Optimization of transformation conditions of the yeast Saccharomyces cerevisiae to determine coregulators of the transcription factor NIN in a yeast two-hybrid system



Cite item

Full Text

Abstract

The method of analyzing protein-protein interactions using the yeast two-hybrid system in Saccharomyces cerevisiae cells is actively used in the search for protein co-regulators. Advantages of this approach include the synthesis of proteins within cells in vivo, the relative speed of this analysis, and high specificity. This method also allows for large-scale screening of libraries of cloned fragments of complementary DNA (cDNA) that are translated within cells. A key factor in the success of such screens is the efficiency of yeast cell transformation, as the resolution of the analysis is based on this. As part of our research, we identified factors that influence the effectiveness of transformation. In particular, we showed that one of the key factors influencing transformation efficiency is the molecular weight of the polyethylene glycol used for chemical transformation of yeast cells and the number of cell division cycles that the cell culture undergoes. We also investigated the effect of the amount and size of plasmids used during transformation. Based on the obtained data, the optimal parameters to achieve a high level of competency in yeast cells were determined. Using an optimized transformation protocol, we screened a cDNA library to explore possible co-regulators of the NIN transcription factor which is a key regulator of the development of the legume-rhizobia symbiosis.

Full Text

Restricted Access

About the authors

Alina Dymo

All-Russia Research Institute for Agricultural Microbiology

Email: dymoalina@yandex.ru
ORCID iD: 0000-0002-5919-2487
ResearcherId: AAF-3244-2021

младший научный сотрудник

Russian Federation

Elizaveta S. Kantsurova

All-Russia Research Institute for Agricultural Microbiology

Email: rudaya.s.e@gmail.com
ORCID iD: 0000-0002-3081-9880
SPIN-code: 4752-1910

Junior Researcher, Signal Regulation Laboratory

Russian Federation, Saint Petersburg

Alexandra Vyacheslavovna Dolgikh

All-Russia Research Institute for Agricultural Microbiology; Saint Petersburg State University

Email: sqshadol@gmail.com
ORCID iD: 0000-0003-1845-9701
Scopus Author ID: 5719038282
ResearcherId: ABC-2930-2020

engineer

Russian Federation, 3 Podbelsky chausse, Pushkin, Saint Petersburg, 196608; Saint Petersburg

Elena A. Dolgikh

All-Russia Research Institute for Agricultural Microbiology

Author for correspondence.
Email: dol2helen@yahoo.com
ORCID iD: 0000-0002-5375-0943
SPIN-code: 4453-2060
Scopus Author ID: 6603496335
ResearcherId: G-6363-2017

Cand. Sci. (Biol.), Leading Researcher, Laboratory of Molecular and Cellular Biology

Russian Federation, Podbelsky chausse 3, 196608, St.-Petersburg, Russia

References

  1. Berggård T., Linse S., James P. Methods for the detection and analysis of protein–protein interactions. PROTEOMICS. 2007;7(16):2833–2842. doi: 10.1002/pmic.200700131
  2. Zhou M., Li Q., Wang R. Current Experimental Methods for Characterizing Protein–Protein Interactions. ChemMedChem. 2016;11(8):738–756. doi: 10.1002/cmdc.201500495
  3. Cuéllar A.P. et al. Yeast Two-Hybrid Analysis of Jasmonate Signaling Proteins. Jasmonate Signaling / ed. Goossens A., Pauwels L. Totowa, NJ: Humana Press. 2013;1011:173–185. doi: 10.1007/978-1-62703-414-2_14
  4. Caufield J.H., Sakhawalkar N., Uetz P. A comparison and optimization of yeast two-hybrid systems. Methods. 2012;58(4):317–324. doi: 10.1016/j.ymeth.2012.12.001
  5. Yang F. et al. Development and application of a recombination-based library versus library high- throughput yeast two-hybrid (RLL-Y2H) screening system. Nucleic Acids Res. 2018;46(3):e17–e17. doi: 10.1093/nar/gkx1173
  6. Erffelinck M.-L. et al. A user-friendly platform for yeast two-hybrid library screening using next generation sequencing.PLOS ONE / ed. Moses A.M. 2018;13(12):e0201270. doi: 10.1371/journal.pone.0201270
  7. Elmore J.M., Velásquez-Zapata V., Wise R.P. Next-Generation Yeast Two-Hybrid Screening to Discover Protein–Protein Interactions. Protein-Protein Interactions / ed. Mukhtar S. New York, NY: Springer US. 2023;2690:205–222. doi: 10.1007/978-1-0716-3327-4_19
  8. Kawai S., Hashimoto W., Murata K. Transformation of Saccharomyces cerevisiae and other fungi: Methods and possible underlying mechanism. Bioeng. Bugs. 2010;1(6):395–403. doi: 10.4161/bbug.1.6.13257
  9. Chen P. et al. Visualized investigation of yeast transformation induced with Li+ and polyethylene glycol. Talanta. 2008;77(1):262–268. doi: 10.1016/j.talanta.2008.06.018
  10. Yamakawa M., Hishinuma F., Gunge N. Intact Cell Transformation of Saccharomyces cerevisiae by Polyethylene Glycol. Agric. Biol. Chem. 1985;49(3):869–871. doi: 10.1080/00021369.1985.10866817
  11. Gietz R.D. et al. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast. 1995;11(4):355–360. doi: 10.1002/yea.320110408
  12. Schiestl R.H., Gietz R.D. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 1989;16(5–6):339–346. doi: 10.1007/BF00340712
  13. Pham T.A., Kawai S., Murata K. Visualization of the synergistic effect of lithium acetate and single-stranded carrier DNA on Saccharomyces cerevisiae transformation. Curr. Genet. 2011;57(4):233–239. doi: 10.1007/s00294-011-0341-7
  14. Hayama Y. et al. Extremely Simple, Rapid, and Highly Efficient Transformation Method for the Yeast Saccharomyces cerevisiae Using Glutathione and Early Log Phase Cells. J. Biosci. Bioeng. 2002;94(2):166–171. doi: 10.1263/jbb.94.166
  15. Gietz R.D., Schiestl R.H. Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2007;2(1):35–37. doi: 10.1038/nprot.2007.14
  16. Gietz R.D., Schiestl R.H. Large-scale high-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2007;2(1):38–41. doi: 10.1038/nprot.2007.15
  17. Gietz R.D., Schiestl R.H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2007;2(1):31–34. doi: 10.1038/nprot.2007.13
  18. James P., Halladay J., Craig E.A. Genomic Libraries and a Host Strain Designed for Highly Efficient Two-Hybrid Selection in Yeast. Genetics. 1996;144(4):1425–1436. doi: 10.1093/genetics/144.4.1425
  19. Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9(7):671–675. doi: 10.1038/nmeth.2089
  20. Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.
  21. Singh, M.V., Weil, P.A. A method for plasmid purification directly from yeast. Anal. Biochem. 2002;307(1):13-7. doi: 10.1016/S0003-2697(02)00018-0
  22. Kreplak, J et al. A reference genome for pea provides insight into legume genome evolution. Nat. Genet. 2019;51:1411–1422. doi: 10.1038/s41588-019-0480-1
  23. Gietz R.D., Schiestl R.H. Applications of high efficiency lithium acetate transformation of intact yeast cells using single‐stranded nucleic acids as carrier. Yeast. 1991;7(3):253–263. doi: 10.1002/yea.320070307
  24. Dolgikh A.V., Dolgikh E.A. Searching for regulators that interact with BELL1 transcription factor and control the legume-rhizobial symbiosis development. Ecol. Genet. 2021;19(1):37–45. doi: 10.17816/ecogen51489
  25. Tripp J.D. et al. Enhancement of plasmid DNA transformation efficiencies in early stationary-phase yeast cell cultures: Enhancement of DNA transformation in yeast cells. Yeast. 2013;30(5):191–200. doi: 10.1002/yea.2951
  26. Ito H. et al. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 1983;153(1):163–168. doi: 10.1128/jb.153.1.163-168.1983
  27. Klebe R.J. et al. A general method for polyethylene-glycol-induced genetic transformation of bacteria and yeast. Gene. 1983;25(2–3):333–341. doi: 10.1016/0378-1119(83)90238-X
  28. Németh T. et al. Enhancing the chemical transformation of Candida parapsilosis. Virulence. 2021;12(1):937–950. doi: 10.1080/21505594.2021.1893008
  29. Chan V. et al. The Effect of Increasing Plasmid Size on Transformation Efficiency in Escherichia coli. J Exp Microbiol Immunol. 2002;2:207–223
  30. Szostková M., Horáková D. The effect of plasmid DNA sizes and other factors on electrotransformation of Escherichia coli JM109. Bioelectrochem. Bioenerg. 1998;47(2):319–323. doi: 10.1016/S0302-4598(98)00203-7
  31. Bonett D.G., Price R.M. Confidence Intervals for Ratios of Means and Medians. J. Educ. Behav. Stat. 2020;45(6):750–770. doi: 10.3102/1076998620934125
  32. Yu S.-C. et al. Nutrient supplements boost yeast transformation efficiency. Sci. Rep. 2016;6(1):35738. doi: 10.1038/srep35738
  33. Causier B., Davies B. Analysing protein-protein interactions with the yeast two-hybrid system. Plant Mol. Biol. 2002;50(6):855–870. doi: 10.1023/A:1021214007897

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies