Optimization of transformation conditions of the yeast Saccharomyces cerevisiae to determine coregulators of the transcription factor NIN in a yeast two-hybrid system
- Authors: Dymo A.M.1, Kantsurova E.S.1, Dolgikh A.V.1, Dolgikh E.A.1
-
Affiliations:
- All-Russia Research Institute for Agricultural Microbiology
- Issue: Vol 22, No 3 (2024)
- Pages: 293-306
- Section: Methodology in ecological genetics
- Submitted: 15.01.2024
- Accepted: 01.05.2024
- Published: 29.09.2024
- URL: https://journals.eco-vector.com/ecolgenet/article/view/625670
- DOI: https://doi.org/10.17816/ecogen625670
- ID: 625670
Cite item
Abstract
BACKGROUND: The method of protein-protein interaction analysis using the yeast two-hybrid system in Saccharomyces cerevisiae cells is used to search for protein coregulators. This method is also used for mass screening of libraries of cloned fragments of complementary DNA (cDNA) that are translated in the cell. The key factor in the success of such screening is the level of efficiency of yeast cell transformation, since the resolution of the analysis is based on this.
AIM: The aim of this study is to search for optimal parameters for chemical transformation of yeast cells to increase the resolution of cDNA library screening.
MATERIALS AND METHODS: Plasmids pDEST22 and pDEST32 were used for chemical transformation of the yeast strain S. cerevisiae pJ69-4A. For screening, a cDNA library was used, obtained on the basis of mRNA isolated from the roots of pea Pisum sativum cultivar Finale, inoculated with rhizobia.
RESULTS: Factors influencing the efficiency of transformation were identified. Among them are the molecular weight of polyethyleneglycol used for transformation, as well as the number of cell division cycles that the culture undergoes. The effect of the number and size of plasmids used in transformation was also shown. Using the optimized protocol, a cDNA library was successfully screened to find coregulators of the NIN transcription factor.
CONCLUSIONS: Based on the data obtained, optimal parameters were determined that allow achieving a high level of competence in yeast cells. The use of the described protocol allowed for successful screening of the library to identify coregulators of the NIN transcription factor.
Full Text

About the authors
Alina M. Dymo
All-Russia Research Institute for Agricultural Microbiology
Email: dymoalina@yandex.ru
ORCID iD: 0000-0002-5919-2487
ResearcherId: AAF-3244-2021
Russian Federation, Saint Petersburg
Elizaveta S. Kantsurova
All-Russia Research Institute for Agricultural Microbiology
Email: rudaya.s.e@gmail.com
ORCID iD: 0000-0002-3081-9880
SPIN-code: 4752-1910
Russian Federation, Saint Petersburg
Alexandra V. Dolgikh
All-Russia Research Institute for Agricultural Microbiology
Email: sqshadol@gmail.com
ORCID iD: 0000-0003-1845-9701
SPIN-code: 2602-1514
Scopus Author ID: 5719038282
ResearcherId: ABC-2930-2020
Russian Federation, Saint Petersburg
Elena A. Dolgikh
All-Russia Research Institute for Agricultural Microbiology
Author for correspondence.
Email: dol2helen@yahoo.com
ORCID iD: 0000-0002-5375-0943
SPIN-code: 4453-2060
Scopus Author ID: 6603496335
ResearcherId: G-6363-2017
Dr. Sci. (Biology)
Russian Federation, Saint PetersburgReferences
- Berggård T, Linse S, James P. Methods for the detection and analysis of protein–protein interactions. Proteomics. 2007;7(16): 2833–2842. doi: 10.1002/pmic.200700131
- Zhou M, Li Q, Wang R. Current experimental methods for characterizing protein–protein interactions. ChemMedChem. 2016;11(8):738–756. doi: 10.1002/cmdc.201500495
- Cuéllar AP, Pauwels L, De Clercq R, Goossens A. Yeast two-hybrid analysis of jasmonate signaling proteins. In: Goossens A, Pauwels L, editors. Jasmonate signaling. Methods in molecular biology. Vol. 1011. Totowa, NJ: Humana Press; P. 173–185. doi: 10.1007/978-1-62703-414-2_14
- Caufield JH, Sakhawalkar N, Uetz P. A comparison and optimization of yeast two-hybrid systems. Methods. 2012;58(4):317–324. doi: 10.1016/j.ymeth.2012.12.001
- Yang F, Lei Y, Zhou M, et al. Development and application of a recombination-based library versus library high-throughput yeast two-hybrid (RLL-Y2H) screening system. Nucleic Acids Res. 2018;46(3):e17–e17. doi: 10.1093/nar/gkx1173
- Erffelinck M-L, Ribeiro B, Perassolo M, et al. A user-friendly platform for yeast two-hybrid library screening using next generation sequencing. PLOS ONE. 2018;13(12):e0201270. doi: 10.1371/journal.pone.0201270
- Elmore JM, Velásquez-Zapata V, Wise RP. Next-generation yeast two-hybrid screening to discover protein–protein interactions. In: Mukhtar S, editor. Protein-protein interactions. Methods in molecular biology. Vol. 2690. New York: Springer US; 2023. P. 205–222. doi: 10.1007/978-1-0716-3327-4_19
- Kawai S, Hashimoto W, Murata K. Transformation of Saccharomyces cerevisiae and other fungi: Methods and possible underlying mechanism. Bioeng Bugs. 2010;1(6):395–403. doi: 10.4161/bbug.1.6.13257
- Chen P, Liu H-H, Cui R, et al. Visualized investigation of yeast transformation induced with Li+ and polyethylene glycol. Talanta. 2008;77(1):262–268. doi: 10.1016/j.talanta.2008.06.018
- Yamakawa M, Hishinuma F, Gunge N. Intact cell transformation of Saccharomyces cerevisiae by polyethylene glycol. Agric Biol Chem. 1985;49(3):869–871. doi: 10.1080/00021369.1985.10866817
- Gietz RD, Schiestl RH, Willems AR, Woods RA. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast. 1995;11(4):355–360. doi: 10.1002/yea.320110408
- Schiestl RH, Gietz RD. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet. 1989;16(5–6):339–346. doi: 10.1007/BF00340712
- Pham TA, Kawai S, Murata K. Visualization of the synergistic effect of lithium acetate and single-stranded carrier DNA on Saccharomyces cerevisiae transformation. Curr Genet. 2011;57(4):233–239. doi: 10.1007/s00294-011-0341-7
- Hayama Y, Fukuda Y, Kawai S, et al. Extremely simple, rapid, and highly efficient transformation method for the yeast saccharomyces cerevisiae using glutathione and early log phase cells. J Biosci Bioeng. 2002;94(2):166–171. doi: 10.1263/jbb.94.166
- Gietz RD, Schiestl RH. Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007;2(1):35–37. doi: 10.1038/nprot.2007.14
- Gietz RD, Schiestl RH. Large-scale high-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007;2(1):38–41. doi: 10.1038/nprot.2007.15
- Gietz RD, Schiestl RH. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007;2(1):31–34. doi: 10.1038/nprot.2007.13
- James P, Halladay J, Craig EA. genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics. 1996;144(4):1425–1436. doi: 10.1093/genetics/144.4.1425
- Hahn-Hägerdal B, Karhumaa K, et al. Role of cultivation media in the development of yeast strains for large scale industrial use. Microb Cell Fact. 2005;4:31. doi: 10.1186/1475-2859-4-31
- Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–675. doi: 10.1038/nmeth.2089
- Wickham H. Data analysis. In: ggplot2: Use R!. Springer-Verlag: New York; 2016. doi: 10.1007/978-3-319-24277-4_9
- Singh MV, Weil PA. A method for plasmid purification directly from yeast. Anal Biochem. 2002;307(1):13–17. doi: 10.1016/S0003-2697(02)00018-0
- Kreplak J, Madoui M-A, Cápal P, et al. A reference genome for pea provides insight into legume genome evolution. Nat Genet. 2019;51:1411–1422. doi: 10.1038/s41588-019-0480-1
- Camacho C, Coulouris G, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. doi: 10.1186/1471-2105-10-421
- Gietz RD, Schiestl RH. Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast. 1991;7(3):253–263. doi: 10.1002/yea.320070307
- Dolgikh AV, Dolgikh EA. Searching for regulators that interact with BELL1 transcrition factor and control the legume-rhizobial symbiosis development. Ecological genetics. 2021;19(1):37–45. EDN: OOVLSJ doi: 10.17816/ecogen51489
- Tripp JD, Lilley JL, Wood WN, Lewis LK. Enhancement of plasmid DNA transformation efficiencies in early stationary-phase yeast cell cultures: Enhancement of DNA transformation in yeast cells. Yeast. 2013;30(5):191–200. doi: 10.1002/yea.2951
- Ito H, Fukuda Y, Murata K, Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983;153(1): 163–168. doi: 10.1128/jb.153.1.163-168.1983
- Klebe RJ, Harris RJ, Sharp ZD, Douglas MG. A general method for polyethylene-glycol-induced genetic transformation of bacteria and yeast. Gene. 1983;25(2–3):333–341. doi: 10.1016/0378-1119(83)90238-X
- Németh T, Nosanchuk JD, Vagvolgyi C, Gacser A. Enhancing the chemical transformation of Candida parapsilosis. Virulence. 2021;12(1):937–950. doi: 10.1080/21505594.2021.1893008
- Chan V, Dreolini LF, Flintoff KA, et al. The effect of increasing plasmid size on transformation efficiency in Escherichia coli. J Exp Microbiol Immunol. 2002;2:207–223.
- Szostková M, Horáková D. The effect of plasmid DNA sizes and other factors on electrotransformation of Escherichia coli JM109. Bioelectrochem Bioenerg. 1998;47(2):319–323. doi: 10.1016/S0302-4598(98)00203-7
- Bonett DG, Price RM. Confidence intervals for ratios of means and medians. J Educ Behav Stat. 2020;45(6):750–770. doi: 10.3102/1076998620934125
- Yu S-C, Dawson A, Henderson AC, et al. Nutrient supplements boost yeast transformation efficiency. Sci Rep. 2016;6(1):35738. doi: 10.1038/srep35738
- Causier B, Davies B. Analysing protein-protein interactions with the yeast two-hybrid system. Plant Mol Biol. 2002;50(6):855–870. doi: 10.1023/A:1021214007897
Supplementary files
