Third International Conference “Genetically modified organism: the history, achievements, social and environmental risks”

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

From October 3 to October 5, 2023, the Third International Conference “Genetically modified organism: the history, achievements, social and environmental risks” was held at St. Petersburg State University as part of the implementation of the Program for the creation and development of a world-class Scientific Center “Agricultural Technologies for the Future. ”This issue is dedicated to the 300th anniversary of St. Petersburg State University and presents materials from selected conference reports.

Full Text

C 3 по 5 октября 2023 г. в Санкт-Петербургском государственном университете в рамках реализации Программы создания и развития Научного центра мирового уровня «Агротехнологии будущего» прошла Третья Международная конференция «ГМО: история, достижения, социальные и экологические риски». В конференции приняли участие исследователи из России, Китая, Германии, Испании, Индии, Молдовы, Таджикистана, Белоруссии [1].

Генная инженерия — это одно из наиболее бурно развивающихся направлений исследований в современной биологии. Генно-инженерно-модифицированные организмы (ГМО) находят свое применение в сельском хозяйстве, медицине, ветеринарии, пищевой промышленности и в фундаментальных исследованиях. Все эти направления широко обсуждались на нашем мероприятии.

Устные и стендовые доклады были организованы в составе шести секций: ГМО для фундаментальных исследований [2–12], технологии геномного редактирования растений [13–19], ГМО для медицины [20–24], ГМО для сельского хозяйства [25–33], ГМО и окружающая среда [34–40], ГМО и общество [41–45]. Материалы избранных докладов конференции представлены в виде полноразмерных статей в данном тематическом выпуске.

Генная инженерия обладает огромным потенциалом изменения наследственного материала живых организмов. Ее подходы могут быть использованы как для точечного редактирования геномов [11–17, 28, 37, 46], так и для внедрения в геном целых кассет генов [26, 47]. Несмотря на то что исследования с использованием генно-инженерных методов проводят вот уже несколько десятилетий, еще остается много нерешенных проблем. Многие из них были освещены на конференции.

Возможность вносить точечные изменения в геномы открывает широкие перспективы для фундаментальной и прикладной науки. Появляется возможность изменять последовательность генов бесшовными методами (не оставляя следов использованных генетических конструкций), изучать их возможные функции у форм, несущих мутации в гомо- и гетерозиготном состоянии. Примером такой работы служит исследование Е.А. Хуснутдинова с соавторами [46], нацеленное на изучение влияния на фенотип растения генов регуляторов синтеза флавоноидов у арабидопсиса.

Следует отметить, что методы геномного редактирования являются рутинными лишь для небольшого списка модельных объектов. В то же время, для многих видов сельскохозяйственных растений необходима их оптимизация, прежде чем удастся получить желаемый результат. Пример исследования в этой области — работа Е. Канцуровой и соавт. [48], направленная на совершенствование CRISPR/Cas9-редактирования генома важной сельскохозяйственной культуры — гороха. Вопросы изменения регенерационной способности бобовых широко обсуждались на конференции не только в контексте редактирования геномов, но и в контексте трансгенеза [4, 7, 19]. Хотя для этой группы растений нет эффективных протоколов получения трансгенных регенерантов, работы не стоят на месте. Получены трансгенные тканевые культуры с ценными свойствами, описанные в статье О.О. Тиминой и соавт. [47].

Для практического использования продуктов генно-инженерной деятельности важна их всесторонняя характеристика. В любом варианте исследования она предполагает подробное описание привнесенных изменений на уровне ДНК. Если для оценки успешности редактирования конкретного гена достаточно секвенирования по Сэнджеру его измененного фрагмента, то продукты трансгенеза требуют более ресурсоемких технологий исследования. В первую очередь, это касается определения сайта интеграции в геном генно-инженерной конструкции. От того, куда встроились трансгены, во многом будет зависеть их дальнейшая судьба. По этой причине сейчас разработано много методов изучения пограничных с инсерцией последовательностей. Систематизации этой информации посвящен обзор Е.С. Окуловой и соавт. [49].

Генно-инженерные методы представляют собой мощный инструментом для фундаментальных исследований. Эти методы широко применяют в генетике развития растений. Примером такого исследования является статья К.А. Кузнецовой и соавт. [50].

В отличие от растений среди микроорганизмов есть такие объекты, которые с большим успехом можно использовать и в практических целях (как продуцентов пищевых добавок, ферментов, белков терапевтического назначения), и для решения фундаментальных задач. В обзоре П.А. Виролайнен и Е.М. Чекуновой [51] приведены данные о современных достижениях в области модификации генома одноклеточной зеленой водоросли Chlamydomonas reinhardtii: принципы дизайна трансгенных конструкций, методики трансформации ядерного и хлоропластного геномов, используемые селективные маркеры и подходы к редактированию геномов с помощью системы CRISPR/Cas9.

Таким образом, ставшая уже традиционной конференция «ГМО: история, достижения, социальные и экологические риски» является важным инструментом для обмена опытом в области генной инженерии, местом встречи ключевых специалистов в данной области.

Конференция проведена при поддержке Министерства науки и высшего образования Российской Федерации в соответствии с соглашением № 075-15-2022-322 от 22.04.2022 о предоставлении гранта в виде субсидии из Федерального бюджета Российской Федерации. Грант предоставлен для государственной поддержки создания и развития Научного центра мирового уровня «Агротехнологии будущего».

×

About the authors

Tatiana V. Matveeva

Saint Petersburg State University; All-Russian Research Institute of Plant Protection

Author for correspondence.
Email: radishlet@gmail.com
ORCID iD: 0000-0001-8569-6665
SPIN-code: 3877-6598
Scopus Author ID: 7006494611

Dr. Sci. (Biology), Professor, department of genetics and biotechnology

Russian Federation, 7–9 Universitetskaya emb., Saint Petersburg, 199034; Saint Petersburg

References

  1. Matveeva TV. Third International Conference “Genetically modified organisms: the history, achievements, social and environmental risks”. Ecological genetics. 2023;21(S):4. EDN: NYXOTM doi: 10.17816/ecogen569179
  2. Lutova LA, Dodueva IE. Basic research in the developmental genetics on the model of tumor growth in higher plants. Ecological genetics. 2023;21(S):5–6. EDN: TEZPVU doi: 10.17816/ecogen568363
  3. Sidorchuk YV, Belavin PA, Zagorskaya AA, et al. Transplastomic plants — new approaches to solving “old” problems. Ecological genetics. 2023;21(S):7–8. EDN: GJHYSB doi: 10.17816/ecogen568520
  4. Artemiuk AM, Tvorogova VE, Lutova LA. Development of a system for the formation of transgenic somatic embryos in the liquid medium in Medicago truncatula. Ecological genetics. 2023;21(S):9. EDN: IQLATQ doi: 10.17816/ecogen568297
  5. Konstantinov ZS, Tvorogova VE, Potsenkovskaia EA, Lutova LA. The search for inhibitors of somatic embryogenesis in Medicago truncatula. Ecological genetics. 2023;21(S):10. EDN: LWJAOE doi: 10.17816/ecogen568377
  6. Efremova EP, Tvorogova VE, Lutova LA. The MtWOX genes in the regulation of Medicago truncatula somatic embryogenesis. Ecological genetics. 2023;21(S):11. EDN: CECSAJ doi: 10.17816/ecogen568389
  7. Kiseleva AS, Matveenko AG, Tvorogova VE, Lutova LA. The screening vector system of morphogenic regulators in Fabaceae. Ecological genetics. 2023;21(S):12–13. EDN: CIJWMG doi: 10.17816/ecogen568518
  8. Makeeva AS, Sidorin AV, Ishtuganova VV, et al. Effect of biotin starvation on gene expression in industrially significant yeast Komagataella phaffii. Ecological genetics. 2023;21(S):14–15. EDN: PNRHNH doi: 10.17816/ecogen568379
  9. Kulichikhin KY, Sopova JV, Rubel AA. A set of Saccharomyces cerevisiae strains possessing [PSI+] prion formed by Sup35 protein with various deletions in prionogenic domain. Ecological genetics. 2023;21(S):16. EDN: HNSKKX doi: 10.17816/ecogen567848
  10. Shumega AR, Stepchenkova EI, Inge-Vechtomov SG. Evaluation of non-specific CRISPR/Cas9 activity in a yeast model. Ecological genetics. 2023;21(S):17–18. EDN: ZLZALV doi: 10.17816/ecogen567918
  11. Tsygankov MA, Rumyantsev AM, Padkina MV. Application of yeast display method in biotechnology and agriculture. Ecological genetics. 2023;21(S):19. EDN: CGMMZE doi: 10.17816/ecogen568181
  12. Chirinskaite AV, Zelinsky AA, Sopova JV, Leonova EI. Development of the Cas12a-based microdeletion and microinsertion detection system. Ecological genetics. 2023;21(S):20–21. EDN: VDMNGW doi: 10.17816/ecogen568454
  13. Deineko EV. Current state of research in the development of the genomic editing method: problems and prospects. Ecological genetics. 2023;21(S):22. EDN: BGIXTL doi: 10.17816/ecogen568610
  14. Lebedeva MA, Razhina OL, Nikanorkina VV, Taranov VV. The strong base for using base editing in plants. Ecological genetics. 2023;21(S):23. EDN: XLZQPV doi: 10.17816/ecogen567885
  15. Timonova EM, Kiseleva AA, Berezhnaia AA, et al. Modification of agricultural traits in cultivated varieties of barley and wheat. Ecological genetics. 2023;21(S):24–25. EDN: PODECI doi: 10.17816/ecogen568184
  16. Miroshnichenko DN, Timerbaev VR, Divashuk MG, et al. Advancing gene editing: multiplex mutagenesis in hexaploid triticale Ecological genetics. 2023;21(S):26–27. EDN: XZHALT doi: 10.17816/ecogen568624
  17. Kiryushkin AS, Ilina EL, Demchenko KN. Study of functional features of plant root systems using CRISPR/Cas-mediated genome editing. Ecological genetics. 2023;21(S):28–29. EDN: ELXALM doi: 10.17816/ecogen568351
  18. Virolainen PA, Chekunova EM. CRISPR/Cas based genome editing in microalgae. Ecological genetics. 2023;21(S):30–31. EDN: NRMKRS doi: 10.17816/ecogen568609
  19. Tvorogova VE, Potsenkovskaia EA, Efremova EP, et al. The transformation and genome editing of Pisum sativum: protocols and their modifications. Ecological genetics. 2023;21(S):32–33. EDN: DRBNUT doi: 10.17816/ecogen567891
  20. Chekunova EM, Virolainen PA. Microalgae as production systems of bioactive compounds. Bioengineering approaches. Ecological genetics. 2023;21(S):38–39. EDN: NSFEFN doi: 10.17816/ecogen568627
  21. Timina O, Timin O, Stepanova A. Some biochemical characteristics of the hairy roots of Pisum sativum L. mutants. Ecological genetics. 2023;21(S):40. EDN: YVXKIW doi: 10.17816/ecogen568310
  22. Cheryatova YSu, Yembaturova EYu. Transgenic medicinal plants as producers of bioactive substances. Ecological genetics. 2023;21(S):41–42. EDN: CKLJNH doi: 10.17816/ecogen567947
  23. Okulova ES, Burlakovskiy MS, Padkina MV, Lutova LA. Obtaining of transgenic barrelclover plants (Medicago truncatula) producing chicken interferon gamma for veterinary use. Ecological genetics. 2023;21(S):43–44. EDN: CQQYIO doi: 10.17816/ecogen567940
  24. Zelinsky AA, Rubel AA, Ryabinina MV. Identifying novel amyloid candidates using bioinformatics algorithms and a yeast model approach. Ecological genetics. 2023;21(S):45. EDN: TOHHXF doi: 10.17816/ecogen568129
  25. Kaushik P, Meenakshi S, Anil K. Bioengineering eggplants: a deep dive into SmHQT and phenolic acid biosynthesis. Ecological genetics. 2023;21(S):34–35. EDN: HXFVOF doi: 10.17816/ecogen568585
  26. Meenakshi S, Delta A, Kaushik P. Genetic enhancement of Datura metel for optimized silver nanoparticle synthesis. Ecological genetics. 2023;21(S):36–37. EDN: FZTMAB doi: 10.17816/ecogen568587
  27. Dolgov SV. Bioengineering of horticultural crops in Russia and in the world. Ecological genetics. 2023;21(S):46. EDN: IKDROI doi: 10.17816/ecogen568614
  28. Baranov DY, Dolgov SV, Timerbaev VR. Knockout of the tomato translational elongation factor using CRISPR-Cas9 technology. Ecological genetics. 2023;21(S):47. EDN: ZKPLVT doi: 10.17816/ecogen568327
  29. Elkonin LA, Gerashchenkov GA, Borisenko NV, et al. SITE-directed mutagenesis for producing grain sorgum mutants with improved kafirine digestibility. Ecological genetics. 2023;21(S):48–49. EDN: ROHKMO doi: 10.17816/ecogen567897
  30. Lebedeva MA, Dobychkina DA, Kochetkova LA, Lutova LA. Overexpression of the MtCLE35 gene in transgenic Medicago truncatula plants inhibits nodulation at early stages of symbiosis development. Ecological genetics. 2023;21(S):50–51. EDN: UKVFAZ doi: 10.17816/ecogen568451
  31. Ivanov AA, Burlakov AV, Golubeva TS. Approaches for the protection of Solanum tuberosum from late blight through the regulation of inf1 and inf4 elicitin genes. Ecological genetics. 2023;21(S):52. EDN: HIEKXI doi: 10.17816/ecogen568381
  32. Kochetkova LA, Lebedeva MA, Lutova LA. Putative molecular pathways of autoregulation of nodulation activated by CLE peptides in pea. Ecological genetics. 2023;21(S):53. EDN: EPMBLK doi: 10.17816/ecogen568446
  33. Dolgikh EA, Kantsurova ES, Kozyulina PYu, et al. Genetically modified legume plants as a basis for studying the signal regulation of symbiosis with nodule bacteria. Ecological genetics. 2023;21(S):54–55. EDN: JROAHF doi: 10.17816/ecogen568623
  34. Matveeva TV. Prospects for the study of natural GMOs. Ecological genetics. 2023;21(S):56. EDN: NODEWF doi: 10.17816/ecogen487646
  35. Chen K, Zhurbenko PM, Danilov LG, et al. Natural transformants of Camellia section Thea. Ecological genetics. 2023;21(S):57–58. EDN: ECFWBE doi: 10.17816/ecogen568588
  36. Bogomaz OD, Bemova VD, Matveeva TV. Natural GMOs inside the genus Arachis L. Ecological genetics. 2023;21(S):59–60. EDN: XGMZOD doi: 10.17816/ecogen568618
  37. Zhidkin RR, Zhurbenko PM, Matveeva TV. Distribution of the rolB/C-like natural transgene in representatives of the genus Vaccinium L. Ecological genetics. 2023;21(S):61–62. EDN: CUDSSM doi: 10.17816/ecogen567934
  38. Mikhaylova EV. Transgene-free genome editing of plants. Ecological genetics. 2023;21(S):63. EDN: DJHBID doi: 10.17816/ecogen567964
  39. Sokornova SV, Mandrik-Litvinkovich MN, Matveeva TV. Characteristics of root endophytic fungi communities associated with genetically modified plants. Ecological genetics. 2023;21(S):64–65. EDN: REYEMY doi: 10.17816/ecogen568501
  40. Mitina GV, Choglokova AA, Cherepanova MA, et al. The application of the entomopathogenic fungus Akanthomyces muscarius modified GFP to study endophytization. Ecological genetics. 2023;21(S):66–67. EDN: TCEHTS doi: 10.17816/ecogen568650
  41. Yakovleva IV, Gaidukova SE, Kamionskaya AM. Social and ethical component of genetic technologies. Ecological genetics. 2023;21(S):68–69. EDN: SOGWLL doi: 10.17816/ecogen567811
  42. Shaposhnikov AD, Matveeva TV. New naturally transgenic crops. Ecological genetics. 2023;21(S):70. EDN: WPHWAB doi: 10.17816/ecogen568608
  43. Himmel M, Malygina AA, Dukhinova MS. Teaching interdisciplinary courses on responsible conduct in the life sciences — implications for biorisk assessments of GMOs. Ecological genetics. 2023;21(S):71–72. EDN: BNYJMT doi: 10.17816/ecogen568584
  44. Nasyrova FY, Barotov SS, Abdukholiqova FA. GMOs policy and research in Tajikistan. Ecological genetics. 2023;21(S):73–74. EDN: SJNXNA doi: 10.17816/ecogen568495
  45. Barotov SS, Nasyrova FY, Abdukholiqova FA. Identification of genetically modified crops in Tajikistan. Ecological genetics. 2023;21(S):75–76. EDN: OFZNBC doi: 10.17816/ecogen568487
  46. Khusnutdinov EA, Panfilova MA, Terekhov MP, Mikhaylova EV. CRISPR/Cas editing of a CPC gene in Arabidopsis thaliana. Ecological genetics. 2024;22(1):13–21. doi: 10.17816/ecogen624373
  47. Timina O, Timin O, Stepanova A. Biochemical characterisation of transformed roots of Pisum sativum L. subsp. sativum var. sativum with modified leaf morphotype. Ecological genetics. 2024; 22(1):23–32. doi: 10.17816/ecogen622926
  48. Kantsurova E, Kozlov NV, Dolgikh ЕА Development of approaches for genome editing of pea plants using CRISPR/Cas9 prime-editing technique. Ecological genetics. 2024;22(1):63–73. doi: 10.17816/ecogen623140
  49. Okulova EC, Burlakovsky MS, Lutova LA. PCR-based “genome walk” methods. Ecological genetics. 2024;22(1):75–103. doi: 10.17816/ecogen624820
  50. Kuznetsova KA, Dodueva IE, Lutova LA. The homeodomain of the Raphanus sativus transcription factor WOX4 binds to the promoter of the cytokinin biosynthesis gene LOG3. Ecological genetics. 2024;22(1):33–45. doi: 10.17816/ecogen624893
  51. Virolainen PA, Chekunova EM. Transgenesis of microalgae Chlamydomonas reinhardtii: current approaches. Ecological genetics. 2024;22(1):47–62. doi: 10.17816/ecogen624418

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies