Optimization of transformation conditions of the yeast Saccharomyces cerevisiae to determine coregulators of the transcription factor NIN in a yeast two-hybrid system

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: The method of protein-protein interaction analysis using the yeast two-hybrid system in Saccharomyces cerevisiae cells is used to search for protein coregulators. This method is also used for mass screening of libraries of cloned fragments of complementary DNA (cDNA) that are translated in the cell. The key factor in the success of such screening is the level of efficiency of yeast cell transformation, since the resolution of the analysis is based on this.

AIM: The aim of this study is to search for optimal parameters for chemical transformation of yeast cells to increase the resolution of cDNA library screening.

MATERIALS AND METHODS: Plasmids pDEST22 and pDEST32 were used for chemical transformation of the yeast strain S. cerevisiae pJ69-4A. For screening, a cDNA library was used, obtained on the basis of mRNA isolated from the roots of pea Pisum sativum cultivar Finale, inoculated with rhizobia.

RESULTS: Factors influencing the efficiency of transformation were identified. Among them are the molecular weight of polyethyleneglycol used for transformation, as well as the number of cell division cycles that the culture undergoes. The effect of the number and size of plasmids used in transformation was also shown. Using the optimized protocol, a cDNA library was successfully screened to find coregulators of the NIN transcription factor.

CONCLUSIONS: Based on the data obtained, optimal parameters were determined that allow achieving a high level of competence in yeast cells. The use of the described protocol allowed for successful screening of the library to identify coregulators of the NIN transcription factor.

Full Text

Restricted Access

About the authors

Alina M. Dymo

All-Russia Research Institute for Agricultural Microbiology

Email: dymoalina@yandex.ru
ORCID iD: 0000-0002-5919-2487
ResearcherId: AAF-3244-2021
Russian Federation, Saint Petersburg

Elizaveta S. Kantsurova

All-Russia Research Institute for Agricultural Microbiology

Email: rudaya.s.e@gmail.com
ORCID iD: 0000-0002-3081-9880
SPIN-code: 4752-1910
Russian Federation, Saint Petersburg

Alexandra V. Dolgikh

All-Russia Research Institute for Agricultural Microbiology

Email: sqshadol@gmail.com
ORCID iD: 0000-0003-1845-9701
SPIN-code: 2602-1514
Scopus Author ID: 5719038282
ResearcherId: ABC-2930-2020
Russian Federation, Saint Petersburg

Elena A. Dolgikh

All-Russia Research Institute for Agricultural Microbiology

Author for correspondence.
Email: dol2helen@yahoo.com
ORCID iD: 0000-0002-5375-0943
SPIN-code: 4453-2060
Scopus Author ID: 6603496335
ResearcherId: G-6363-2017

Dr. Sci. (Biology)

Russian Federation, Saint Petersburg

References

  1. Berggård T, Linse S, James P. Methods for the detection and analysis of protein–protein interactions. Proteomics. 2007;7(16): 2833–2842. doi: 10.1002/pmic.200700131
  2. Zhou M, Li Q, Wang R. Current experimental methods for characterizing protein–protein interactions. ChemMedChem. 2016;11(8):738–756. doi: 10.1002/cmdc.201500495
  3. Cuéllar AP, Pauwels L, De Clercq R, Goossens A. Yeast two-hybrid analysis of jasmonate signaling proteins. In: Goossens A, Pauwels L, editors. Jasmonate signaling. Methods in molecular biology. Vol. 1011. Totowa, NJ: Humana Press; P. 173–185. doi: 10.1007/978-1-62703-414-2_14
  4. Caufield JH, Sakhawalkar N, Uetz P. A comparison and optimization of yeast two-hybrid systems. Methods. 2012;58(4):317–324. doi: 10.1016/j.ymeth.2012.12.001
  5. Yang F, Lei Y, Zhou M, et al. Development and application of a recombination-based library versus library high-throughput yeast two-hybrid (RLL-Y2H) screening system. Nucleic Acids Res. 2018;46(3):e17–e17. doi: 10.1093/nar/gkx1173
  6. Erffelinck M-L, Ribeiro B, Perassolo M, et al. A user-friendly platform for yeast two-hybrid library screening using next generation sequencing. PLOS ONE. 2018;13(12):e0201270. doi: 10.1371/journal.pone.0201270
  7. Elmore JM, Velásquez-Zapata V, Wise RP. Next-generation yeast two-hybrid screening to discover protein–protein interactions. In: Mukhtar S, editor. Protein-protein interactions. Methods in molecular biology. Vol. 2690. New York: Springer US; 2023. P. 205–222. doi: 10.1007/978-1-0716-3327-4_19
  8. Kawai S, Hashimoto W, Murata K. Transformation of Saccharomyces cerevisiae and other fungi: Methods and possible underlying mechanism. Bioeng Bugs. 2010;1(6):395–403. doi: 10.4161/bbug.1.6.13257
  9. Chen P, Liu H-H, Cui R, et al. Visualized investigation of yeast transformation induced with Li+ and polyethylene glycol. Talanta. 2008;77(1):262–268. doi: 10.1016/j.talanta.2008.06.018
  10. Yamakawa M, Hishinuma F, Gunge N. Intact cell transformation of Saccharomyces cerevisiae by polyethylene glycol. Agric Biol Chem. 1985;49(3):869–871. doi: 10.1080/00021369.1985.10866817
  11. Gietz RD, Schiestl RH, Willems AR, Woods RA. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast. 1995;11(4):355–360. doi: 10.1002/yea.320110408
  12. Schiestl RH, Gietz RD. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet. 1989;16(5–6):339–346. doi: 10.1007/BF00340712
  13. Pham TA, Kawai S, Murata K. Visualization of the synergistic effect of lithium acetate and single-stranded carrier DNA on Saccharomyces cerevisiae transformation. Curr Genet. 2011;57(4):233–239. doi: 10.1007/s00294-011-0341-7
  14. Hayama Y, Fukuda Y, Kawai S, et al. Extremely simple, rapid, and highly efficient transformation method for the yeast saccharomyces cerevisiae using glutathione and early log phase cells. J Biosci Bioeng. 2002;94(2):166–171. doi: 10.1263/jbb.94.166
  15. Gietz RD, Schiestl RH. Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007;2(1):35–37. doi: 10.1038/nprot.2007.14
  16. Gietz RD, Schiestl RH. Large-scale high-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007;2(1):38–41. doi: 10.1038/nprot.2007.15
  17. Gietz RD, Schiestl RH. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007;2(1):31–34. doi: 10.1038/nprot.2007.13
  18. James P, Halladay J, Craig EA. genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics. 1996;144(4):1425–1436. doi: 10.1093/genetics/144.4.1425
  19. Hahn-Hägerdal B, Karhumaa K, et al. Role of cultivation media in the development of yeast strains for large scale industrial use. Microb Cell Fact. 2005;4:31. doi: 10.1186/1475-2859-4-31
  20. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–675. doi: 10.1038/nmeth.2089
  21. Wickham H. Data analysis. In: ggplot2: Use R!. Springer-Verlag: New York; 2016. doi: 10.1007/978-3-319-24277-4_9
  22. Singh MV, Weil PA. A method for plasmid purification directly from yeast. Anal Biochem. 2002;307(1):13–17. doi: 10.1016/S0003-2697(02)00018-0
  23. Kreplak J, Madoui M-A, Cápal P, et al. A reference genome for pea provides insight into legume genome evolution. Nat Genet. 2019;51:1411–1422. doi: 10.1038/s41588-019-0480-1
  24. Camacho C, Coulouris G, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. doi: 10.1186/1471-2105-10-421
  25. Gietz RD, Schiestl RH. Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast. 1991;7(3):253–263. doi: 10.1002/yea.320070307
  26. Dolgikh AV, Dolgikh EA. Searching for regulators that interact with BELL1 transcrition factor and control the legume-rhizobial symbiosis development. Ecological genetics. 2021;19(1):37–45. EDN: OOVLSJ doi: 10.17816/ecogen51489
  27. Tripp JD, Lilley JL, Wood WN, Lewis LK. Enhancement of plasmid DNA transformation efficiencies in early stationary-phase yeast cell cultures: Enhancement of DNA transformation in yeast cells. Yeast. 2013;30(5):191–200. doi: 10.1002/yea.2951
  28. Ito H, Fukuda Y, Murata K, Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983;153(1): 163–168. doi: 10.1128/jb.153.1.163-168.1983
  29. Klebe RJ, Harris RJ, Sharp ZD, Douglas MG. A general method for polyethylene-glycol-induced genetic transformation of bacteria and yeast. Gene. 1983;25(2–3):333–341. doi: 10.1016/0378-1119(83)90238-X
  30. Németh T, Nosanchuk JD, Vagvolgyi C, Gacser A. Enhancing the chemical transformation of Candida parapsilosis. Virulence. 2021;12(1):937–950. doi: 10.1080/21505594.2021.1893008
  31. Chan V, Dreolini LF, Flintoff KA, et al. The effect of increasing plasmid size on transformation efficiency in Escherichia coli. J Exp Microbiol Immunol. 2002;2:207–223.
  32. Szostková M, Horáková D. The effect of plasmid DNA sizes and other factors on electrotransformation of Escherichia coli JM109. Bioelectrochem Bioenerg. 1998;47(2):319–323. doi: 10.1016/S0302-4598(98)00203-7
  33. Bonett DG, Price RM. Confidence intervals for ratios of means and medians. J Educ Behav Stat. 2020;45(6):750–770. doi: 10.3102/1076998620934125
  34. Yu S-C, Dawson A, Henderson AC, et al. Nutrient supplements boost yeast transformation efficiency. Sci Rep. 2016;6(1):35738. doi: 10.1038/srep35738
  35. Causier B, Davies B. Analysing protein-protein interactions with the yeast two-hybrid system. Plant Mol Biol. 2002;50(6):855–870. doi: 10.1023/A:1021214007897

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of screening of protein-synthesizing library in yeast two-hybrid system. 1 — Cloning of cDNA pool into pDEST22 vector; 2 — transformation of S. cerevisiae yeast cells with pDEST32 plasmid containing coding sequence of NIN gene of pea P. sativum; 3 — plating of cells after transformation on selective medium without leucine to select colonies containing pDEST32 plasmid with leucine biosynthesis gene LEU2; 4 — preparation of competent yeast cells containing pDEST32 plasmid; 5 — transformation of cells containing pDEST32 plasmid with pDEST22 plasmid, for which selection is carried out on medium without tryptophan; 6 — plating of cells after transformation on a selective medium without leucine, tryptophan and histidine, as well as a medium with the addition of 3-aminotriazole to select colonies containing plasmids pDEST22 and pDEST32 and showing the possibility of interaction of the synthesized proteins

Download (213KB)
3. Fig. 2. Evaluation of the effect of the medium used for growing the yeast culture (a) and the number of division cycles the culture undergoes during growth on the efficiency of yeast cell transformation (b). The statistical significance of the observed differences was assessed using the Wilcoxon test (Mann–Whitney test) (a) and one-way ANOVA with Tukey’s post-hoc test (b). Different letters (a, b) indicate statistically different values (p < 0.05) based on the post-hoc test data. The Shapiro–Wilk test was used to assess the normality of data distribution

Download (67KB)
4. Fig. 3. Determination of the optimal incubation time at elevated temperature (a) and the effect of such components of the transformation mixture as PEG with average molecular weights of 3350, 4000, 6000, and 20000 (b) and ballast single-stranded DNA in an amount of 50, 100, and 200 μg (c) on the transformation efficiency of the yeast strain pJ69-4A. One-Way ANOVA with Tukey’s post-hoc test (a, b) and Kruskal–Wallis one-way analysis (c) were used to assess statistical significance, and the Shapiro–Wilk test was used to assess the normality of data distribution. Different letters (a, b) indicate statistically different values (p < 0.05) based on the post-hoc test data, and double letters (ab) indicate that the values in this group are not statistically different from a and b but different from c

Download (83KB)
5. Fig. 4. Evaluation of the efficiency of yeast cell transformation using plasmids of different sizes pDEST22 (8.9 kb) and pGBT9 (5.5 kb) with the tryptophan biosynthesis gene TRP1. The statistical significance of the observed differences was assessed using the Wilcoxon T-test (Mann–Whitney test). The Shapiro–Wilk test was used to assess the normality of data distribution

Download (71KB)
6. Fig. 5. Results of PCR analysis of plasmids isolated from 10 transformants carrying empty pDEST32 plasmid and pDEST22-based library plasmids with different inserts. The PCR reaction used primers flanking the insert in pDEST22 plasmid

Download (139KB)

Copyright (c) 2024 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 89324 от 21.04.2025.