Genetic variability of Scots pine (Pinus sylvestris L.) plus trees in the Middle and Upper Volga Region based on polymorphism of nSSR markers
- Authors: Sheykina O.V.1
-
Affiliations:
- Volga State University of Technology
- Issue: Vol 22, No 4 (2024)
- Pages: 331-341
- Section: Genetic basis of ecosystems evolution
- Submitted: 27.08.2024
- Accepted: 30.10.2024
- Published: 15.12.2024
- URL: https://journals.eco-vector.com/ecolgenet/article/view/635421
- DOI: https://doi.org/10.17816/ecogen635421
- ID: 635421
Cite item
Abstract
BACKGROUND: One of the key issues in the area of forest selection is how to mitigate the risks evolving changes in the genetic structure and loss of diversity of future artificial forests due to the use of plus trees for seed production. Therefore, there should be studies aiming at assessing the genetic variability of plus trees selected for phenotypic traits in natural populations.
AIM: The aim of this study is to examine of variability and differentiation of Scots pine plus trees selected for phenotypic traits from the Chuvash Republic, the Republic of Tatarstan and the Republic of Mari El with the use of nSSR markers.
MATERIALS AND METHODS: Using five microsatellite loci, the authors assessed 207 plus trees of Scots pine from the Chuvash Republic, the Republic of Tatarstan and the Republic of Mari El.
RESULTS: The number of alleles differed from 33 to 37 for various groups of plus trees. Thus, plus trees from the Mar El Republic are specified by a reduced level of diversity (Na = 6.6; Ne = 3.5; Ho = 0.361; He = 0.687) as compared to trees from the Chuvash Republic (Na = 7.4; Ne = 4.8; Ho = 0.503; He = 0.778) and the Republic of Tatarstan (Na = 6.8; Ne = 4.4; Ho = 0.570; He = 0.739). The groups of plus trees are slightly differentiated, and the genetic subdivision index equaled to 0.023. The major part of the nSSR marker polymorphism is within the groups of plus trees (98.0 %).
CONCLUSIONS: The plus trees under study differ in the level of genetic variability. Relatively low allelic diversity and a large deficit of heterozygote are typical for all groups. Thus, we may conclude that the plus trees are compatible with natural populations of Scots pine grown in the Middle and Upper Volga Region in terms of distribution of genetic variability and differentiation.
Full Text

About the authors
Olga V. Sheykina
Volga State University of Technology
Author for correspondence.
Email: ShejkinaOV@volgatech.net
ORCID iD: 0000-0002-7507-8588
SPIN-code: 2215-3308
Dr. Sci. (Biology)
Russian Federation, Yoshkar-OlaReferences
- Tarakanov VV, Palenova MM, Parkinа OV, et al. Forest selective breeding in Russia: achievements, challenges, priorities (overview). Forestry information. 2021;(1):100–143. EDN: DXAWDG doi: 10.24419/LHI.2304-3083.2021.1.09
- Hosius B, Leinemann L, Konnert M, Bergmann F. Genetic aspects of forestry in the Central Europe. Eur J For Res. 2006;125(4):407–417. doi: 10.1007/s10342-006-0136-4
- Padutov VE, Khotyleva LV, Baranov OU, Ivanovskaya SI. Genetic effects of transformation of forest ecosystems. Ecological genetics. 2008;6(1):3–11. EDN: JQPUBD doi: 10.17816/ecogen613-11
- Shigapov ZH. Comparative genetic analysis of forest seed plantations and natural populations of common pine trees. Russian Forest Sciences. 1995;(3):19–24. EDN: UWKJAX (In Russ.)
- Krivorotova TN, Sheikina OV. Genetic structure of seed orchards and natural stands of Pinus sylvestris in the middle Volga Region. Vestnik of Volga State University of Technology. Series: forest. Ecology. Nature management. 2014;(1):77–86. EDN: RXHHHX
- Khanova E, Konovalov V, Timeryanov A, et al. Genetic and selection assessment of the Scots pine (Pinus sylvestris L.) in forest seed orchards. Wood Res. 2020;65(2):283–292. doi: 10.37763/wr.1336-4561/65.2.283292
- linov AA, Raevsky BV. Genetic diversity of scots pine trees of different selection categories in plus stands of Karelia. Ecological genetics. 2021;19(1):23–36. EDN: KULBVC doi: 10.17816/ecogen50176
- Ilinov AA, Raevsky BV. Genetic evaluation by microsatellite loci of Pinus sylvestris L. Plus trees. Russian forestry journal. 2023;(3): 48–68. EDN: SSJEZK doi: 10.37482/0536-1036-2023-3-48-68
- Sheikina OV, Romanov EM. Variability of Scots pine (Pinus sylvestris L.) plus trees in the Middle and Upper Volga Region with the use of ISSR markers. Vavilov Journal of Genetics and Breeding. 2024;28(2):148–154. EDN: TVPFSO doi: 10.18699/vjgb-24-17
- Bergman F, Ruetz W. Isozyme genetic variation and heterozygosity in random tree samples and selected orchard clones from the same Norway spruce populations. For Ecol Manag. 1991;46(1–2): 39–47. doi: 10.1016/0378-1127(91)90243-O
- Ivanovskaya SI, Kagan DI, Padutov VE. Genetic diversity and structure of the Norway spruce Picea abies (L.) H. Karst. seed orchards of the first and the second order in Belarus. Siberian Journal Forest Science. 2020;(4):5–14. EDN: IZJZYX doi: 10.15372/SJFS20200402
- Cheliak WM, Murray G, Pitel JA. Genetic effects of phenotypic selection in white spruce. For Ecol Manag. 1988;24(2):139–149. doi: 10.1016/0378-1127(88)90117-X
- Sheikina OV. Genetic structure and differentiation of Scots pine (Pinus sylvestris L.) populations in the Middle and Upper Volga Regions. Ecological genetics. 2022;20(4):261–270. EDN: WRKZIE doi: 10.17816/ecogen110866
- Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 1987;19:11–15.
- Liewlaksaneeyanawin C, Ritland CE, El-Kassaby YA, Ritland K. Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs. Theor Appl Genet. 2004;109(2):361–369. doi: 10.1007/s00122-004-1635-7
- Sebastiani LF, Pinzauti F, Kujala ST, et al. Novel polymorphic nuclear microsatellite markers for Pinus sylvestris L. Conserv Genet Resour. 2012;4(2):231–234. doi: 10.1007/s12686-011-9513-5
- Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research an update. Bioinformatics. 2012;28(19):2537–2539. doi: 10.1093/bioinformatics/bts460
- Chapuis M-P, Estoup A. Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol. 2007;24(3):621–631. doi: 10.1093/molbev/msl191
- Takezaki N, Nei M, Tamura K. POPTREEW: web version of POPTREE for constructing population trees from allele frequency data and computing some other quantities. Mol Biol Evol. 2014;31(6): 1622–1624. doi: 10.1093/molbev/msu093
- Bernhardsson C, Floran V, Ganea SL, García-Gil MR. Present genetic structure is congruent with the common origin of distant Scots pine populations in its Romanian distribution. For Ecol Manag. 2016;361:131–143. doi: 10.1016/j.foreco.2015.10.047
- Sheller M, Tóth EG, Ciocîrlan E, et al. Genetic diversity and population structure of Scots pine (Pinus sylvestris L.) in Middle Siberia. Forests. 2023;14(1):119. doi: 10.3390/f14010119
- Gladkov YuF, Sheikina OV. Modeling the composition of plus trees for establishing a Pinus sylvestris seed orchard with SSR-markers use. Vestnik of Volga State University of Technology. Series: forest. Ecology. Nature management. 2022;(3):63–75. EDN: YZIHUE doi: 10.25686/2306-2827.2022.3.63
- Belletti P, Ferrazzini D, Piotti A, et al. Genetic variation and divergence in Scots pine (Pinus sylvestris L.) within its natural range in Italy. Eur J For Res. 2012;131:1127–1138. doi: 10.1007/s10342-011-0584-3
- Bilgen BB, Kaya N. Genetic diversity among Pinus sylvestris L. populations and its implications for genetic conservation: comparison of nuclear and chloroplast microsatellite markers. Fresenius Environ Bull. 2017;26(11):6873–6881.
- Scalfi M, Piotti A, Rossi M, Piovani P. Genetic variability of Italian southern Scots pine (Pinus sylvestris L.) populations: the rear edge of the range. Eur J For Res. 2009;128(4):377–386. doi: 10.1007/s10342-009-0273-7
- Ilinov AA, Raevsky BV, Chirva OV. The state of gene pool of the basic forest-forming species of the white sea watershed (on the example of a Picea × fennica (Regel) kom. and Pinus sylvestris L.) Ecological genetics. 2020;18(2):185–202. EDN: KVYSDF doi: 10.17816/ecogen19006
- Gladkov YuF, Sheikina OV. Genetic polymorphism of the Pinus sylvestris trees from bog land and upland cenopopulations on nuclear SSR loci. Vestnik of Volga State University of Technology. Series: forest. Ecology. Nature management. 2019;(4):70–79. EDN: JHFPNS doi: 10.25686/2306-2827.2019.4.70
- Hebda A, Wójkiewicz B, Wachowiak W. Genetic characteristics of Scots pine in Poland and reference populations based on nuclear and chloroplast microsatellite markers. Silva Fennica. 2017;51(2):1721. doi: 10.14214/sf.1721
- Kavaliauskas D, Danusevičius D, Baliuckas V. New insight into genetic structure and diversity of Scots pine (Pinus sylvestris L.) populations in Lithuania Based on nuclear, chloroplast and mitochondrial DNA markers. Forests. 2022;13(8):1179. doi: 10.3390/f13081179
- Wojkiewicz B, Litkowiec M, Wachowiak W. Contrasting patterns of genetic variation in core and peripheral populations of highly outcrossing and wind pollinated forest tree species. AoB PLANTS. 2016;8:plw054. doi: 10.1093/aobpla/plw054
- Dering M, Baranowska M, Beridze B, et al. The evolutionary heritage and ecological uniqueness of Scots pine in the Caucasus ecoregion is at risk of climate changes. Sci Rep. 2021;11:22845. doi: 10.1038/s41598-021-02098-1
- Gil RGM, Floran V, Östlund L, et al. Genetic diversity and inbreeding in natural and managed populations of Scots pine. Tree Genet Genomes. 2015;11:28. doi: 10.1007/s11295-015-0850-5
- Semerikov VL, Podogas AV, Shurkhal AV. Variability of allozyme loci in populations of common pine. Russian Journal of Ecology. 1993;(1):18–25. EDN: UJHHFL
- Tóth EG, Kobolkuti ZA, Pedryc A, Hohn M. Evolutionary history and phylogeography of Scots pine (Pinus sylvestris L.) in Europe based on molecular markers. J For Res. 2017;28(4):637–651. doi: 10.1007/s11676-017-0393-8
- Petit R, Hampe A. Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst. 2006;37:187–214. doi: 10.1146/annurev.ecolsys.37.091305.110215
- Williams CG. Long-distance pine pollen still germinates after meso-scale dispersal. Am J Bot. 2010;97(5):846–855. doi: 10.3732/ajb.0900255
- Hamrick JL, Godt MJW, Sherman-Broyles SL. Factors influencing levels of genetic diversity in woody plant species. New For. 1992;6:95–124. doi: 10.1007/BF00120641
- Semerikov VL, Semerikova SA, Dymshakova OS, et al. Microsatellite loci polymorphism of chloroplast DNA of Scots pine (Pinus sylvestris L.) in Asia and Eastern Europe. Russian Journal of Genetics. 2014;50(6):660–669. EDN: QISGOP doi: 10.7868/S0016675814040122
- Zatsepina KG, Tarakanov VV, Kalchenko LI, et al. Differentiation of scots pine populations in the belt pine forests of Altai Krai discovered with markers of various nature. Siberian Journal Forest Science. 2016;(5):21–32. EDN: XCRXHR doi: 10.15372/SJFS20160502
Supplementary files
