Analysis of cytogenetic disorders in residents of an industrial region in connection with work at coal-fired thermal power plants

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: In the air of an industrial environment associated with the processing and combustion of coal contains a huge amount of coal dust, heavy metals, polycyclic aromatic hydrocarbons, which have a negative impact on genetic stability. In this regard, the purpose of the study is to study the genotoxic effects in workers of coal thermal power plants.

MATERIALS AND METHODS: The paper presents a cytogenetic analysis of genomic damage in 455 coal-fired thermal power plant workers compared with 533 control donors from Kemerovo using a micronucleus test. The formation of genomic abnormalities in coal-fired thermal power plant workers was assessed in relation to sex, age, smoking status, presence of chronic diseases, length of service, and working shops.

RESULTS: A significant increase in the frequency of occurrence of lymphocytes with micronuclei, nucleoplasmic bridges, nuclear buds, as well as cells at the stage of apoptosis in workers of coal-fired thermal power plants compared to the control group was established. An increase in the frequency of occurrence of cells with cytogenetic disorders was revealed in women working in coal production and workers over 51 years of age. Work experience and professional specialization had a significant impact on the formation of genomic disorders.

CONCLUSIONS: The obtained results indicate a significant contribution of environmental factors to the development of geno- and cytotoxic effects in workers of coal-fired thermal power plants.

Full Text

Restricted Access

About the authors

Anna V. Marushchak

Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: marushchak.av@mail.ru
ORCID iD: 0000-0002-9560-7563
SPIN-code: 5777-9024
Russian Federation, Kemerovo

Artyom V. Minin

Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences; Kemerovo State University

Email: mininartemminin@mail.ru
ORCID iD: 0000-0002-5839-5194
SPIN-code: 5917-1343
Russian Federation, Kemerovo; Kemerovo

References

  1. Vig N, Ravindra K, Mor S. Environmental impacts of Indian coal thermal power plants and associated human health risk to the nearby residential communities: A potential review. Chemosphere. 2023;341:140103. doi: 10.1016/j.chemosphere.2023.140103
  2. Dutta M, Islam N, Rabha S, et al. Acid mine drainage in an Indian high-sulfur coal mining area: Cytotoxicity assay and remediation study. J Hazard Mater. 2020;389:121851. doi: 10.1016/j.jhazmat.2019.121851
  3. Chen Y, Wild O, Conibear L, et al. Local characteristics of and exposure to fine particulate matter (PM2.5) in four indian megacities. Atmos Environ X. 2020;5:100052. doi: 10.1016/j.aeaoa.2019.100052
  4. Glushchenko NN, Bogoslovskaya OA, Baytukalov TA, et al. Biological properties of solid particles of fly ashes of a coal-fired power plant. Proceedings of the Russian Academy of Sciences. Power engineering. 2008;(4):129–137. EDN: JJSNEL
  5. Rozhina E, Ishmukhametov I, Nigamatzyanova L, et al. Comparative toxicity of fly ash: An in vitro study. Molecules. 2021;26(7):926. doi: 10.3390/molecules26071926
  6. Leonard SA, Stegemann LA, Roy A. Characterization of acid tars. J Hazard Mater. 2010;175(1–3):382–392. doi: 10.1016/j.jhazmat.2009.10.015
  7. Mazhaisky SA, Zakharova OL, Evtyukhin VF, Tobratov SA. Technogenic pollution of environment in the zone of impact of Ryazanskaya GRES. Chemical and oil and gas engineering. 2000;(10):29–31. EDN: YZJZPN (In Russ.)
  8. Galiulin RV, Galiulina RA. Pollution of Chelyabinsk territory by heavy metals during coal combustion. Solid Fuel Chemistry. 2013. № 2. С. 62–64. (In Russ.) EDN: PXLGGX doi: 10.7868/S0023117713020047
  9. Zhang G-h, Ren J-c, Luo M, et al. Association of BER and NER pathway polymorphism haplotypes and micronucleus frequencies with global DNA methylation in benzene-exposed workers of China: Effects of DNA repair genes polymorphisms on genetic damage. Mutat Res Genet Toxicol Environ Mutagen. 2019;839:13–20. doi: 10.1016/j.mrgentox.2019.01.006
  10. Sommer S, Buraczewska I, Kruszewski LM. Micronucleus assay: The state of art, and future directions. Int J Mol Sci. 2020;21(4):1534. doi: 10.3390/ijms21041534
  11. Ladeira C, Smajdova L. The use of genotoxicity biomarkers in molecular epidemiology: Applications in environmental, occupational and dietary studies. AIMS Genet. 2017;4(3):166–191. doi: 10.3934/genet.2017.3.166
  12. Turkez H, Arslan M, Ozdemir O. Genotoxicity testing: Progress and prospects for the next decade. Expert Opin Drug Metab Toxicol. 2017;13(10):1089–1098. doi: 10.1080/17425255.2017.1375097
  13. Abilev SK, Igonina EV, Sviridova DA, Smirnova SV. Bacterial lux biosensors in genotoxicological studies. Biosensors. 2023;13(5):511. doi: 10.3390/bios13050511
  14. de Souza MR, Silva Kahl VF, Rohr P, et al. Shorter telomere length and DNA hypermethylation in peripheral blood cells of coal workers. Mutat Res Genet Toxicol Environ Mutagen. 2018;836-B:36–41. doi: 10.1016/j.mrgentox.2018.03.009
  15. Carugno M, Pesatori AC, Dioni L, et al. Increased mitochondrial DNA copy number in occupations associated with low-dose benzene exposure. Environ Health Perspect. 2012;120(2):210–215. doi: 10.1289/ehp.1103979
  16. Kirsch-Volders M, Fenech M, Bolognesi C. Validity of the lymphocyte cytokinesis-block micronucleus assay (L-CBMN) as biomarker for human exposure to chemicals with different modes of action: A synthesis of systematic reviews. Mutat Res Genet Toxicol Environ Mutagen. 2018;836-A:47–52. doi: 10.1016/j.mrgentox.2018.05.010
  17. Fenech M. Cytokinesis-block micronucleus cytome assay evolution into a more comprehensive method to measure chromosomal instability. Genes. 2020;11(10):1203. doi: 10.3390/genes11101203
  18. Fenech M, Chang WP, Kirsch-Volders M, et al. HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res Fundam Mol Mech Mutagen. 2003;534(1–2):65–75. doi: 10.1016/S1383-5718(02)00249-8
  19. Druzhinin VG, Baranova ED, Golovina TA, et al. The baseline level of cytogenetic damage in lymphocytes and buccal epitheliocytes of lung cancer patients. Russian Journal of Genetics. 2019;55(10): 1189–1197. EDN: YXRQBH doi: 10.1134/S0016675819100047
  20. Fenech M. Cytokinesis-block micronucleus assay evolves into a “cytome” assay of chromosomal instability, mitotic dysfunction and cell death. Mutat Res. 2006;600(1–2):58–66. doi: 10.1016/j.mrfmmm.2006.05.028
  21. Carlos-Reyes A, Muñiz-Lino MA, Romero-Garcia S, et al. Biological adaptations of tumor cells to radiation therapy. Front Oncol. 2021;11:718636. doi: 10.3389/fonc.2021.718636
  22. Mesic A, Nefic H. Assessment of the genotoxicity and cytotoxicity in environmentally exposed human populations to heavy metals using the cytokinesis-block micronucleus cytome assay. Environ Toxicol. 2015;30(11):1331–1342. doi: 10.1002/tox.22004
  23. Haaf T, Raderschall E, Reddy G, et al. Sequestration of mammalian Rad51-recombination protein into micronuclei. J Cell Biol. 1999;144(1):11–20. doi: 10.1083/jcb.144.1.11
  24. Siwińska E, Mielzyńska D, Kapka L. Association between urinary 1-hydroxypyrene and genotoxic effects in coke oven workers. Occup Environ Med. 2004;61(3): e10. doi: 10.1136/oem.2002.006643
  25. Donbak L, Rencuzogulları E, Yavuz A, Topaktas M. The genotoxic risk of underground coal miners from Turkey. Mutat Res Genet Toxicol Environ Mutagen. 2005;588(2):82–87. doi: 10.1016/j.mrgentox.2005.08.014
  26. Celik M, Donbak L, Unal F, et al. Cytogenetic damage in workers from a coal-fired power plant. Mutat Res Genet Toxicol Environ Mutagen. 2007;62(2):158–163. doi: 10.1016/j.mrgentox.2006.11.003
  27. Ulker OC, Ustundag A, Duydu Y, et al. Cytogenetic monitoring of coal workers and patients with coal workers’ pneumoconiosis in Turkey. Environ Mol Mutagen. 2008;49(3):232–237. doi: 10.1002/em.20377
  28. Cheng J, Leng S, Li H, et al. Suboptimal DNA repair capacity predisposes coke-oven workers to accumulate more chromosomal damages in peripheral lymphocytes. Cancer Epidemiol Biomarkers Prev. 2009;18(3):987–993. doi: 10.1158/1055-9965.EPI-08-0763
  29. León-Mejía G, Espitia-Pérez L, Hoyos-Giraldo LS, et al. Assessment of DNA damage in coal open-cast mining workers using the cytokinesis-blocked micronucleus test and the comet assay. Sci Total Environ. 2011;409(4):686–691. doi: 10.1016/j.scitotenv.2010.10.049
  30. Ada AO, Demiroglu C, Yilmazer M, et al. Cytogenetic damage in Turkish coke oven workers exposed to polycyclic aromatic hydrocarbons: Association with CYP1A1, CYP1B1, EPHX1, GSTM1, GSTT1, and GSTP1 gene polymorphisms. Arh Hig Rada Toksikol. 2013;64(3): 359–369. doi: 10.2478/10004-1254-64-2013-2328
  31. Rohr P, Kvitko K, da Silva FR, et al. Genetic and oxidative damage of peripheral blood lymphocytes in workers with occupational exposure to coal. Mutat Res Genet Toxicol Environ Mutagen. 2013;758(1–2): 23–28. doi: 10.1016/j.mrgentox.2013.08.006
  32. Espitia-Pérez L, Sosa MQ, Salcedo-Arteaga S, et al. Polymorphisms in metabolism and repair genes affects DNA damage caused by open-cast coal mining exposure. Mutat Res Genet Toxicol Environ Mutagen. 2016;808:38–51. doi: 10.1016/j.mrgentox.2016.08.003
  33. Sinitsky MY, Minina VI, Gafarov NI, et al. Assessment of DNA damage in underground coal miners using the cytokinesis-block micronucleus assay in peripheral blood lymphocytes. Mutagenesis. 2016;31(6):669–675. doi: 10.1093/mutage/gew038
  34. de Souza MR, da Silva J, Dihl RR. Chapter 34: Use of micronucleus assays to measure DNA damage caused by coal dust and ash. In: Knasmüller S, Fenech M, editors. The micronucleus assay in toxicology. The Royal Society of Chemistry; 2019. P. 561–582. doi: 10.1039/9781788013604-00561
  35. Leng S, Dai Y, Niu Y, et al. Effects of genetic polymorphisms of metabolic enzymes on cytokinesis-block micronucleus in peripheral blood lymphocyte among coke-oven workers. Cancer Epidemiol Biomarkers Prev. 2004;13(10):1631–1639. doi: 10.1158/1055-9965.1631.13.10
  36. Pavanello S, Dioni L, Hoxha M, et al. Mitochondrial DNA copy number and exposure to polycyclic aromatic hydrocarbons. Cancer Epidemiol Biomarkers Prev. 2013;22(10):1722–1729. doi: 10.1158/1055-9965.EPI-13-0118
  37. Espitia-Pérez L, da Silva J, Espitia-Pérez P, et al. Cytogenetic instability in populations with residential proximity to open-pit coal mine in Northern Colombia in relation to PM10 and PM2.5 levels. Ecotoxicol Environ Saf. 2018;148:453–466. doi: 10.1016/j.ecoenv.2017.10.044
  38. Vimercati L, Bisceglia L, Cavone D, et al. Environmental monitoring of PAHs exposure, biomarkers and vital status in coke oven workers. Int J Environ Res Public Health. 2020;17(7):2199. doi: 10.3390/ijerph17072199
  39. Xi J, Cao Y, Wang Y, et al. PIG-A gene mutation as a mutagenicity biomarker among coke oven workers. Food Chem Toxicol. 2023;178:113872. doi: 10.1016/j.fct.2023.113872
  40. Fedoseev VI, Stepanov DD, Minina VI. Examination of the working environment genotoxic effects on the workers of a coal-fired power plant using the micronucleus test in blood lymphocytes. Ecological genetics. 2021;19(1):77–88. EDN: PFQQYO doi: 10.17816/ecogen42363
  41. Da Silva Pinto EA, Garcia EM, de Almeida KA, et al. Genotoxicity in adult residents in mineral coal region — a cross-sectional study. Environ Sci Pollut Res Int. 2017;24(20):16806–16814. doi: 10.1007/s11356-017-9312-y
  42. Fenech M. The cytokinesis-block micronucleus technique: A detailed description of the method and its application to genotoxicity studies in human populations. Mutat Res. 1993;285(1):35–44. doi: 10.1016/0027-5107(93)90049-l
  43. Battershill JM, Burnett K, Bull S. Factors affecting the incidence of genotoxicity biomarkers in peripheral blood lymphocytes: Impact on design of biomonitoring studies. Mutagen. 2008;23(6):423–437. doi: 10.1093/mutage/gen040
  44. Kopjar N, Kasuba V, Rozgaj R, Milic M. Micronucleus assay in Croatian general population. Arh Hig Rada Toksikol. 2010;61: 219–234. doi: 10.2478/10004-1254-61-2010-2027
  45. Di Giorgio C, De Méo MP, Laget M, et al. The micronucleus assay in human lymphocytes: screening for inter-individual variability and application to biomonitoring. Carcinogenesis. 1994;15(2):313–317. doi: 10.1093/carcin/15.2.313
  46. Duan H, Leng S, Pan Z, et al. Biomarkers measured by cytokinesis-block micronucleus cytome assay for evaluating genetic damages induced by polycyclic aromatic hydrocarbons. Mutat Res. 2009;677(1–2):93–99. doi: 10.1016/j.mrgentox.2009.06.002
  47. Bonassi S, Neri M, Lando C, et al. Effect of smoking habit on the frequency of micronuclei in human lymphocytes: results from the Human MicroNucleus project. Mutat Res. 2003;543(2):155–166. doi: 10.1016/s1383-5742(03)00013-9
  48. Huang X, Mu M, Wang B, et al. Associations of coal mine dust exposure with arterial stiffness and atherosclerotic cardiovascular disease risk in Chinese coal miners. Int Arch Occup Environ Health. 2024;97(4):473–484. doi: 10.1007/s00420-024-02062-2
  49. Manna A, Bisoi S, Mandal NC, Mandal A. An epidemiological study of the risk factors of occupational diseases in coal handling plant of a thermal power station. Indian J Public Health. 2003;47(2):75–77.
  50. Wang D, Liang R, Yang M, et al. Incidence and disease burden of coal workers’ pneumoconiosis worldwide, 1990–2019: evidence from the Global Burden of Disease Study 2019. Eur Respir J. 2021;58(5):2101669. doi: 10.1183/13993003.01669-2021
  51. Vanka KS, Shukla S, Gomez HM, et al. Understanding the pathogenesis of occupational coal and silica dust-associated lung disease. Eur Respir Rev. 2022;31(165):210250. doi: 10.1183/16000617.0250-2021
  52. Alif SM, Sim MR, Ho C, Glass DC. Cancer and mortality in coal mine workers: a systematic review and meta-analysis. Occup Environ Med. 2022;79(5):347–357. doi: 10.1136/oemed-2021-107498
  53. Idrees F, Batool AI, Rehman MFU, et al. Assessment of genetic damage in coal miners of Punjab, Pakistan. Biol Trace Elem Res. 2023;201(7):3144–3151. doi: 10.1007/s12011-022-03412-2
  54. Krylov DA. Negative effects of impurities from coal-fired thermal power stations on the environment and health. Mining informational and analytical bulletin (scientific and technical journal). 2017;(12): 77–87. EDN: YKWBJQ doi: 10.25018/0236-1493-2017-12-0-77-87
  55. Kaur R, Goyal D. Mineralogical studies of coal fly ash for soil application in agriculture. Particul Sci Technol. 2015;33(1):76–80. doi: 10.1080/02726351.2014.938378
  56. Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen. 2017;58(5):235–263. doi: 10.1002/em.22087
  57. Huang R, Zhou P-K. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther. 2021;6(1):254. doi: 10.1038/s41392-021-00648-7
  58. Kvitko K, Bandinelli E, Henriques JA, et al. Susceptibility to DNA damage in workers occupationally exposed to pesticides, to tannery chemicals and to coal dust during mining. Genet Mol Biol. 2012;35(4S1):1060–1068. doi: 10.1590/s1415-47572012000600022
  59. Ramírez-Lopera V, Uribe-Castro D, Bautista-Amorocho H, et al. The effects of genetic polymorphisms on benzene-exposed workers: A systematic review. Health Sci Rep. 2021;4(3):e327. doi: 10.1002/hsr2.327

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Micronucleus test parameters in the study groups, ‰. *p = 0,000001, according to the Mann–Whitney U-test

Download (53KB)
3. Fig. 2. Distribution of the frequency of occurrence of binuclear lymphocytes with micronuclei in workers of coal-fired thermal power plants depending on the length of service

Download (65KB)
4. Fig. 3. Distribution of the frequency of occurrence of binuclear lymphocytes with nucleoplasmic bridges in workers of coal-fired thermal power plants depending on the length of service

Download (65KB)
5. Fig. 4. Distribution of the frequency of occurrence of binuclear lymphocytes with nuclear buds in workers of coal-fired thermal power plants depending on the length of service

Download (62KB)
6. Fig. 5. Distribution of the frequencies of occurrence of binuclear lymphocytes at the mitotic stage in workers of coal-fired thermal power plants depending on the length of service

Download (64KB)
7. Fig. 6. Indicators of micronucleus test in workers of coal-fired thermal power plants depending on professional specialization: 1 — chemical shop; 2 — thermal automation and measurement shop; 3 — administrative and management personnel; 4 — fuel and transportation shop; 5 — repair and construction shop; 6 — electric shop. *p < 0.009, according to the Kraskell–Wallis criterion

Download (86KB)

Copyright (c) 2024 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 89324 от 21.04.2025.