Analysis of cytogenetic disorders in residents of an industrial region in connection with work at coal-fired thermal power plants
- Authors: Marushchak A.V.1, Minin A.V.1,2
-
Affiliations:
- Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences
- Kemerovo State University
- Issue: Vol 22, No 4 (2024)
- Pages: 383-397
- Section: Human ecological genetics
- Submitted: 19.09.2024
- Accepted: 08.11.2024
- Published: 15.12.2024
- URL: https://journals.eco-vector.com/ecolgenet/article/view/636243
- DOI: https://doi.org/10.17816/ecogen636243
- ID: 636243
Cite item
Abstract
BACKGROUND: In the air of an industrial environment associated with the processing and combustion of coal contains a huge amount of coal dust, heavy metals, polycyclic aromatic hydrocarbons, which have a negative impact on genetic stability. In this regard, the purpose of the study is to study the genotoxic effects in workers of coal thermal power plants.
MATERIALS AND METHODS: The paper presents a cytogenetic analysis of genomic damage in 455 coal-fired thermal power plant workers compared with 533 control donors from Kemerovo using a micronucleus test. The formation of genomic abnormalities in coal-fired thermal power plant workers was assessed in relation to sex, age, smoking status, presence of chronic diseases, length of service, and working shops.
RESULTS: A significant increase in the frequency of occurrence of lymphocytes with micronuclei, nucleoplasmic bridges, nuclear buds, as well as cells at the stage of apoptosis in workers of coal-fired thermal power plants compared to the control group was established. An increase in the frequency of occurrence of cells with cytogenetic disorders was revealed in women working in coal production and workers over 51 years of age. Work experience and professional specialization had a significant impact on the formation of genomic disorders.
CONCLUSIONS: The obtained results indicate a significant contribution of environmental factors to the development of geno- and cytotoxic effects in workers of coal-fired thermal power plants.
Keywords
Full Text

About the authors
Anna V. Marushchak
Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: marushchak.av@mail.ru
ORCID iD: 0000-0002-9560-7563
SPIN-code: 5777-9024
Russian Federation, Kemerovo
Artyom V. Minin
Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences; Kemerovo State University
Email: mininartemminin@mail.ru
ORCID iD: 0000-0002-5839-5194
SPIN-code: 5917-1343
Russian Federation, Kemerovo; Kemerovo
References
- Vig N, Ravindra K, Mor S. Environmental impacts of Indian coal thermal power plants and associated human health risk to the nearby residential communities: A potential review. Chemosphere. 2023;341:140103. doi: 10.1016/j.chemosphere.2023.140103
- Dutta M, Islam N, Rabha S, et al. Acid mine drainage in an Indian high-sulfur coal mining area: Cytotoxicity assay and remediation study. J Hazard Mater. 2020;389:121851. doi: 10.1016/j.jhazmat.2019.121851
- Chen Y, Wild O, Conibear L, et al. Local characteristics of and exposure to fine particulate matter (PM2.5) in four indian megacities. Atmos Environ X. 2020;5:100052. doi: 10.1016/j.aeaoa.2019.100052
- Glushchenko NN, Bogoslovskaya OA, Baytukalov TA, et al. Biological properties of solid particles of fly ashes of a coal-fired power plant. Proceedings of the Russian Academy of Sciences. Power engineering. 2008;(4):129–137. EDN: JJSNEL
- Rozhina E, Ishmukhametov I, Nigamatzyanova L, et al. Comparative toxicity of fly ash: An in vitro study. Molecules. 2021;26(7):926. doi: 10.3390/molecules26071926
- Leonard SA, Stegemann LA, Roy A. Characterization of acid tars. J Hazard Mater. 2010;175(1–3):382–392. doi: 10.1016/j.jhazmat.2009.10.015
- Mazhaisky SA, Zakharova OL, Evtyukhin VF, Tobratov SA. Technogenic pollution of environment in the zone of impact of Ryazanskaya GRES. Chemical and oil and gas engineering. 2000;(10):29–31. EDN: YZJZPN (In Russ.)
- Galiulin RV, Galiulina RA. Pollution of Chelyabinsk territory by heavy metals during coal combustion. Solid Fuel Chemistry. 2013. № 2. С. 62–64. (In Russ.) EDN: PXLGGX doi: 10.7868/S0023117713020047
- Zhang G-h, Ren J-c, Luo M, et al. Association of BER and NER pathway polymorphism haplotypes and micronucleus frequencies with global DNA methylation in benzene-exposed workers of China: Effects of DNA repair genes polymorphisms on genetic damage. Mutat Res Genet Toxicol Environ Mutagen. 2019;839:13–20. doi: 10.1016/j.mrgentox.2019.01.006
- Sommer S, Buraczewska I, Kruszewski LM. Micronucleus assay: The state of art, and future directions. Int J Mol Sci. 2020;21(4):1534. doi: 10.3390/ijms21041534
- Ladeira C, Smajdova L. The use of genotoxicity biomarkers in molecular epidemiology: Applications in environmental, occupational and dietary studies. AIMS Genet. 2017;4(3):166–191. doi: 10.3934/genet.2017.3.166
- Turkez H, Arslan M, Ozdemir O. Genotoxicity testing: Progress and prospects for the next decade. Expert Opin Drug Metab Toxicol. 2017;13(10):1089–1098. doi: 10.1080/17425255.2017.1375097
- Abilev SK, Igonina EV, Sviridova DA, Smirnova SV. Bacterial lux biosensors in genotoxicological studies. Biosensors. 2023;13(5):511. doi: 10.3390/bios13050511
- de Souza MR, Silva Kahl VF, Rohr P, et al. Shorter telomere length and DNA hypermethylation in peripheral blood cells of coal workers. Mutat Res Genet Toxicol Environ Mutagen. 2018;836-B:36–41. doi: 10.1016/j.mrgentox.2018.03.009
- Carugno M, Pesatori AC, Dioni L, et al. Increased mitochondrial DNA copy number in occupations associated with low-dose benzene exposure. Environ Health Perspect. 2012;120(2):210–215. doi: 10.1289/ehp.1103979
- Kirsch-Volders M, Fenech M, Bolognesi C. Validity of the lymphocyte cytokinesis-block micronucleus assay (L-CBMN) as biomarker for human exposure to chemicals with different modes of action: A synthesis of systematic reviews. Mutat Res Genet Toxicol Environ Mutagen. 2018;836-A:47–52. doi: 10.1016/j.mrgentox.2018.05.010
- Fenech M. Cytokinesis-block micronucleus cytome assay evolution into a more comprehensive method to measure chromosomal instability. Genes. 2020;11(10):1203. doi: 10.3390/genes11101203
- Fenech M, Chang WP, Kirsch-Volders M, et al. HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res Fundam Mol Mech Mutagen. 2003;534(1–2):65–75. doi: 10.1016/S1383-5718(02)00249-8
- Druzhinin VG, Baranova ED, Golovina TA, et al. The baseline level of cytogenetic damage in lymphocytes and buccal epitheliocytes of lung cancer patients. Russian Journal of Genetics. 2019;55(10): 1189–1197. EDN: YXRQBH doi: 10.1134/S0016675819100047
- Fenech M. Cytokinesis-block micronucleus assay evolves into a “cytome” assay of chromosomal instability, mitotic dysfunction and cell death. Mutat Res. 2006;600(1–2):58–66. doi: 10.1016/j.mrfmmm.2006.05.028
- Carlos-Reyes A, Muñiz-Lino MA, Romero-Garcia S, et al. Biological adaptations of tumor cells to radiation therapy. Front Oncol. 2021;11:718636. doi: 10.3389/fonc.2021.718636
- Mesic A, Nefic H. Assessment of the genotoxicity and cytotoxicity in environmentally exposed human populations to heavy metals using the cytokinesis-block micronucleus cytome assay. Environ Toxicol. 2015;30(11):1331–1342. doi: 10.1002/tox.22004
- Haaf T, Raderschall E, Reddy G, et al. Sequestration of mammalian Rad51-recombination protein into micronuclei. J Cell Biol. 1999;144(1):11–20. doi: 10.1083/jcb.144.1.11
- Siwińska E, Mielzyńska D, Kapka L. Association between urinary 1-hydroxypyrene and genotoxic effects in coke oven workers. Occup Environ Med. 2004;61(3): e10. doi: 10.1136/oem.2002.006643
- Donbak L, Rencuzogulları E, Yavuz A, Topaktas M. The genotoxic risk of underground coal miners from Turkey. Mutat Res Genet Toxicol Environ Mutagen. 2005;588(2):82–87. doi: 10.1016/j.mrgentox.2005.08.014
- Celik M, Donbak L, Unal F, et al. Cytogenetic damage in workers from a coal-fired power plant. Mutat Res Genet Toxicol Environ Mutagen. 2007;62(2):158–163. doi: 10.1016/j.mrgentox.2006.11.003
- Ulker OC, Ustundag A, Duydu Y, et al. Cytogenetic monitoring of coal workers and patients with coal workers’ pneumoconiosis in Turkey. Environ Mol Mutagen. 2008;49(3):232–237. doi: 10.1002/em.20377
- Cheng J, Leng S, Li H, et al. Suboptimal DNA repair capacity predisposes coke-oven workers to accumulate more chromosomal damages in peripheral lymphocytes. Cancer Epidemiol Biomarkers Prev. 2009;18(3):987–993. doi: 10.1158/1055-9965.EPI-08-0763
- León-Mejía G, Espitia-Pérez L, Hoyos-Giraldo LS, et al. Assessment of DNA damage in coal open-cast mining workers using the cytokinesis-blocked micronucleus test and the comet assay. Sci Total Environ. 2011;409(4):686–691. doi: 10.1016/j.scitotenv.2010.10.049
- Ada AO, Demiroglu C, Yilmazer M, et al. Cytogenetic damage in Turkish coke oven workers exposed to polycyclic aromatic hydrocarbons: Association with CYP1A1, CYP1B1, EPHX1, GSTM1, GSTT1, and GSTP1 gene polymorphisms. Arh Hig Rada Toksikol. 2013;64(3): 359–369. doi: 10.2478/10004-1254-64-2013-2328
- Rohr P, Kvitko K, da Silva FR, et al. Genetic and oxidative damage of peripheral blood lymphocytes in workers with occupational exposure to coal. Mutat Res Genet Toxicol Environ Mutagen. 2013;758(1–2): 23–28. doi: 10.1016/j.mrgentox.2013.08.006
- Espitia-Pérez L, Sosa MQ, Salcedo-Arteaga S, et al. Polymorphisms in metabolism and repair genes affects DNA damage caused by open-cast coal mining exposure. Mutat Res Genet Toxicol Environ Mutagen. 2016;808:38–51. doi: 10.1016/j.mrgentox.2016.08.003
- Sinitsky MY, Minina VI, Gafarov NI, et al. Assessment of DNA damage in underground coal miners using the cytokinesis-block micronucleus assay in peripheral blood lymphocytes. Mutagenesis. 2016;31(6):669–675. doi: 10.1093/mutage/gew038
- de Souza MR, da Silva J, Dihl RR. Chapter 34: Use of micronucleus assays to measure DNA damage caused by coal dust and ash. In: Knasmüller S, Fenech M, editors. The micronucleus assay in toxicology. The Royal Society of Chemistry; 2019. P. 561–582. doi: 10.1039/9781788013604-00561
- Leng S, Dai Y, Niu Y, et al. Effects of genetic polymorphisms of metabolic enzymes on cytokinesis-block micronucleus in peripheral blood lymphocyte among coke-oven workers. Cancer Epidemiol Biomarkers Prev. 2004;13(10):1631–1639. doi: 10.1158/1055-9965.1631.13.10
- Pavanello S, Dioni L, Hoxha M, et al. Mitochondrial DNA copy number and exposure to polycyclic aromatic hydrocarbons. Cancer Epidemiol Biomarkers Prev. 2013;22(10):1722–1729. doi: 10.1158/1055-9965.EPI-13-0118
- Espitia-Pérez L, da Silva J, Espitia-Pérez P, et al. Cytogenetic instability in populations with residential proximity to open-pit coal mine in Northern Colombia in relation to PM10 and PM2.5 levels. Ecotoxicol Environ Saf. 2018;148:453–466. doi: 10.1016/j.ecoenv.2017.10.044
- Vimercati L, Bisceglia L, Cavone D, et al. Environmental monitoring of PAHs exposure, biomarkers and vital status in coke oven workers. Int J Environ Res Public Health. 2020;17(7):2199. doi: 10.3390/ijerph17072199
- Xi J, Cao Y, Wang Y, et al. PIG-A gene mutation as a mutagenicity biomarker among coke oven workers. Food Chem Toxicol. 2023;178:113872. doi: 10.1016/j.fct.2023.113872
- Fedoseev VI, Stepanov DD, Minina VI. Examination of the working environment genotoxic effects on the workers of a coal-fired power plant using the micronucleus test in blood lymphocytes. Ecological genetics. 2021;19(1):77–88. EDN: PFQQYO doi: 10.17816/ecogen42363
- Da Silva Pinto EA, Garcia EM, de Almeida KA, et al. Genotoxicity in adult residents in mineral coal region — a cross-sectional study. Environ Sci Pollut Res Int. 2017;24(20):16806–16814. doi: 10.1007/s11356-017-9312-y
- Fenech M. The cytokinesis-block micronucleus technique: A detailed description of the method and its application to genotoxicity studies in human populations. Mutat Res. 1993;285(1):35–44. doi: 10.1016/0027-5107(93)90049-l
- Battershill JM, Burnett K, Bull S. Factors affecting the incidence of genotoxicity biomarkers in peripheral blood lymphocytes: Impact on design of biomonitoring studies. Mutagen. 2008;23(6):423–437. doi: 10.1093/mutage/gen040
- Kopjar N, Kasuba V, Rozgaj R, Milic M. Micronucleus assay in Croatian general population. Arh Hig Rada Toksikol. 2010;61: 219–234. doi: 10.2478/10004-1254-61-2010-2027
- Di Giorgio C, De Méo MP, Laget M, et al. The micronucleus assay in human lymphocytes: screening for inter-individual variability and application to biomonitoring. Carcinogenesis. 1994;15(2):313–317. doi: 10.1093/carcin/15.2.313
- Duan H, Leng S, Pan Z, et al. Biomarkers measured by cytokinesis-block micronucleus cytome assay for evaluating genetic damages induced by polycyclic aromatic hydrocarbons. Mutat Res. 2009;677(1–2):93–99. doi: 10.1016/j.mrgentox.2009.06.002
- Bonassi S, Neri M, Lando C, et al. Effect of smoking habit on the frequency of micronuclei in human lymphocytes: results from the Human MicroNucleus project. Mutat Res. 2003;543(2):155–166. doi: 10.1016/s1383-5742(03)00013-9
- Huang X, Mu M, Wang B, et al. Associations of coal mine dust exposure with arterial stiffness and atherosclerotic cardiovascular disease risk in Chinese coal miners. Int Arch Occup Environ Health. 2024;97(4):473–484. doi: 10.1007/s00420-024-02062-2
- Manna A, Bisoi S, Mandal NC, Mandal A. An epidemiological study of the risk factors of occupational diseases in coal handling plant of a thermal power station. Indian J Public Health. 2003;47(2):75–77.
- Wang D, Liang R, Yang M, et al. Incidence and disease burden of coal workers’ pneumoconiosis worldwide, 1990–2019: evidence from the Global Burden of Disease Study 2019. Eur Respir J. 2021;58(5):2101669. doi: 10.1183/13993003.01669-2021
- Vanka KS, Shukla S, Gomez HM, et al. Understanding the pathogenesis of occupational coal and silica dust-associated lung disease. Eur Respir Rev. 2022;31(165):210250. doi: 10.1183/16000617.0250-2021
- Alif SM, Sim MR, Ho C, Glass DC. Cancer and mortality in coal mine workers: a systematic review and meta-analysis. Occup Environ Med. 2022;79(5):347–357. doi: 10.1136/oemed-2021-107498
- Idrees F, Batool AI, Rehman MFU, et al. Assessment of genetic damage in coal miners of Punjab, Pakistan. Biol Trace Elem Res. 2023;201(7):3144–3151. doi: 10.1007/s12011-022-03412-2
- Krylov DA. Negative effects of impurities from coal-fired thermal power stations on the environment and health. Mining informational and analytical bulletin (scientific and technical journal). 2017;(12): 77–87. EDN: YKWBJQ doi: 10.25018/0236-1493-2017-12-0-77-87
- Kaur R, Goyal D. Mineralogical studies of coal fly ash for soil application in agriculture. Particul Sci Technol. 2015;33(1):76–80. doi: 10.1080/02726351.2014.938378
- Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen. 2017;58(5):235–263. doi: 10.1002/em.22087
- Huang R, Zhou P-K. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther. 2021;6(1):254. doi: 10.1038/s41392-021-00648-7
- Kvitko K, Bandinelli E, Henriques JA, et al. Susceptibility to DNA damage in workers occupationally exposed to pesticides, to tannery chemicals and to coal dust during mining. Genet Mol Biol. 2012;35(4S1):1060–1068. doi: 10.1590/s1415-47572012000600022
- Ramírez-Lopera V, Uribe-Castro D, Bautista-Amorocho H, et al. The effects of genetic polymorphisms on benzene-exposed workers: A systematic review. Health Sci Rep. 2021;4(3):e327. doi: 10.1002/hsr2.327
Supplementary files
