin P., Dillon S., et al. A framework for incorporating evolutionary genomics into biodiversity conservation and management // Clim Change Responses. 2015. Vol. 2, No. 1. ID 1. doi: 10.1186/s40665-014-0009-x
  31. Benestan L.M., Ferchaud A.-L., Hohenlohe P.A., et al. Conservation genomics of natural and managed populations: building a conceptual and practical framework // Mol Ecol. 2016. Vol. 25, No. 13. P. 2967–2977. doi: 10.1111/mec.13647
  32. Hoban S., Gaggiotti O., ConGRESS Consortium, Bertorelle G. Sample planning optimization tool for conservation and population genetics (SPOTG): a software for choosing the appropriate number of markers and samples // Methods Ecol Evol. 2013. Vol. 4, No. 3. P. 299–303. doi: 10.1111/2041-210x.12025
  33. Nazareno A.G., Bemmels J.B., Dick C.W., Lohmann L.G. Minimum sample sizes for population genomics: an empirical study from an Amazonian plant species // Mol Ecol Resour. 2017. Vol. 17, No. 6. P. 1136–1147. doi: 10.1111/1755-0998.12654
  34. Gibson J., Morton N.E., Collins A. Extended tracts of homozygosity in outbred human populations // Hum Mol Genet. 2006. Vol. 15, No. 5. P. 789–795. doi: 10.1093/hmg/ddi493
  35. McQuillan R., Leutenegger A.-L., Abdel-Rahman R., et al. Runs of homozygosity in European populations // Am J Hum Genet. 2008. Vol. 83, No. 3. P. 359–372. doi: 10.1016/j.ajhg.2008.08.007
  36. Darwin C. The effects of cross and self fertilisation in the vegetable kingdom. Ams PressInc, 1877. doi: 10.5962/bhl.title.104481
  37. Ceballos F.C., Joshi P.K., Clark D.W., et al. Runs of homozygosity: windows into population history and trait architecture: 4 // Nat Rev Genet. 2018. Vol. 19, No. 4. P. 220–234. doi: 10.1038/nrg.2017.109
  38. Hoffman J.I., Simpson F., David P., et al. High-throughput sequencing reveals inbreeding depression in a natural population // PNAS. 2014. Vol. 111, No. 10. P. 3775–3780. doi: 10.1073/pnas.1318945111
  39. Muir W.M., Wong G.K.-S., Zhang Y., et al. Genome-wide assessment of worldwide chicken SNP genetic diversity indicates significant absence of rare alleles in commercial breeds // PNAS. 2008. Vol. 105, No. 45. P. 17312–17317. doi: 10.1073/pnas.0806569105
  40. Urbinati I., Stafuzza N.B., Oliveira M.T., et al. Selection signatures in Canchim beef cattle // J Anim Sci Biotechnol. 2016. Vol. 7, No. 1. ID 29. doi: 10.1186/s40104-016-0089-5
  41. Samuels D.C., Wang J., Ye K., et al. Heterozygosity ratio, a robust global genomic measure of autozygosity and its association with height and disease risk // Genetics. 2016. Vol. 204, No. 3. P. 893–904. doi: 10.1534/genetics.116.189936
  42. Li N., Stephens M. Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data // Genetics. 2003. Vol. 165, No. 4. P. 2213–2233. doi: 10.1093/genetics/165.4.2213
  43. Rife D.C. Populations of hybrid origin as source material for the detection of linkage // Am J Hum Genet. 1954. Vol. 6, No. 1. P. 26–33.
  44. Robinson J.A., Räikkönen J., Vucetich L.M., et al. Genomic signatures of extensive inbreeding in Isle Royale wolves, a population on the threshold of extinction // Sci Adv. 2019. Vol. 5, No. 5. ID eaau0757. doi: 10.1126/sciadv.aau0757
  45. Koepfli K.-P., Tamazian G., Wildt D., et al. Whole genome sequencing and re-sequencing of the sable antelope (Hippotragus niger): A resource for monitoring diversity in ex situ and in situ populations // G3 Genes Genomes Genetics. 2019. Vol. 9, No. 6. P. 1785–1793. doi: 10.1534/g3.119.400084
  46. Большая Советская Энциклопедия. Т. 20. 3-е изд. 1974. С. 25.
  47. Zhu L., Deng C., Zhao X., et al. Endangered Père David’s deer genome provides insights into population recovering // Evol Appl. 2018. Vol. 11, No. 10. P. 2040–2053. doi: 10.1111/eva.12705
  48. Beichman A.C., Koepfli K.-P., Li G., et al. Aquatic adaptation and depleted diversity: A Deep dive into the genomes of the sea otter and giant otter // Mol Biol Evol. 2019. Vol. 36, No. 12. P. 2631–2655. doi: 10.1093/molbev/msz101
  49. Abascal F., Corvelo A., Cruz F., et al. Extreme genomic erosion after recurrent demographic bottlenecks in the highly endangered Iberian lynx // Genome Biol. 2016. Vol. 17, No. 1. ID 251. doi: 10.1186/s13059-016-1090-1
  50. Cho Y.S., Hu L., Hou H., et al. The tiger genome and comparative analysis with lion and snow leopard genomes: 1 // Nat Commun. 2013. Vol. 4, No. 1. ID 2433. doi: 10.1038/ncomms3433
  51. Miller W., Schuster S.C., Welch A.J., et al. Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change // PNAS. 2012. Vol. 109, No. 36. P. E2382–E2390. doi: 10.1073/pnas.1210506109
  52. Venn J.I. On the diagrammatic and mechanical representation of propositions and reasonings // Lond Edinb Dublin Philos Mag J Sci. 1880. Vol. 10, No. 59. P. 1–18. doi: 10.1080/14786448008626877
  53. Miller W., Hayes V.M., Ratan A., et al. Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil) // PNAS. 2011. Vol. 108, No. 30. P. 12348–12353. doi: 10.1073/pnas.1102838108
  54. Humble E., Dobrynin P., Senn H., et al. Chromosomal-level genome assembly of the scimitar-horned oryx: Insights into diversity and demography of a species extinct in the wild // Mol Ecol Resour. 2020. Vol. 20, No. 6. P. 1668–1681. doi: 10.1111/1755-0998.13181
  55. Yakupova A., Tomarovsky A., Totikov A., et al. Chromosome-length assembly of the baikal seal (Pusa sibirica) genome reveals a historically large population prior to isolation in Lake Baikal: 3 // Genes. 2023. Vol. 14, No. 3. ID 619. doi: 10.3390/genes1403061
  56. Kliver S., Houk M.L., Perelman P.L., et al. Chromosome-length genome assembly and karyotype of the endangered black-footed ferret (Mustela nigripes) // J Hered. 2023. Vol. 114, No. 5. P. 539–548. doi: 10.1093/jhered/esad035
  57. Li R., Fan W., Tian G., et al. The sequence and de novo assembly of the giant panda genome: 7279 // Nature. 2010. Vol. 463, No. 7279. P. 311–317. doi: 10.1038/nature08696
  58. Dobrynin P., Liu S., Tamazian G., et al. Genomic legacy of the African cheetah, Acinonyx jubatus // Genome Biol. 2015. Vol. 16, No. 1. ID 277. doi: 10.1186/s13059-015-0837-4
  59. Lindblad-Toh K., Wade C.M., Mikkelsen T.S., et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog: 7069 // Nature. 2005. Vol. 438, No. 7069. P. 803–819. doi: 10.1038/nature04338
  60. Benjamini Y. Opening the box of a boxplot // Am Stat. 1988. Vol. 42, No. 4. P. 257–262. doi: 10.2307/2685133
  61. Totikov A., Tomarovsky A., Prokopov D., et al. Chromosome-level genome assemblies expand capabilities of genomics for conservation biology: 9 // Genes. 2021. Vol. 12, No. 9. ID 1336. doi: 10.3390/genes12091336
  62. Hintze J.L., Nelson R.D. Violin plots: A box plot-density trace synergism // Am Stat. 1998. Vol. 52, No. 2. P. 181–184. doi: 10.1080/00031305.1998.10480559
  63. de Manuel M., Barnett R., Sandoval-Velasco M., et al. The evolutionary history of extinct and living lions // PNAS USA. 2020. Vol. 117, No. 20. P. 10927–10934. doi: 10.1073/pnas.1919423117
  64. Burton J.N., Adey A., Patwardhan R.P., et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions: 12 // Nat Biotechnol. 2013. Vol. 31, No. 12. P. 1119–1125. doi: 10.1038/nbt.2727
  65. Lewin H.A., Graves J.A.M., Ryder O.A., et al. Precision nomenclature for the new genomics // GigaScience. 2019. Vol. 8, No. 8. ID giz086. doi: 10.1093/gigascience/giz086
  66. Wilkinson L., Friendly M. The history of the cluster heat map // Am Stat. 2009. Vol. 63, No. 2. P. 179–184. doi: 10.1198/tas.2009.0033
  67. de Ferran V., Figueiro H.V., de Jesus Trindade F., et al. Phylogenomics of the world’s otters // Curr Biol. 2022. Vol. 32, No. 16. P. 3650–3658.e4. doi: 10.1016/j.cub.2022.06.036
  68. Needleman S.B., Wunsch C.D. A general method applicable to the search for similarities in the amino acid sequence of two proteins // J Mol Biol. 1970. Vol. 48, No. 3. P. 443–453. doi: 10.1016/0022-2836(70)90057-4
  69. Smith T.F., Waterman M.S. Identification of common molecular subsequences // J Mol Biol. 1981. Vol. 147, No. 1. P. 195–197. doi: 10.1016/0022-2836(81)90087-5
  70. Katoh K., Standley D.M. MAFFT Multiple sequence alignment software version 7: Improvements in performance and usability // Mol Biol Evol. 2013. Vol. 30, No. 4. P. 772–780. doi: 10.1093/molbev/mst010
  71. Magis C., Taly J.-F., Bussotti G., et al. T-Coffee: tree-based consistency objective function for alignment evaluation. In: Russell D.J., editor. Multiple sequence alignment methods. Totowa, NJ: Humana Press, 2014. P. 117–129. doi: 10.1007/978-1-62703-646-7_7
  72. Edgar R.C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity // BMC Bioinformatics. 2004. Vol. 5, No. 1. ID 113. doi: 10.1186/1471-2105-5-113
  73. Altschul S.F., Gish W., Miller W., et al. Basic local alignment search tool // J Mol Biol. 1990. Vol. 215, No. 3. P. 403–410. doi: 10.1016/S0022-2836(05)80360-2
  74. Thompson J.D., Gibson T.J., Higgins D.G. Multiple sequence alignment using ClustalW and ClustalX // Curr Protoc Bioinforma. 2003. Vol. 1. P. 2–3. doi: 10.1002/0471250953.bi0203s00
  75. Altshuler D., Donnelly P.; The International HapMap Consortium. A haplotype map of the human genome: 7063 // Nature. 2005. Vol. 437, No. 7063. P. 1299–1320. doi: 10.1038/nature04226
  76. Durbin R.M.; The International HapMap Consortium, et al. A map of human genome variation from population-scale sequencing: 7319 // Nature. 2010. Vol. 467, No. 7319. P. 1061–1073. doi: 10.1038/nature09534
  77. Nusrat S., Harbig T., Gehlenborg N. Tasks, techniques, and tools for genomic data visualization // Comput Graph Forum. 2019. Vol. 38, No. 3. P. 781–805. doi: 10.1111/cgf.13727
  78. Karolchik D., Baertsch R., Diekhans M., et al. The UCSC genome browser database // Nucleic Acids Res. 2003. Vol. 31, No. 1. P. 51–54. doi: 10.1093/nar/gkg129
  79. Thorvaldsdóttir H., Robinson J.T., Mesirov J.P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration // Brief Bioinform. 2013. Vol. 14, No. 2. P. 178–192. doi: 10.1093/bib/bbs017
  80. Yates A.D., Achuthan P., Akanni W., et al. Ensembl 2020 // Nucleic Acids Res. 2020. Vol. 48, No. D1. P. D682–D688. doi: 10.1093/nar/gkz966
  81. Okonechnikov K., Golosova O., Fursov M., et al. Unipro UGENE: a unified bioinformatics toolkit // Bioinformatics. 2012. Vol. 28, No. 8. P. 1166–1167. doi: 10.1093/bioinformatics/bts091
  82. Danecek P., Auton A., Abecasis G., et al. The variant call format and VCFtools // Bioinformatics. 2011. Vol. 27, No. 15. P. 2156–2158. doi: 10.1093/bioinformatics/btr330
  83. Narasimhan V., Danecek P., Scally A., et al. BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data // Bioinformatics. 2016. Vol. 32, No. 11. P. 1749–1751. doi: 10.1093/bioinformatics/btw044
  84. Ihaka R., Gentleman R. R: a language for data analysis and graphics // J Comput Graph Stat. 1996. Vol. 5, No. 3. P. 299–314. doi: 10.1080/10618600.1996.10474713
  85. van Rossum G. Python reference manual // Dep Comput Sci. 1995. ID R9525.
  86. Hunter J.D. Matplotlib: A 2D Graphics environment // Comput Sci. 2007. Vol. 9, No. 3. P. 90–95. doi: 10.1109/MCSE.2007.55
  87. Schiavinato M., del Olmo V., Muya V.N., Gabaldon T. JLOH: Inferring loss of heterozygosity blocks from sequencing data // bioRxiv. 2023. ID 2023.05.04.539368. doi: 10.1101/2023.05.04.539368
  88. Gel B., Serra E. KaryoploteR: an R/Bioconductor package to plot customizable genomes displaying arbitrary data // Bioinformatics. 2017. Vol. 33, No. 19. P. 3088–3090. doi: 10.1093/bioinformatics/btx346
  89. Bertrand A.R., Kadri N.K., Flori L., et al. RZooRoH: An R package to characterize individual genomic autozygosity and identify homozygous-by-descent segments // Methods Ecol Evol. 2019. Vol. 10, No. 6. P. 860–866. doi: 10.1111/2041-210X.13167
  90. Zhou J., Liu L., Lopdell T.J., et al. HandyCNV: Standardized summary, annotation, comparison, and visualization of copy number variant, copy number variation region, and runs of homozygosity // Front Genet. 2021. Vol. 12. ID 731355. doi: 10.3389/fgene.2021.731355
  91. Biscarini F., Cozzi P., Gaspa G., Marras G. detectRUNS: Detect runs of homozygosity and runs of heterozygosity in diploid genomes. CRAN (The Comprehensive R Archive Network), 2018. Режим доступа: https://cran.r-project.org/web/packages/detectRUNS/vignettes/detectRUNS.vignette.html
  92. Allaire J. RStudio: integrated development environment for R // Boston MA. 2012. Vol. 770, No. 394. P. 165–171.
  93. Kluyver T., Ragan-Kelley B., Pérez F., et al. Jupyter Notebooks-a publishing format for reproducible computational workflows // Elpub. 2016. Vol. 2016. P. 87–90. doi: 10.3233/978-1-61499-649-1-87

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Примеры визуализации гетерозиготности при помощи линейчатых диаграмм: a — средний уровень гетерозиготности (слева) и суммарная длина ROH (справа) в геномах волков из популяции острова Айл-Ройал; b — количество гетерозиготных и гомозиготных вариантов в двух подвидах черной антилопы. SB2027* и HN216* — особи южного подвида, остальные — замбийского. Оригинальные изображения из [44, 45]

Скачать (801KB)
3. Рис. 2. Пример визуализации уникальных и общих SNP для белого, бурого и черного медведя при помощи диаграммы Венна. Оригинальное изображение из [51]

4. Рис. 3. Примеры визуализации гетерозиготности при помощи диаграмм распределений: a — гистограммы распределения гетерозиготности по геному для пяти выборок ластоногих. Гетерозиготные SNP подсчитывались в окнах размером 1 млн п. н. и масштабировались в SNP / 1 тыс. п. н.; b — оценки гетерозиготности в диаграмме размаха для множества особей сахарийского орикса из различных популяций; c — скрипичные диаграммы распределения гетерозиготности для двух особей байкальской нерпы, двух особей пятнистой нерпы и одной особи серой нерпы. Оригинальные изображения из [54, 55]

Скачать (805KB)
5. Рис. 4. График кумулятивной суммы ROH при различном пороге отсечки по длине для львов из различных популяций. Оригинальное изображение из [63]

6. Рис. 5. Примеры визуализации средней гетерозиготности в окнах при помощи линейных графиков и тепловой карты: a — средняя гетерозиготность в скользящих окнах размером 500 тыс. п. н. у танзанийского и индийского львов по геномной сборке африканского льва. Хромосомы последовательно объединены по оси x; b — тепловая карта плотности гетерозиготных SNP на основе геномной сборки хромосомного уровня для самца евразийской речной выдры. Гетерозиготные SNP подсчитывались в окнах размером 1 млн п. н. и масштабировались в SNP / 1 тыс. п. н. Оригинальные изображения из [61, 63]

Скачать (940KB)

© Эко-Вектор, 2023



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах