Telomere length in trophectoderm and inner cell mass of human blastocysts: comparative analysis and assessment of influencing factors



Cite item

Full Text

Abstract

BACKGROUND: The study of telomere length and influencing factors in early human development has both fundamental and applied importance.

 

AIM: A comparative assessment of telomere length in the compartments of human blastocysts, and the analysis of the telomere length association with the quality of blastocysts, genetic imbalance and the maternal age.

 

MATERIALS AND METHODS: The study was performed on trophectoderm (TE) and inner cell mass (ICM) samples of 41 human blastocysts, 26 of which were genetically imbalanced according to preimplantation genetic testing (PGT) and verification of its results. The microscope slides were prepared for further telomere detection in interphase nuclei by quantitative fluorescence in situ hybridization (Q-FISH).

 

RESULTS: Telomeres in TE were longer than in ICM, with their length varied from blastocyst to blastocyst. Telomere length in either TE or ICM did not differ between genetically balanced and imbalanced blastocysts. There was a tendency towards a decrease in telomere length in the blastocyst compartments with increasing maternal age, however, a statistically significant correlation was not confirmed. The telomere length in the ICM, but not in the TE, was associated with blasocysts’ quality based on the Gardner grade: medium quality blastocysts had longer telomeres than high quality blastocysts.

 

CONCLUSIONS: Long telomeres in TE may be necessary for implantation and subsequent placentation. Telomere length can be considered among modifiers of the effects of karyotype abnormalities and other negative factors: the inheritance by an embryo of long telomeres apparently gives it a developmental advantage even when genetically imbalanced or has poor morphology. Implantation seems to be an important checkpoint for negative selection of embryos with “unsuccessful” combinations of telomere length, karyotype, and morphology.

Full Text

Restricted Access

About the authors

Andrei V. Tikhonov

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Author for correspondence.
Email: tixonov5790@gmail.com
ORCID iD: 0000-0002-2557-6642
SPIN-code: 3170-2629
Scopus Author ID: 57191821068
ResearcherId: Q-1380-2016

Cand. Sci. Biol., Researcher

Russian Federation, St. Petersburg

Olga A. Efimova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: efimova_o82@mail.ru
ORCID iD: 0000-0003-4495-0983
SPIN-code: 6959-5014
Scopus Author ID: 14013324600
ResearcherId: F-5764-2014

Cand. Sci. Biol., Head of the Laboratory of Cytogenetics and Cytogenomics of Reproduction

Russian Federation, St. Petersburg

Mikhail I. Krapivin

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: krapivin-mihail@mail.ru
ORCID iD: 0000-0002-1693-5973
SPIN-code: 4989-1932
Scopus Author ID: 56507166200
ResearcherId: F-4166-2017

Junior Researcher

Russian Federation, St. Petersburg

Olga V. Malysheva

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: omal99@mail.ru
ORCID iD: 0000-0002-8626-5071
SPIN-code: 1740-2691
Scopus Author ID: 6603763549
ResearcherId: O-9897-2014

Cand. Sci. (Biol.), Senior Researcher

Russian Federation, St. Petersburg

Evgeniia M. Komarova

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: evgmkomarova@gmail.com
ORCID iD: 0000-0002-9988-9879
SPIN-code: 1056-7821

Cand. Sci. (Biol.), Head of the Laboratory of Early Embryogenesis

Russian Federation, St. Petersburg

Arina V. Golubeva

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: AlikovaAV1504@yandex.ru
ORCID iD: 0000-0003-1613-222X
SPIN-code: 4610-3686

research assistant

Russian Federation, St. Petersburg

Anna A. Pendina

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: pendina@mail.ru
ORCID iD: 0000-0001-9182-9188
SPIN-code: 3123-2133
Scopus Author ID: 6506976983
ResearcherId: F-4396-2017

Cand. Sci. (Biol.), Senior Researcher

Russian Federation, St. Petersburg

References

  1. References
  2. Schoeftner S, Blasco MA. Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol. 2008;10(2):228–236. doi: 10.1038/ncb1685.
  3. Schmutz I, de Lange T. Shelterin. Curr Biol. 2016;26(10):R397–9. doi: 10.1016/j.cub.2016.01.056.
  4. Smith EM, Pendlebury DF, Nandakumar J. Structural biology of telomeres and telomerase. Cell Mol Life Sci. 2020;77(1):61–79. doi: 10.1007/s00018-019-03369-x.
  5. Olovnikov AM. A theory of marginotomy: the incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. Journal Of Theoretical Biology. 1973;41(1):181–190. doi: 10.1016/0022-5193(73)90198-7.
  6. Barnes RP, Fouquerel E, Opresko PL. The impact of oxidative DNA damage and stress on telomere homeostasis. Mech Ageing Dev. 2019;177:37–45. doi: 10.1016/j.mad.2018.03.013.
  7. Lustig A, Shterev I, Geyer S, et al. Long term effects of radiation exposure on telomere lengths of leukocytes and its associated biomarkers among atomic-bomb survivors. Oncotarget. 2016;7(26):38988–38998. doi: 10.18632/oncotarget.8801.
  8. de Souza MR., Kahl VFS., Rohr P, et al. Shorter telomere length and DNA hypermethylation in peripheral blood cells of coal workers. Mutat Res Genet Toxicol Environ Mutagen. 2018;836(B):36–41. doi: 10.1016/j.mrgentox.2018.03.009.
  9. Cesare AJ, Hayashi MT, Crabbe L, Karlseder J. The telomere deprotection response is functionally distinct from the genomic DNA damage response. Mol Cell. 2013;51(2):141–55. doi: 10.1016/j.molcel.2013.06.006.
  10. Cohen SB, Graham ME, Lovrecz GO, et al. Protein composition of catalytically active human telomerase from immortal cells. Science. 2007;315(5820):1850–1853. doi: 10.1126/science.1138596.
  11. Dunham MA, Neumann AA, Fasching CL, Reddel RR. Telomere maintenance by recombination in human cells. Nat Genet. 2000;26(4):447–450. doi: 10.1038/82586.
  12. Heidinger BJ, Blount JD, Boner W, et al. Telomere length in early life predicts lifespan. Proc Natl Acad Sci U S A. 2012;109():1743–8. doi: 10.1073/pnas.1113306109.
  13. Ye Q, Apsley AT, Etzel L, et al. Telomere length and chronological age across the human lifespan: A systematic review and meta-analysis of 414 study samples including 743,019 individuals. Ageing Res Rev. 2023;90:102031. doi: 10.1016/j.arr.2023.102031.
  14. Bau DT, Lippman SM, Xu E, et al. Short telomere lengths in peripheral blood leukocytes are associated with an increased risk of oral premalignant lesion and oral squamous cell carcinoma. Cancer. 2013;119(24):4277–83. doi: 10.1002/cncr.28367.
  15. Jang JS, Choi YY, Lee WK, et al. Telomere length and the risk of lung cancer. Cancer Sci. 2008;99(7):1385–9. doi: 10.1111/j.1349-7006.2008.00831.x.
  16. Qin Q, Sun J, Yin J, et al. Telomere length in peripheral blood leukocytes is associated with risk of colorectal cancer in Chinese population. PLoS One. 2014;9(2):e88135. doi: 10.1371/journal.pone.0088135.
  17. Berneau SC, Shackleton J, Nevin C, et al. Associations of sperm telomere length with semen parameters, clinical outcomes and lifestyle factors in human normozoospermic samples. Andrology. 2020;8(3):583–593. doi: 10.1111/andr.12734.
  18. Hanson BM, Tao X, Zhan Y, et al. Shorter telomere length of white blood cells is associated with higher rates of aneuploidy among infertile women undergoing in vitro fertilization. Fertil Steril. 2021;115(4):957–965. doi: 10.1016/j.fertnstert.2020.09.164.
  19. Shilenkova YV, Pendina AA, Fedorova EM, et al. Issues in reproductive health in chromosome translocation carriers. Journal of obstetrics and women's diseases. 2022;71(5):85–96. doi: 10.17816/JOWD109329.
  20. ESHRE Guideline Group on Good Practice in IVF Labs; De los Santos MJ, Apter S, Coticchio G, et al. Revised guidelines for good practice in IVF laboratories (2015). Hum Reprod. 2016;31(4):685–6. doi: 10.1093/humrep/dew016.
  21. Pendina AA, Krapivin MI, Efimova OA, et al. Telomere Length in Metaphase Chromosomes of Human Triploid Zygotes. Int J Mol Sci. 2021;22(11):5579. doi: 10.3390/ijms22115579.
  22. Gardner DK, Schoolcraft WB. In vitro culture of human blastocysts. In: Jansen R, Mortimer D (eds). Towards Reproductive Certainty: Fertility and Genetics Beyond. Camforth, UK: Parthenon Publishing, 1999, 378–388.
  23. Pendina AA, Efimova OA, Fedorova ID, et al. DNA methylation patterns of metaphase chromosomes in human preimplantation embryos. Cytogenet Genome Res. 2011;132(1-2):1–7. doi: 10.1159/000318673.
  24. Efimova OA, Pendina AA, Tikhonov AV, et al. Chromosome hydroxymethylation patterns in human zygotes and cleavage-stage embryos. Reproduction. 2015;149(3):223–33. doi: 10.1530/REP-14-0343.
  25. Tikhonov AV, Krapivin MI, Malysheva OV, et al. Re-Examination of PGT-A Detected Genetic Pathology in Compartments of Human Blastocysts: A Series of 23 Cases. J Clin Med. 2024;13(11):3289. doi: 10.3390/jcm13113289.
  26. Efimova OA, Pendina AA, Tikhonov AV, et al. Genome-wide 5-hydroxymethylcytosine patterns in human spermatogenesis are associated with semen quality. Oncotarget. 2017;8(51):88294-88307. doi: 10.18632/oncotarget.18331.
  27. Liehr T (ed.). Fluorescence In Situ Hybridization (FISH), Springer Protocols Handbooks. Pt. 4, 337–346. doi: 10.1007/978-3-662-52959-1_1. Springer-Verlag Berlin Heidelberg. 2017.
  28. Canela A, Vera E, Klatt P, Blasco MA. High-throughput telomere length quantification by FISH and its application to human population studies. Proc Natl Acad Sci U S A. 2007;104(13):5300–5. doi: 10.1073/pnas.0609367104.
  29. Ourliac-Garnier I, Londoño-Vallejo A. Telomere Length Analysis by Quantitative Fluorescent in Situ Hybridization (Q-FISH). Methods Mol Biol. 2017;1587:29–39. doi: 10.1007/978-1-4939-6892-3_3.
  30. Iqbal K, Kues WA, Baulain U, et al. Species-specific telomere length differences between blastocyst cell compartments and ectopic telomere extension in early bovine embryos by human telomerase reverse transcriptase. Biol Reprod. 2011;84:723–733. doi: 10.1095/biolreprod.110.087205.
  31. Varela E, Schneider RP, Ortega S, Blasco MA. Different telomere-length dynamics at the inner cell mass versus established embryonic stem (ES) cells. Proc Natl Acad Sci U S A. 2011;108(37):15207–12. doi: 10.1073/pnas.1105414108.
  32. Kar M, Ghosh D, Sengupta J. Histochemical and morphological examination of proliferation and apoptosis in human first trimester villous trophoblast. Hum Reprod. 2007;22(11):2814–23. doi: 10.1093/humrep/dem284.
  33. Liu L, Bailey S, Okuka M, et al. Telomere lengthening early in development. Nat Cell Biol. 2007;9:1436–1441. doi: 10.1038/ncb1664.
  34. Wright DL, Jones EL, Mayer JF, et al. Characterization of telomerase activity in the human oocyte and preimplantation embryo. Mol Hum Reprod. 2001; 7(10):947–955. doi: 10.1093/molehr/7.10.947.
  35. Polettini J, da Silva MG. Telomere-Related Disorders in Fetal Membranes Associated with Birth and Adverse Pregnancy Outcomes. Front Physiol. 2020;11:561771. doi: 10.3389/fphys.2020.561771.
  36. Kyo S, Takakura M, Tanaka M, et al. Expression of Telomerase Activity in Human Chorion. Biochem Biophys Res Commun. 1997;241:498–503. doi: 10.1006/bbrc.1997.7767.
  37. Chen RJ, Chu CT, Huang SC, et al. Telomerase activity in gestational trophoblastic disease and placental tissue from early and late human pregnancies. Hum Reprod. 2002;17(2):463–8. doi: 10.1093/humrep/17.2.463.
  38. Colatto BN, de Souza IF, Schinke LAA, et al. Telomere Length and Telomerase Activity in Foetal Membranes from Term and Spontaneous Preterm Births. Reprod Sci. 2020;27(1):411–417. doi: 10.1007/s43032-019-00054-z.
  39. Nishi H, Yahata N, Ohyashiki K, et al. Comparison of telomerase activity in normal chorionic villi to trophoblastic diseases. Int J Oncol. 1998;12(1):81–5. doi: 10.3892/ijo.12.1.81.
  40. Treff NR, Su J, Taylor D, Scott RTJr. Telomere DNA deficiency is associated with development of human embryonic aneuploidy. PLoS Genet. 2011;7(6):e1002161. doi: 10.1371/journal.pgen.1002161.
  41. Mania A, Mantzouratou A, Delhanty JD, et al. Telomere length in human blastocysts. Reprod Biomed Online. 2014;28(5):624–37. doi: 10.1016/j.rbmo.2013.12.010.
  42. Wang F, McCulloh DH, Chan K, et al. The Landscape of Telomere Length and Telomerase in Human Embryos at Blastocyst Stage. Genes (Basel). 2023;14(6):1200. doi: 10.3390/genes14061200.
  43. Turner K, Lynch C, Rouse H, et al. Direct Single-Cell Analysis of Human Polar Bodies and Cleavage-Stage Embryos Reveals No Evidence of the Telomere Theory of Reproductive Ageing in Relation to Aneuploidy Generation. Cells. 2019;8(2):163. doi: 10.3390/cells8020163.
  44. Keefe DL. Telomeres and genomic instability during early development. Eur J Med Genet. 2020;63(2):103638. doi: 10.1016/j.ejmg.2019.03.002.
  45. Anifandis G, Samara M, Simopoulou M, et al. Insights into the Role of Telomeres in Human Embryological Parameters. Opinions Regarding IVF. J Dev Biol. 2021;9(4):49. doi: 10.3390/jdb9040049.
  46. Epel ES. Can Childhood Adversity Affect Telomeres of the Next Generation? Possible Mechanisms, Implications, and Next-Generation Research. Am J Psychiatry. 2020;177(1):7–9. doi: 10.1176/appi.ajp.2019.19111161.
  47. Turner S, Wong HP, Rai J, Hartshorne GM. Telomere lengths in human oocytes, cleavage stage embryos and blastocysts. Mol Hum Reprod. 2010;16(9):685–94. doi: 10.1093/molehr/gaq048.
  48. Krapivin MI, Tikhonov AV, Efimova OA, et al. Telomere Length in Chromosomally Normal and Abnormal Miscarriages and Ongoing Pregnancies and Its Association with 5-hydroxymethylcytosine Patterns. Int J Mol Sci. 2021;22(12):6622. doi: 10.3390/ijms22126622.
  49. Huleyuk N, Tkach I, Zastavna D, Tyrka M. Can telomere shortening be the main indicator of non-viable fetus elimination? Mol Cytogenet. 2018;11:11. doi: 10.1186/s13039-018-0361-9.
  50. Vaziri H, Schächter F, Uchida I, et al. Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am J Hum Genet. 1993;52(4):661–7. PMID: 8460632; PMCID: PMC1682068.
  51. Bhaumik P, Bhattacharya M, Ghosh P, et al. Telomere length analysis in Down syndrome birth. Mech Ageing Dev. 2017;164:20–26. doi: 10.1016/j.mad.2017.03.006.
  52. Spivak I, Tkachuk N, Zhekalov A, Dolinina T. Role Of Genotype In Maintaining Telomere Length At Prolonged Psychological Stress. In: Chernyavskaya V, Kuße H, editors. Professional Сulture of the Specialist of the Future, vol 51. European Proceedings of Social and Behavioural Sciences. Future Academy; 2018. P:515–527. doi: 10.15405/epsbs.2018.12.02.56.
  53. Garrett-Bakelman FE, Darshi M, Green SJ, et al. The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science. 2019;364(6436):eaau8650. doi: 10.1126/science.aau8650.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies