Environmental genetics and predictive medicine: 20 years later. New trends and old basis

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This review, based on previously formulated hypotheses and our own research, examines the main modern trends in molecular medicine related to assessing the effect of environmental factors on the human genome. Information is provided about all programs for analyzing the human genome, their connection with biobanks, polymorphism and errors of the genome, and the importance of genomic clinical databases. Ten trends in molecular medicine over the past 20 years are separately highlighted. The formation of genetic dialectics between monogenic and multifactorial diseases is reflected. The path of development of molecular methods, the expansion of the role of the genetic laboratory in decision-making, and the emergence of genetic consultants are noted. The review presents new challenges in predictive medicine related to carrier screening and the development of preimplantation genetic testing. The situation with genetic testing related to an individual's susceptibility to environmental factors and diseases is summarized. Some attention is paid to evidence-based pharmacogenetic studies. Some new areas are considered — psychogenetics, sports genetics, genetics of sensitivity to coronavirus infection and others. In conclusion, the forecast of multifactorial diseases is reviewed, which is based on gene technologies and mathematical modeling and the creation of a new paradigm of a genetic passport — an omics map of reproductive health.

Full Text

Restricted Access

About the authors

Andrey S. Glotov

D.O. Ott Research Institute of Obstetrics, Gynecology, and Reproductology

Author for correspondence.
Email: anglotov@mail.ru
ORCID iD: 0000-0002-7465-4504
SPIN-code: 1406-0090
Scopus Author ID: 7004340255
ResearcherId: E-8525-2015

Dr. Sci. (Biology)

Russian Federation, Saint Petersburg

References

  1. Baranov VS. Ecological genetics and predictive medicine. Ecological genetics. 2003;1(1):22–29. doi: 10.17816/ecogen1022-29
  2. Aganezov S, Yan SM, Soto DC, et al. A complete reference genome improves analysis of human genetic variation. Science. 2022;376(6588): eabl3533. doi: 10.1126/science.abl3533
  3. Robinson DF, Katsanis N. Oligogenic diseases. In: Speicher MR, Antonarakis CE, Motulski AG, editors. Human genetics according to Vogel and Motulski. Problems and approaches. Saint Petersburg: N-L, 2013. P. 300–320. (In Russ.)
  4. Nurk S, Koren S, Rhie A, et al. The complete sequence of a human genome. Science. 2022;376(6588):44–53. doi: 10.1126/science.abj6987
  5. Liao W-W, Asri M, Ebler J, et al. A draft human pangenome reference. Nature. 2023;617(7960):312–324. doi: 10.1038/s41586-023-05896-x
  6. Grant M, Maytum JP. What will follow the first hundred thousand genomes in the NHS? Pers Med. 2018;15(4):239–241. doi: 10.2217/pme-2018-0025
  7. Zhernakova DV, Kliver S, Cherkasov N, et al. Analytical “bake-off” of whole genome sequencing quality for the Genome Russia project using a small cohort for autoimmune hepatitis. PLoS One. 2018;13(7):e0200423. doi: 10.1371/journal.pone.0200423
  8. Barbitoff YA, Bezdvornykh IV, Polev DE, et al. Catching hidden variation: systematic correction of reference minor allele annotation in clinical variant calling. Genet Med. 2018;20(3):360–364. doi: 10.1038/gim.2017.168
  9. Ryzhkova OP, Kardymon OL, Prohorchuk EB, et al. Guidelines for the interpretation of human DNA sequence data obtained by massively parallel sequencing (MPS) methods (Revision 2018, version 2). Medical Genetics. 2019;18(2):3–23. doi: 10.25557/2073-7998.2019.02.3-23
  10. Glotov OS, Serebryakova EA, Turkunova MS, et al. Whole-exome sequencing for monogenic diabetes in Russian children reveals wide spectrum of genetic variants in MODY-related and unrelated genes. Mol Med Rep. 2019;20(6):4905–4914. doi: 10.3892/mmr.2019.10751
  11. Riggs ER, Andersen EF, Cherry AM, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2021;23(11):2230. doi: 10.1038/s41436-021-01150-9
  12. Barbitoff YA, Khmelkova DN, Pomerantseva EA, et al. Expanding the Russian allele frequency reference via cross-laboratory data integration: insights from 6,096 exome samples. MedRXiv. 2021;21265801. doi: 10.1101/2021.11.02.21265801
  13. Aseev MV, Baranov VS, Baranova EV, et al. Evolution of predictive medicine. Baranov VS, editor. Saint Petersburg: Eco-Vector, 2021. 359 p. (In Russ.)
  14. Puzyrev VP. Phenome-genomic relations and pathogenetics of multifactorial diseases. Annals of the Russian academy of medical sciences. 2011;(9):17–27.
  15. Glotov A, Nasykhova Y, Dvoynova N, et al. Prospects for biobanking in reproductive health: genetic aspects. Biol Commun. 2022;67(4):286–300. doi: 10.21638/spbu03.2022.404
  16. Lazareva TE, Barbitoff YA, Changalidis AI, et al. Biobanking as a tool for genomic research: From allele frequencies to cross-ancestry association studies. J Pers Med. 2022;12(12):2040. doi: 10.3390/jpm12122040
  17. Kalashnikova EA, Glotov AS, Andreyeva EN, et al. Current relevance of non-invasive prenatal study of cell-free fetal DNA in the mother’s blood and prospects for its application in mass screening of pregnant women in the Russian Federation. Journal of obstetrics and women’s diseases. 2021;70(1):19–50. doi: 10.17816/JOWD56573
  18. databridgemarketresearch.com [Internet]. Global human microbiome market — Industry trends and forecast to 2029 [cited: 2023 Nov 8]. Available from: https://www.databridgemarketresearch.com/reports/global-human-microbiome-market
  19. Baranov VS, Baranova EV, Ivashchenko TE, et al. The human genome and “predisposition” genes. Introduction to predictive medicine. Saint Petersburg: Intermedika, 2000. (In Russ.)
  20. Baranov VS. Genetic passport — the basis of individual and predictive. Baranov VS, editor. Saint Petersburg: Eco-Vector, 2009. 528 p. (In Russ.)
  21. Glotov AS. Genetic and environmental risk factors for the development of gestosis in women, arterial hypertension and metabolic syndrome in children: [dissertation abstract]. Saint Petersburg, 2017 [cited: 2023 Nov 8]. Available from: https://disser.spbu.ru/files/disser2/1309/aftoreferat/r4hbssm91j.pdf (In Russ.)
  22. Khera AV, Chaffin M, Aragam KG, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet. 2018;50(9):1219–1224. doi: 10.1038/s41588-018-0183-z
  23. Glotov AS, Kazakov SV, Zhukova EA, et al. Targeted next-generation sequencing (NGS) of nine candidate genes with custom AmpliSeq in patients and a cardiomyopathy risk group. Clinica Chimica Acta. 2015;446:132–140. doi: 10.1016/j.cca.2015.04.014
  24. Abacan MA, Alsubaie L, Barlow-Stewart K, et al. The global state of the genetic counseling profession. Eur J Hum Genet. 2019;27(2):183–197. doi: 10.1038/s41431-018-0252-x
  25. publication.pravo.gov.ru [Internet]. Order of the Ministry of Health of the Russian Federation of 21.04.2022 No. 274n “On Approval of the Procedure for Providing Medical Care to Patients with Congenital and (or) Hereditary Diseases” [cited: 2023 Nov 8]. Available from: http://publication.pravo.gov.ru/Document/View/0001202207130023. (In Russ.)
  26. Vashukova ES, Glotov AS, Baranov VS. MicroRNAs associated with preeclampsia. Russian Journal of Genetics. 2020;56(1):5–20. doi: 10.31857/s0016675819080162
  27. Tonyan ZN, Nasykhova YA, Mikhailova AA, et al. MicroRNAs as potential biomarkers of type 2 diabetes mellitus. Russian Journal of Genetics. 2021;57(7):752–766. doi: 10.31857/s0016675821060102
  28. Vashukova ES, Kozyulina PY, Illarionov RA, et al. High-throughput sequencing of circulating microRNAs in plasma and serum during pregnancy progression. Life. 2021;11(10):1055. doi: 10.3390/life11101055
  29. Glotov AS, Kozyulina PYu, Vashukova ES, et al. Pilot study of changes in the level of piRNA in plasma and serum in women at different stages of physiological pregnancy. The Siberian Journal of Clinical and Experimental Medicine. 2021;36(4):62–69. doi: 10.29001/2073-8552-2021-36-4-62-69
  30. Illarionov RA, Pachuliia OV, Vashukova ES, et al. Plasma miRNA profile in high risk of preterm birth during early and mid-pregnancy. Genes. 2022;13(11):2018. doi: 10.3390/genes13112018
  31. Delatycki MB, Alkuraya F, Archibald A, et al. International perspectives on the implementation of reproductive carrier screening. Prenatal Diagnosis. 2020;40(3):301–310. doi: 10.1002/pd.5611
  32. Resolution of experts in the field of medical genetics, members of the Russian Society of Medical Geneticists. Round table “Definition of clear criteria for selecting diseases for carrier screening in the Russian Federation and criteria for determining the range of high-risk individuals for whom such testing is indicated ”; 2023 Jun 23; Saint Petersburg [cited: 2023 Nov 8]. Available from: https://ott.ru/files/news/conferences/2023/20230623_krugliy_stol/resoluciya.pdf. (In Russ.)
  33. American College of Obstetricians and Gynecologists. Committee opinion no. 691: Carrier screening for genetic conditions. Obstet Gynecol. 2017;129(3):e41–e55. doi: 10.1097/AOG.0000000000001952
  34. Treff NR, Marin D, Lello L, et al. Preimplantation genetic testing: preimplantation genetic testing for polygenic disease risk. Reproduction. 2020;160(5):A13–A17. doi: 10.1530/rep-20-0071
  35. Morshneva A, Kozyulina P, Vashukova E, et al. Pilot screening of cell-free mtDNA in NIPT: quality control, variant calling, and Haplogroup determination. Genes. 2021;12(5):743. doi: 10.3390/genes12050743
  36. Sollis E, Mosaku A, Abid A, et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. Nucleic Acids Res. 2023;51(D1):D977–D985. doi: 10.1093/nar/gkac1010
  37. Barbitoff YA, Serebryakova EA, Nasykhova YA, et al. Identification of novel candidate markers of type 2 diabetes and obesity in Russia by exome sequencing with a limited sample size. Genes. 2018;9(8):415. doi: 10.3390/genes9080415
  38. Nasykhova YA, Barbitoff YA, Serebryakova EA, et al. Recent advances and perspectives in next generation sequencing application to the genetic research of type 2 diabetes. World J Diabetes. 2019;10(7):376–395. doi: 10.4239/wjd.v10.i7.376
  39. Sychev DA, editor. Applied pharmacogenetics: a monograph. Tver: Triada, 2021. (In Russ.)
  40. Bank PCD, Swen JJ, Guchelaar HJ. Estimated nationwide impact of implementing a preemptive pharmacogenetic panel approach to guide drug prescribing in primary care in The Netherlands. BMC Med. 2019;17(1):110. doi: 10.1186/s12916-019-1342-5
  41. Baranov VS, Baranova EV. Genetic aspects of aging. Advances in Gerontology. 2007;20(2):26–34.
  42. Toh KL, Jones CR, He Y, et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science. 2001;291(5506):1040–1043. doi: 10.1126/science.1057499
  43. Mishima K, Tozawa T, Satoh K, et al. The 3111T/C polymorphism of hClock is associated with evening preference and delayed sleep timing in a Japanese population sample. Am J Med Genet Part B Neuropsychiatr Genet. 2005;133B(1):101–104. doi: 10.1002/ajmg.b.30110
  44. Soria V, Martinez-Amoros E, Escaramís G, et al. Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacology. 2010;35(6): 1279–1289. doi: 10.1038/npp.2009.230
  45. Kotyuk E, Duchek J, Head D, et al. A genetic variant (COMT) coding dopaminergic activity predicts personality traits in healthy elderly. Pers Individ Dif. 2015;82:61–66. doi: 10.1016/j.paid.2015.03.012
  46. Mustafin RN, Kazantseva AV, Enikeeva RF, et al. Longitudinal genetic studies of cognitive characteristics. Vavilov Journal of Genetics and Breeding. 2020;24(1):87–95. doi: 10.18699/VJ20.599
  47. Shikov AE, Barbitoff YA, Glotov AS, et al. Analysis of the spectrum of ACE2 variation suggests a possible influence of rare and common variants on susceptibility to COVID-19 and severity of outcome. Front Genet. 2020;11:551220. doi: 10.3389/fgene.2020.551220
  48. Demenkov PS, Ivanisenko TV, Kolchanov NA, Ivanisenko VA. ANDVisio: a new tool for graphic visualization and analysis of literature mined associative gene networks in the ANDSystem. In Silico Biol. 2012;11(3–4):149–161. doi: 10.3233/ISB-2012-0449

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Approaches to mapping and identification of disease genes

Download (412KB)
3. Fig. 2. GWAS catalog data

Download (611KB)
4. Fig. 3. Examples of different levels of evidence for a single gene

Download (146KB)
5. Fig. 4. Interface of the calculator for calculating warfarin dose

Download (297KB)
6. Fig. 5. Possible variants of the omics health map

Download (415KB)

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies