The homeodomain of the Raphanus sativus WOX4 binds to the promoter of the LOG3 cytokinin biosynthesis gene

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background

The WOX4 transcription factor plays a crucial role in maintaining the organisation of cambium meristem during secondary growth, but its direct targets are unknown. The objectives of our work were to study the effect of WOX4 overexpression on the root development and gene expression in radish (Raphanus sativus L.), a root crop related to Arabidopsis thaliana, and to search for direct targets of the WOX4 in radish.

Materials and methods

Radish line 19 of the St. Petersburg State University radish genetic collection was used. Plants were grown on Murashige-Skoog medium and then in soil at 23оС and 16 h of daylight. Total DNA was extracted from radish seedlings using the CTAB method. The PCR-amplified full-length RsWOX4-2 gene, gene fragments or homeobox sequence were cloned into the vectors for overexpression (pB7WG2D), RNA interference (pH7GWIWG2) and yeast one-hybrid assay (pDEST22), respectively, using the Gateway system. The vectors for overexpression and RNA interference of RsWOX4-2 were transformed into Escherichia coli DH10B and then into Agrobacteium rhizogenes Arqua chemically competent cells. Radish seedlings were transformed transformation with A. rhizogenes containing vectors for overexpression and RNA interference of RsWOX4-2, and GUS-overexpressing A. rhizogenes was used as a control. Total RNA from transgenic radish roots was extracted with Trizol reagent. RNA reverse transcription was performed using dT-18 primers and RevertAid reverse transcriptase. qPCR was performed using the Eva Green reagent kit on a CFX96 thermocycler with fluorescence detection system. Results were processed using the 2-ΔΔCT method.

Yeast transformation with competent Saccharomyces cerevisiae of Y2H Gold strain cells and yeast one-hybrid assay were performed as described in the article. The obtained yeast colonies transformed with plasmids containing TF homeodomain sequence and promoter regions of genes were grown on DDO and TDO selective media with different concentrations of 3-amino-1,2,4-triazole.

Statistical processing based on Student's t-test and graphing were performed using the ggplot2 package for the R programming language (v.4.0.2).

Results

Overexpression of the RsWOX4-2 gene affects the structure of the radish root stele and alters the number of vessels and cambium cells. Overexpression and RNA interference of the RsWOX4-2 causes changes in the expression levels of putative target genes with the WOX family transcription factor conserved binding sites in their promoters. Using the yeast one-hybrid assay, we have shown that the DNA-binding homeodomain of RsWOX4-2 interacts with the TAATCC site in the promoter of the RsLOG3 gene, which encodes the enzyme for cytokinin biosynthesis.

Conclusion

We have demonstrated the effect of RsWOX4-2 overexpression on radish root stele and gene expression and identified the RsLOG3 as the putative direct target of the WOX4 transcription factor in radish.

Full Text

Restricted Access

About the authors

Xenia Andreevna Kuznetsova

Saint Petersburg State University

Author for correspondence.
Email: kskuz95@mail.ru
ORCID iD: 0000-0003-3180-5306
SPIN-code: 3864-3062
Russian Federation

Irina Evgenievna Dodueva

Email: wildtype@yandex.ru
ORCID iD: 0000-0001-5282-718X
SPIN-code: 8061-2388

Lyudmila Alekseevna Lutova

Email: la.lutova@gmail.com
ORCID iD: 0000-0001-6125-0757
SPIN-code: 3685-7136

References

  1. Ji J, Strable J, Shimizu R, Koenig D, Sinha N, Scanlon MJ. WOX4 promotes procambial development. Plant Physiol. 2010;152(3):1346-1356. doi: 10.1104/pp.109.149641
  2. Etchells JP, Provost CM, Mishra L, Turner SR. WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation. Development. 2013;140(10):2224-2234. doi: 10.1242/dev.091314
  3. Hirakawa Y, Kondo Y, Fukuda H. Regulation of vascular development by CLE peptide-receptor systems. J Integr Plant Biol. 2010;52(1):8-16. doi: 10.1111/j.1744-7909.2010.00904.x
  4. Kuznetsova K, Efremova E, Dodueva I, Lebedeva M, Lutova L. Functional Modules in the Meristems: "Tinkering" in Action. Plants (Basel). 2023;12(20):3661. doi: 10.3390/plants12203661
  5. Schoof H, Lenhard M, Haecker A, Mayer KF, Jürgens G, Laux T. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell. 2000;100(6):635-644. doi: 10.1016/s0092-8674(00)80700-x
  6. Stahl Y, Simon R. Is the Arabidopsis root niche protected by sequestration of the CLE40 signal by its putative receptor ACR4? Plant Signal Behav. 2009;4(7):634-635. doi: 10.4161/psb.4.7.8970
  7. Tvorogova VE, Krasnoperova EY, Potsenkovskaia EA, Kudriashov AA, Dodueva IE, Lutova LA. What Does the WOX Say? Review of Regulators, Targets, Partners. Mol Biol (Mosk). 2021;55(3):362-391. doi: 10.31857/S0026898421030174
  8. Lohmann JU, Hong RL, Hobe M, Busch MA, Parcy F, Simon R, Weigel D. A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell. 2001;105(6):793-803. doi: 10.1016/s0092-8674(01)00384-1
  9. Busch W, Miotk A, Ariel FD, Zhao Z, Forner J, Daum G, Suzaki T, Schuster C, Schultheiss SJ, Leibfried A, Haubeiss S, Ha N, Chan RL, Lohmann JU. Transcriptional control of a plant stem cell niche. Dev Cell. 2010;18(5):849-861. doi: 10.1016/j.devcel.2010.03.012
  10. Yadav RK, Perales M, Gruel J, Girke T, Jönsson H, Reddy GV. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Dev. 2011;25(19):2025-2030. doi: 10.1101/gad.17258511
  11. Perales M, Rodriguez K, Snipes S, Yadav RK, Diaz-Mendoza M, Reddy GV. Threshold-dependent transcriptional discrimination underlies stem cell homeostasis. Proc Natl Acad Sci USA. 2016;113(41):E6298-E6306. doi: 10.1073/pnas.1607669113
  12. Hoang NV, Park C, Kamran M, Lee JY. Gene Regulatory Network Guided Investigations and Engineering of Storage Root Development in Root Crops. Front Plant Sci. 2020;11:762. Published 2020 Jun 17. doi: 10.3389/fpls.2020.00762
  13. Kuznetsova K, Dodueva I, Gancheva M, Lutova L. Transcriptomic Analysis of Radish (Raphanus sativus L.) Roots with CLE41 Overexpression. Plants (Basel). 2022;11(16):2163. Published 2022 Aug 20. doi: 10.3390/plants11162163
  14. Narbut SI. Genetic collection of inbred lines of radish. Genetics. 1966; 5: 89-100
  15. Buzovkina IS, Lutova LA. The genetic collection of radish inbred lines: history and prospects. Genetika. 2007;43(10):1411-1423
  16. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum. 1962; 15: 473–497
  17. Sazanova LV. Raphanus L. - radish/ Cultural flora of the USSR. VOL. XVIII. Root crops of plants. L., Agropromizdat. 1985; 186 - 316
  18. Aboul-Maaty NA-F, Oraby HA-S. Extraction of High-Quality Genomic DNA from Different Plant Orders Applying a Modified CTAB-Based Method. Bulletin of the National Research Centre. 2019; 43: 25. doi: 10.1186/s42269-019-0066-1
  19. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. Primer3 - new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115. doi: 10.1093/nar/gks596
  20. Sambrook J, Russell DW. Preparation and Transformation of Competent E. coli Using Calcium Chloride. CSH Protoc. 2006;2006(1):pdb.prot3932. Published 2006 Jun 1. doi: 10.1101/pdb.prot3932
  21. Inoue H, Nojima H, Okayama H. High efficiency transformation of Escherichia coli with plasmids. Gene. 1990;96(1):23-28. doi: 10.1016/0378-1119(90)90336-p
  22. Lebedeva Osipova MA, Tvorogova VE, Vinogradova AP, Gancheva MS, Azarakhsh M, Ilina EL, Demchenko KN, Dodueva IE, Lutova LA. Initiation of spontaneous tumors in radish (Raphanus sativus): Cellular, molecular and physiological events. J Plant Physiol. 2015;173:97-104. doi: 10.1016/j.jplph.2014.07.030
  23. Dodueva IE, Kiryushkin AS, Yurlova EV, Osipova MA, Buzovkina IS, Lutova LA. Effect of Cytokinins on Expression of Radish CLE Genes. Russ. J. Plant Physiol. 2013;60:388–395. doi: 10.1134/S1021443713020052
  24. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-408. doi: 10.1006/meth.2001.1262
  25. Gietz RD, Schiestl RH. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007;2(1):31-34. doi: 10.1038/nprot.2007.13
  26. Davies SEW. Transcription factor interactions at the promoter of the Arabidopsis circadian clock gene LHY. PhD thesis, University of Warwick. 2013.
  27. Wickham H. ggplot2: Elegant Graphics for Data Analysis. Cham: Springer International Publishing, 2016. 260 p.
  28. Kucukoglu M, Nilsson J, Zheng B, Chaabouni S, Nilsson O. WUSCHEL-RELATED HOMEOBOX4 (WOX4)-like genes regulate cambial cell division activity and secondary growth in Populus trees. New Phytol. 2017;215(2):642-657. doi: 10.1111/nph.14631
  29. Wang H, Xie Y, Liu W, Tao G, Sun C, Sun X, Zhang S. Transcription factor LkWOX4 is involved in adventitious root development in Larix kaempferi. Gene. 2020;758:144942. doi: 10.1016/j.gene.2020.144942
  30. Denis E, Kbiri N, Mary V, Claisse G, Conde E Silva N, Kreis M, Deveaux Y. WOX14 promotes bioactive gibberellin synthesis and vascular cell differentiation in Arabidopsis. Plant J. 2017;90(3):560-572. doi: 10.1111/tpj.13513
  31. Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H. Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science. 2006;313(5788):842-845. doi: 10.1126/science.1128436
  32. Etchells JP, Turner SR. The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development. 2010;137(5):767-774. doi: 10.1242/dev.044941
  33. Fisher K, Turner S. PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr Biol. 2007;17(12):1061-1066. doi: 10.1016/j.cub.2007.05.049
  34. Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, Ogawa M, Sawa S, Ohashi-Ito K, Matsubayashi Y, Fukuda H. Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc Natl Acad Sci U S A. 2008;105(39):15208-15213. doi: 10.1073/pnas.0808444105
  35. Yu Y, Song W, Zhai N, Zhang S, Wang J, Wang S, Liu W, Huang CH, Ma H, Chai J, Chang F. PXL1 and SERKs act as receptor-coreceptor complexes for the CLE19 peptide to regulate pollen development. Nat Commun. 2023;14(1):3307. Published 2023 Jun 7. doi: 10.1038/s41467-023-39074-4
  36. Gursanscky NR, Jouannet V, Grünwald K, Sanchez P, Laaber-Schwarz M, Greb T. MOL1 is required for cambium homeostasis in Arabidopsis. Plant J. 2016;86(3):210-220. doi: 10.1111/tpj.13169
  37. Smit ME, McGregor SR, Sun H, Gough C, Bågman AM, Soyars CL, Kroon JT, Gaudinier A, Williams CJ, Yang X, Nimchuk ZL, Weijers D, Turner SR, Brady SM, Etchells JP. A PXY-Mediated Transcriptional Network Integrates Signaling Mechanisms to Control Vascular Development in Arabidopsis. Plant Cell. 2020;32(2):319-335. doi: 10.1105/tpc.19.00562
  38. Ye L, Wang X, Lyu M, Siligato R, Eswaran G, Vainio L, Blomster T, Zhang J, Mähönen AP. Cytokinins initiate secondary growth in the Arabidopsis root through a set of LBD genes. Curr Biol. 2021;31(15):3365-3373.e7. doi: 10.1016/j.cub.2021.05.036
  39. Krishna A, Gardiner J, Donner TJ, Scarpella E. Control of vein-forming, striped gene expression by auxin signaling. BMC Biol. 2021;19(1):213. Published 2021 Sep 24. doi: 10.1186/s12915-021-01143-9
  40. Guo Y, Han L, Hymes M, Denver R, Clark SE. CLAVATA2 forms a distinct CLE-binding receptor complex regulating Arabidopsis stem cell specification. Plant J. 2010;63(6):889-900. doi: 10.1111/j.1365-313X.2010.04295.x
  41. Tokunaga H, Kojima M, Kuroha T, Ishida T, Sugimoto K, Kiba T, Sakakibara H. Arabidopsis lonely guy (LOG) multiple mutants reveal a central role of the LOG-dependent pathway in cytokinin activation. Plant J. 2012;69(2):355-365. doi: 10.1111/j.1365-313X.2011.04795.x
  42. Leibfried A, To JP, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature. 2005;438(7071):1172-1175. doi: 10.1038/nature04270
  43. Randall RS, Miyashima S, Blomster T, Zhang J, Elo A, Karlberg A, Immanen J, Nieminen K, Lee JY, Kakimoto T, Blajecka K, Melnyk CW, Alcasabas A, Forzani C, Matsumoto-Kitano M, Mähönen AP, Bhalerao R, Dewitte W, Helariutta Y, Murray JA. AINTEGUMENTA and the D-type cyclin CYCD3;1 regulate root secondary growth and respond to cytokinins. Biol Open. 2015;4(10):1229-1236. Published 2015 Sep 4. doi: 10.1242/bio.013128
  44. Savina MS, Pasternak T, Omelyanchuk NA, Novikova DD, Palme K, Mironova VV, Lavrekha VV. Savina MS, Pasternak T, Omelyanchuk NA, et al. Cell Dynamics in WOX5-Overexpressing Root Tips: The Impact of Local Auxin Biosynthesis. Front Plant Sci. 2020;11:560169. Published 2020 Oct 22. doi: 10.3389/fpls.2020.560169
  45. Schuetz M, Berleth T, Mattsson J. Multiple MONOPTEROS-dependent pathways are involved in leaf initiation. Plant Physiol. 2008;148(2):870-880. doi: 10.1104/pp.108.119396
  46. Schlegel J, Denay G, Wink R, Pinto KG, Stahl Y, Schmid J, Blümke P, Simon RG. Control of Arabidopsis Shoot Stem Cell Homeostasis by Two Antagonistic CLE Peptide Signalling Pathways. eLife. 2021;10:e70934. doi: 10.7554/eLife.70934
  47. Pi L, Aichinger E, van der Graaff E, Llavata-Peris CI, Weijers D, Hennig L, Groot E, Laux T. Organizer-Derived WOX5 Signal Maintains Root Columella Stem Cells through Chromatin-Mediated Repression of CDF4 Expression. Dev Cell. 2015;33(5):576-588. doi: 10.1016/j.devcel.2015.04.024
  48. Kuroha T, Tokunaga H, Kojima M, Ueda N, Ishida T, Nagawa S, Fukuda H, Sugimoto K, Sakakibara H. Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell. 2009;21(10):3152-3169. doi: 10.1105/tpc.109.068676
  49. Ohashi-Ito K, Oguchi M, Kojima M, Sakakibara H, Fukuda H. Auxin-associated initiation of vascular cell differentiation by LONESOME HIGHWAY. Development. 2013;140(4):765-769. doi: 10.1242/dev.087924
  50. Brackmann K, Qi J, Gebert M, Jouannet V, Schlamp T, Grünwald K, Wallner ES, Novikova DD, Levitsky VG, Agustí J, Sanchez P, Lohmann JU, Greb T. Spatial specificity of auxin responses coordinates wood formation. Nat Commun. 2018;9(1):875. Published 2018 Feb 28. doi: 10.1038/s41467-018-03256-2
  51. Won C, Shen X, Mashiguchi K, Zheng Z, Dai X, Cheng Y, Kasahara H, Kamiya Y, Chory J, Zhao Y. Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc Natl Acad Sci U S A. 2011;108(45):18518-18523. doi: 10.1073/pnas.1108436108
  52. Mason MG, Li J, Mathews DE, Kieber JJ, Schaller GE. Type-B response regulators display overlapping expression patterns in Arabidopsis. Plant Physiol. 2004;135(2):927-937. doi: 10.1104/pp.103.038109
  53. Bishopp A, Help H, El-Showk S, Weijers D, Scheres B, Friml J, Benková E, Mähönen AP, Helariutta Y. A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Curr Biol. 2011;21(11):917-926. doi: 10.1016/j.cub.2011.04.017
  54. Miyashima S, Roszak P, Sevilem I, Toyokura K, Blob B, Heo JO, Mellor N, Help-Rinta-Rahko H, Otero S, Smet W, Boekschoten M, Hooiveld G, Hashimoto K, Smetana O, Siligato R, Wallner ES, Mähönen AP, Kondo Y, Melnyk CW, Greb T, … Helariutta Y. Mobile PEAR transcription factors integrate positional cues to prime cambial growth. Nature. 2019;565(7740):490-494. doi: 10.1038/s41586-018-0839-y
  55. Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K,Václavíková K, Miyawaki K, Kakimoto T. Cytokinins are central regulators of cambial activity. Proc Natl Acad Sci U S A. 2008;105(50):20027-20031. doi: 10.1073/pnas.0805619105
  56. Nieminen K, Blomster T, Helariutta Y, Mähönen AP. Vascular Cambium Development. Arabidopsis Book. 2015;13:e0177. Published 2015 May 21. doi: 10.1199/tab.0177
  57. Scheres B, Di Laurenzo L, Willemsen V, Hauser MT, Janmaat K, Weisbeek P and Benfey PN. Mutations affecting the radial organization of the Arabidopsis root display specific defects throughout the embryonic axis. Development. 1995; 121: 53–62
  58. Mähönen AP, Bonke M, Kauppinen L, Riikonen M, Benfey PN, Helariutta Y. A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev. 2000;14(23):2938-2943. doi: 10.1101/gad.189200

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies